
1

ank

is”
are.

SE

e to
n of

 and
 are

rcial

 the
 the
 non-

eling
tion

that
 access
and R
de

t for
Brief User’s Guide:
 Dynamic Systems Estimation Library

 Paul Gilbert, December 2001.
Copyright 1993, 1994, 1995, 1996, 1999, 2000, 2001 Bank of Canada.

The user of this software has the right to use, reproduce and distribute it. The B
of Canada makes no warranties with respect to the software or its fitness for any
particular purpose. The software is distributed by the Bank of Canada solely on an “as
basis. By using the software, user agrees to accept the entire risk of using this softw

The software documented in this guide is available by following the links to D
at <http://www.bank-banque-canada.ca/pgilbert>. Please check there for new versions.

This draft reflects many changes which were incorporated in October 1999. Du
these changes, the 1996 version of the guide gives a better description of any versio
the code prior to October 1999. I have tested the version of the code described here
(December 2001) with Splus 3.3 on Solaris and with R 1.4.0 (pre-release) on Solaris
Linux. I believe everything should work with Splus 3.4 but I have not tested it. There
known problems with Splus 5. Please report errors you find.

Caveat: This software is the by-product of ongoing research. It is not a comme
product. Limited effort is put into maintaining the documentation. There may be
references to functions which do not yet work and/or have not been distributed, and
documentation may not correspond to the current capabilities of the functions. While
software does many standard time-series things, it is really intended for doing some
standard things. The main difference between this library and many widely available
packages is that the library is designed for studying estimation techniques and mod
techniques. If your interest is simply in simulation of time-series models or in estima
with well established techniques, you may find many commercial products which are
better. If your interest is in new techniques and time-series research then you will find
this software is very good, both because of the design and because you have direct
to the code, so you can add your own functions and make changes. In addition, the S
languages are very powerful for doing statistical calculations. Direct access to the co
and function results may also make the software useful for teaching purposes.

In an effort to foster communications among users, I have set up an e-mail lis
questions and discussion of problems. To subscribe to the list send a message to
<boc_list@bank-banque-canada.ca> with a line in the body:

subscribe boc_dse Your Name

Subsequent message to the list should be sent to <boc_dse@bank-banque-canada.ca>.
Constructive suggestions and comments are welcomed. I can be reached at
<pgilbert@bank-banque-canada.ca> or at <PaulGilbert@Ottawa.com>or by phone at
(613) 782-7346.

2 Brief User’s Guide: DSE
Contents

1. Introduction 3

2. Getting Started with S/R 3

3. General Outline of DSE Objects and Methods 4

4 Defining a TSdata Structure 6

5. ARMA and State-Space TSmodels 8

6. Model Estimation 11

7. Forecasting 13

8. Evaluation of Forecasting Models 15

9. Evaluating Estimation Methods 19

10. Adding New TSdata Classes 27

11. Adding New TSmodel Classes 27

12.Curvature Calculations not yet

13.Juice Functions not yet

14. Cookbook for Monitoring Models

A. I. Mini-Reference

A. II. TS PADI Data Retrieval

A. III. Installation

References

Introduction 3

s
me-
els in
asis
ed
els.

les for

e

s
ies

A
e

the

ll be
mark
s as

nly

ers

k to
r

1. Introduction

The functions in this library are designed for studying multi-variate time-serie
models and estimation techniques. The library was originally designed with linear, ti
invariant auto-regressive moving-average (ARMA) models and state-space (SS) mod
mind. These remain the most well developed models in the library and provide the b
for most of the examples in this guide. However, the library implements object orient
methods for studying new estimation techniques and other kinds of time series mod
Methods are implemented for studying Troll (Intex Solutions, Inc.) models (currently
broken) and some neural net architectures are being explored. These provide examp
implementing new model objects and estimation methods. Users are encouraged to
consider specific representations used in this guide as examples in the context of th
library’s broader objectives.

In order to provide examples the library also implements some estimation
techniques and methods for converting among various representations of time serie
models. Many functions for the usual diagnostics which are preformed with time ser
data and models are included as well. Additional information on specific functions is
available through the help facility. For details of some of the underlying theory of ARM
and SS model equivalence and examples of some of the capabilities of the library se
Gilbert (1993). For examples of using the library to evaluate estimation methods see
Gilbert (1995). Examples of the use of several functions are illustrated in the files in
demo subdirectories. (In R seedemo())

2. Getting Started with S/R

This library works with the Splus (MathSoft<http:www.insightful.com>) version
of the S language and the similar R language (Ihaka and Gentleman, 1996)<http://cran.r-
project.org>. The notation S/R will be used to indicate both languages and S or R wi
used when a remark is specific to one or the other. Splus will be indicated when a re
may be specific to Splus but not to S in general. Italics will be used to indicate example
well as functions and objects, and() will frequently be added to function names to help
distinguish them as such. Anything entered after a # is a comment in S/R.

This guide tries to explain certain aspects of S/R in order to make the library
accessible to users unfamiliar with S/R. However, knowledge of the S/R language is
extremely useful. Users are referred to Becker, Chambers and Wilks (1988, commo
known asThe Blue Book), Venables and Ripley (various editions), Ripley (1994),
Burns(...), Krause and Olson(...), or to the user manuals for their implementation. Us
already familiar with S/R please ignore the simplified explanations given here.

An important point is that S/R functions take arguments in brackets (...), even
when there are no argument. So, for example, the function to get out of S/R and bac
the operating system isq(). Values are assigned to S/R variables with the two characte
symbol“<-” or the one character underscore symbol“_” . Also, it is important to be

4 Brief User’s Guide: DSE

ow

n.

ore
peed

n the

data

ss
 for
aware that upper and lower case letters are different. Most examples in this guide sh
only the user input, not the computer output.

If DSE is not installed on your system, please see the appendix on installatio
Once S/R is started the DSE library must be made available. In S this is done with:

library(“DSE”, first=T)
load.DSE.fortran()

or in R by:

library(“dse1”) #for the base functionality. (This also attaches syskern and tframe.)

library(“dse2”) #for functions described later in the guide.

library(“padi”) #for database interface.

library(“dsepadi”) #for the dse layer on top of database interface.

library(“monitor”) #for monitoring model functions described later in the guide.

library(“juice”) #for functions (not yet described in the guide)

library(“curve”) #for functions (not yet described in the guide)

You should consider putting these lines in your.First function, which is automatically
executed each time you start. (This is especially advisable in Splus as some of the m
computationaly intensive functions in this library spawn separate Splus sessions to s
calculations.)

Descriptions of functions and objects are available in the help system. This is
integrated with the R help system which is started by

help.start()

HTML help is available in S and can be viewed with a web browser. From an S sessio
help facility can be started with the function

help.start.DSE()# tries to start Netscape by default

help.start.DSE(browser= “my.browser”)

The string passed asbrowser should be a system command for starting a web (HTML)
browser.

3. General Outline of DSE Objects and Methods

The library implements three main classes of objects:TSdata, TSmodel, and
TSestModel. These are respectively, representations of data, models, and models with
and estimation information.

TSdatais an object which contains a (multivariate) time series object calledoutput
and optionally another calledinput. Methods for defining the general version of this cla
of object are described in the next section and more details are provided in the help
TSdata. Input and output correspond to what are often labelledx andy in econometrics

General Outline of DSE Objects and

s and

ta.
nd
e

for
 or
he

t
e is
s

s

re
vided

tion
xtract

tep

.

t

a

and time series discussions of ARMA models. These are sometimes called exogenou
endogenous variables, though those terms are often not correct for these models.
Statistically, output is the variable which is modelled and input is the conditioning da
From a practical and computational point of view, the model forecasts output data a
input data must always be supplied. In particular, to forecasts multiple periods into th
future requires that input data for the future must be supplied so that the model can
calculate outputs. The terms input and output are commonly used in the engineering
literature, and often correspond to a control variable and the output from a physical
system. However, the causal interpretation in this context is not always appropriate
other uses of time series models. In addition, even when a causal direction is known
assumed, it is not always desirable to define the exogenous variable as an input. If t
model is to give forecasts into the future then it may be better to define exogenous
variables as outputs and let the model forecast them, unless better forecasts of the
exogenous variables are available from other sources. One context in which an inpu
variable is important is to examine policy scenarios. In this context the policy variabl
defined as the input and forecasts are produced conditioned on different assumption
about the policy.

TSmodelobjects are models which are arranged to useTSdata. These objects
always have another specific class indicating the type of model. TheARMA andSS
constructor methods for ARMATSmodels and state-spaceTSmodels are described in a
section below. Other specific classes ofTSmodels can be defined and many of the method
in this library will work with these new models, as long as they useTSdataand have a few
important methods implemented. More details on defining other classes of models a
given in a later section of this guide. Details on the representation of models are pro
in the help forTSmodel and the help for specific model constructors.

TSestModel objects are objects which containTSdata, aTSmodel, and some
statistical information generated byl(model, data). Thel() method originally meant
likelihood, but the method returns the one-step-ahead predictions and other informa
based on those predictions. Methods for studying one-step-ahead model forecasts e
the predictions from these objects. Other methods treatTSestModel objects as a simple
way to group together a model and data. For example, methods for studying multi-s
forecasts need to generate the forecasts, so they do not use the predictions in the
TSestModelobject. More detail about TSestModel objects is available in the help system

The default method forTSdata()constructs aTSdataobject, as will be described in
the next section. The generic methodsTSmodel()andTSdata()can also be used to extrac
theTSmodel or TSdata object from another object (such as aTSestModel).

The functions in this library can be used by starting with data and estimating
model, or by starting with a model and producing simulated data. The next section
describesTSdata objects, but it would be equally possible to start with models as
described in the sections following.

6 Brief User’s Guide: DSE

this
le by

o this
ing

can
useful

 can

.

ith

st

ich

SE
her
to
4. Defining a TSdata Structure

Several data sets are included with this library and will be used in examples in
guide. In S these are available when the library is attached. In R they are made availab

data(package=”dse1”)# to see the names of the data sets

data(xxx, package=”dse1”)# replace xxx by the name of the data set to be made available

This section describes how to construct aTSdata structure if you have other data you
would like to use. Section 10 discusses adding new kinds of TSdata classes. Some
installations may have an online database and it may be possible to connect directly t
data. An appendix on TSPADI data retrieval gives more detail on one possibility for do
this.

For many people the situation will be that the data is in some ASCII file. This
be loaded into session variables with a number of standard S/R functions, the most
of which are probablyscan() andread.table(). Following is an example which reads data
from an ASCII file calledeg1.datand puts it in the variable calledeg1.DSE.data(which is
also one of the available data sets). The ASCII file is distributed with this library and
be found in the data directory below where the library is installed. The value of the
variableDSE.HOME should indicate where the library is installed, sopaste(DSE.HOME,
“/data/eg1.dat”, sep=””) will give the location of the file. The file has five columns of
numbers and 364 rows. The first column just enumerates the rows and is discarded

eg1.DSE.data <- t(matrix(scan(paste(DSE.HOME, “/data/eg1.dat”, sep=””)),
5, 364))[, 2:5]

This matrix can be used to form aTSdata object by

eg1.DSE.data <- TSdata(input= eg1.DSE.data[,1,drop = F],
output=eg1.DSE.data[, 2:4, drop = F])

The matrix and the resultingTSdata object do not have a good time scale associated w
points. A better time scale can be added by

eg1.DSE.data <-tframed(eg1.DSE.data, list(start=c(1961,3), frequency=12))

There are several different possibilities for representing time in S/R objects. The mo
common is thets matrix object, which is used in the above defaulttframedmethod. (ts is
not truly a class of object in S, since it is the default representation of time series wh
existed before classes were introduced.) The abovetframedmethod andtscan also be used
directly on the matrix before theTSdataobject is formed. However, [,] in Splus results in
the time scale being lost, so it would need to be reassigned to theinputandoutputmatrices
of theTSdataobject. The methods from the tframe library are used extensively in the D
library because they provide a common way to proceed in Splus and R, extend to ot
time representations in addition tots, and provide a mechanism for extending methods
other objects likeTSdata andTSmodels.

Names can be given to the series with

Defining a TSdata Structure 7

ey are
this

his

dded.
n TS
,

to be

er a

n is
s are
rinted.

ots it
seriesNamesInput(eg1.DSE.data) <- “R90”
seriesNamesOutput(eg1.DSE.data) <- c(“M1”,”GDPl2”, “CPI”)

Setting the series names is not necessary but many functions can use the names if th
available. (This overlaps somewhat with S/R dimnames, but is the preferred method in
library as it extends to data which is not a matrix.) TheTSdataobject with elementsinput
andoutput is the structure which the functions in this library expect. More details on t
structure are available in the help forTSdata. The input and output elements can be
defined in a number of different ways and new representations can be fairly easily a
For example, when the data is on a remote database as described in the appendix o
PADI data retrieval, the S/R object is just a description of where the data comes from
rather than the data itself. In this case thefreeze() function is used automatically by many
functions in the DSE library in order to get a copy of the data when calculations are
performed.

Once data is available a model can be estimated:

model1 <- est.VARX.ls(eg1.DSE.data)
model2 <- est.SS.Mittnik(eg1.DSE.data)

(Note: these models are not the same as those reported in Gilbert,1993. In that pap
variant of est.VARX.ar was used.) The scale of the series ineg1.DSE.dataare very
different, with the result that the covariance matrix of the residuals from the estimatio
nearly singular. This is detected during the calculation of residual statistics. Statistic
then calculated using only the non-degenerate subspace and a warning message is p
A better model might be obtained if the data were scaled differently.

Information about the estimated models can be displayed, for example:

summary(model1)
summary(model2)
model1
model2
stability(model1)
stability(model2)
information.tests(model1, model2).

Typing the name of an object in S/R results in the object being printed. To display pl
is first necessary to open a graphics window:

x11() # in R

motif() # or something else depending on your GUI in Splus

Once a graphics display is active then plots can be viewed:

tfplot(model1)
plot(model1)
tfplot(model2)

8 Brief User’s Guide: DSE

first

ly.
SE

is

nd
tfplot(eg1.DSE.data)
check.residuals(model1)
check.residuals(model2)

The functiontfplot produces separate graphs for each series whileplot will put all series
on one graph, which may be useful sometimes. You should experiment with both. The
tfplot command produces this graphic

:

Note that initial conditions have been set to zero, but the effect of this dies out quick
(Also note that the graph labels may be slightly different depending on which version D
and of R or S you are using.)

5. ARMA and State Space TSmodels

Specifying ARMA and SS models is described below, but first their definition
outlined. The linear time-invariant ARMA representation is

A(L) yt = B(L) εt + C(L) ut

where yt is a p dimensional vector of observed output variables,ut is an mdimensional
vector of input variables,εt is ap dimensional unobserved disturbance vector process a

y1

1960 1970 1980 1990

0
10

00
0

20
00

0
30

00
0

40
00

0

One step ahead predictions (dotted) and actual data (solid)

y2

1960 1970 1980 1990

0
10

00
00

30
00

00
50

00
00

y3

1960 1970 1980 1990

0
20

40
60

80
10

0
12

0

ARMA and State Space TSmodels 9

me-
.

 by

ing
nd

u

ls. The
ault
iance
A, BandC are matrices of the appropriate dimension in the lag (back shift) operatorL.
VAR models can be thought of as a special case of ARMA models withB(L)=I . ARIMA
models are also a special case of ARMA models.

Note that the time convention here implies that the input variableut can influence
the output variableyt in the same time period. This convention is not always used in ti
series models but is important for economics data, especially at annual frequencies

A linear time-invariant state space representation in innovations form is given

zt = F zt-1 + G ut +K εt-1

yt = H zt + εt

wherezt is the unobserved underlyingn dimensional state vector,F is the state transition
matrix,G, the input matrix,H, the output matrix, andK, the Kalman gain. The library also
has some limited capabilities to work with the more general non-innovations form:

zt = F zt-1 + G ut + Q νt

yt = H zt + R εt

whereνt is the system noise,Q, the system noise matrix, andR the output (measurement)
noise matrix.

Models are specified by setting up the arrays that define the model and group
them into aTSmodel object. Here is an example ARMA model with two series, a seco
order AR polynomial, a first order MA polynomial and no exogenous variable:

AR<- array(c(1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3) ,c(3,2,2))
MA <- array(c(1, .2, 0, .1, 0, 0, 1, .3), c(2,2,2))
arma <- ARMA(A=AR, B=MA, C=NULL)
rm(AR, MA)# these can be removed from the environment as they are no longer needed

arma
stability(arma)
data.arma.sim <- simulate(arma)
arma <- l(arma, data.arma.sim)
summary(arma)
tfplot(data.arma.sim)
tfplot(arma)

Note that arrays are filled in the order of their dimensions, which may not be what yo
expect. The internal representation ofTSmodels may be described in the help for the
specific model constructors, but in general it should be considered “opaque” and an
understanding of the internal data structure should not be necessary to use the mode
function l() evaluates the model with the simulated data. Functions generally use def
values for some arguments. For example, the length of the simulation and the covar

10 Brief User’s Guide: DSE

elp on

tion
you
 good

ions

, for
-

of the noise can be specified. The above example uses the default values. See the h
simulate for more details. In the example above,arma is initially assigned an object of
classTSmodel, but it is then re-assigned the value returned byl(), which is an object of
classTSestModel.Also, many functions work with different classes of objects, and do
different things depending on the class of the argument. The function tfplot() works with
objects of classTSdata andTSestModel.

Here is an example of a state space model:

f <- array(c(.5, .3, .2, .4), c(2,2))#beware: do not use capital F=FALSE as a variable name

h <- array(c(1, 0, 0, 1), c(2,2))
k <- array(c(.5, .3, .2, .4), c(2,2))
ss <- SS(F=f, H=h, K=k)# F here is the function argument not a variable name

print(ss)
stability(ss)
data.ss.sim <- simulate(ss)
ss <- l(ss, data.ss.sim)
summary(ss)
tfplot(ss)

Data which has been generated withsimulate is aTSdata object and can be used
with estimation routines. This provides a convenient way to generate data for estima
algorithms, but remember that estimation will not necessarily get back to the model
start with, since there are equivalent representations (see Gilbert, 1993). However, a
estimate will get close to the likelihood and predictions of the original model.

Here is an example of changing between state space and ARMA representat
using the models defined in the previous example:

 ss.from.arma <- l(to.SS(arma), data.arma.sim)
 arma.from.ss <- l(to.ARMA(ss), data.ss.sim)
 summary(ss.from.arma)
 summary(arma)
 summary(arma.from.ss)
 summary(ss)
 stability(arma)
 stability(ss.from.arma)

The functionroots() is used bystability() and can be used by itself to return the
roots but not evaluate their magnitude1. When their arguments areTSmodelsthe functions
to.SS()andto.ARMA()return objects of classTSmodelwhich are not assigned to a variable

1. By default the roots of an ARMA model are calculated by converting the model to state space form
reasons explained in Gilbert (2000). By specifying by.poly=Tthe method can be changed to use an expan
sion of the polynomial determinant.

ModelEstimation 11

f

ber

ssary
n

lt the

f
ance

ero
tions
in the above example, but used in the evaluation ofl(). The models are returned as part o
theTSestModel returned byl().

6. Model Estimation

The example dataeg1.DSE.dataandegJofF.1dec93.data. are available with the
DSE library and are used in examples in this section.

To estimate an AR model with the default number of lags:

 model.eg1.ls <- est.VARX.ls(trim.na(eg1.DSE.data))

In this exampletrim.na removesNA padding from the ends of the data, since the
estimation method cannot handle missing values. This padding may not be present,
depending on how the data was retrieved.

It is also possible to select a subsample of the data:

subsample.data <- tfwindow(eg1.DSE.data, start=c(1972,1) end=c(1992,12))

This creates a new variable with data starting in January 1972 and ending in Decem
1992. The S/R functionwindow also usually works, however the functiontfwindow is
typically used in the DSE library and this guide because it has occasionally been nece
to correct some problems withwindow. Various functions can be applied to the estimatio
result:

summary(model.eg1.ls)
print(model.eg1.ls)
tfplot(model.eg1.ls)
tfplot(model.eg1.ls, start=c(1990,1))
check.residuals(model.eg1.ls)

Other estimation techniques are available:

model.eg1.ar <- est.VARX.ar(trim.na(eg1.DSE.data))
model.eg1.ss <- est.SS.from.VARX(trim.na(eg1.DSE.data))
model.eg1.bft <- bft(trim.na(eg1.DSE.data))
model.eg1.mle <- est.max.like(model.eg1.ls) #see note below

Most of these have several optional parameters which control the estimation. Consu
help for the individual functions.est.max.like extracts data from aTSestModel and uses
the model structure and initial parameter values for the estimation. (Note: Maximum
likelihood estimation can be very slow and may not converge in the default number o
iterations. It also tends to over fit unless used with care, so that out-of-sample perform
is not good. I do not generally recommend it, although it does offer possibilities for
constraining the structure in specific ways (e.g. fixing some model matrix entries to z
or one). You might consider comparing mle to other estimation techniques using func
discussed in the following sections.)

12 Brief User’s Guide: DSE

sults
itial
tant.
g the

lues

 the

ive

t
, will
ent

two.
An important point to note is that the one-step-ahead predictions and related
statistics returned by these estimation techniques are calculated by evaluatingl(model,
data)as the final step after the model has been estimated. This can give different re
than might be expected using the estimation residuals, particularly with respect to in
condition effects. (For stable models initial condition effects should not be too impor
If they are an important factor check the documentation for specific models regardin
specification of initial conditions.)

Also remember when estimating a model that, if you want to predict future va
of a variable, it will need to be an output in theTSdata object.

For the next example a four variable subset of the data inegJofF.1dec93.data will
be used. This subset is extracted by

 eg4.DSE.data<- egJofF.1dec93.data
 output.data(eg4.DSE.data) <- output.data(eg4.DSE.data, series=c(1,2,6,7))

which selects the 1st, 2nd, 6th, and 7th series of the output data. The following uses
currently preferred automatic estimation procedure:

model.eg4.bb <- est.black.box(trim.na(eg4.DSE.data), max.lag=3)

An optional argumentverbose=F will make the function print much less detail
about the steps of the procedure. The optional argument,max.lag=3, specifies the
maximum lag which should be considered. The defaultmax.lag=12 may take a very long
time for models with several variables.est.black.box currently usesest.black.box4, also
known asbft(..., standardize=T) which is called the brute force technique in Gilbert
(1995).

The traditional model information criteria tests can be performed to compare
models:

information.tests(model.eg1.ar, model.eg1.ss)

An arbitrary number of models can be supplied. The generated table lists several
information criteria. For state space models the calculations are done with both the
number of parameters (the number of unfixed entries in the model arrays) and the
theoretical parameter space dimension. See Gilbert (1993, 1995) for a more extens
discussion of this subject.

Note that converting among representations produces input-output equivalen
models, so that predictions, prediction errors, and any statistics calculated from these
be the same for the models. However, different estimation techniques produce differ
models with different predictions. So,est.VARX.ls(data)andto.SS(est.VARX.ls(data))will
produce equivalent models andest.SS.Mittnik(data) andto.ARMA(est.SS.Mittnik(data))
will produce equivalent models, but the first two will not be equivalent to the second

Forecasting 13

hich

ight be

erated

0.3

ata

 result
7. Forecasting

TheTSestModelobject returned by estimation is aTSmodelwith TSdataand some
estimation information. To use different data, the new data needs to be in a variable w
is aTSdata object. For example, suppose a model is estimated by

eg4.DSE.model <- est.VARX.ls(eg4.DSE.data)

and suppose new data becomes available. If you have direct database access this m
done with something like

new.data <- freeze(eg4.DSE.data.names)

If database access is not available then for example purposes new.data can be gen
with

new.data<-TSdata(input=ts(rbind(input.data(eg4.DSE.data),matrix(.1,10,1)),
start=start(eg4.DSE.data),
frequency=frequency(eg4.DSE.data)),

output=ts(rbind(output.data(eg4.DSE.data),matrix(.3,5,4)),
start=start(eg4.DSE.data),
frequency=frequency(eg4.DSE.data)))

This simply appends ten observations of 0.1 onto the input and five observations of
onto the outputs. The functionts assigns time series attributes which are taken from
eg4.DSE.data. The model can be evaluated with the new data by

z <- l(TSmodel(eg4.DSE.model), trim.na(new.data))

Recall thatTSmodel()extracts theTSmodel from theTSestModel. If database access is
available the above can be done in one step:

z <- l(TSmodel(eg4.DSE.model), trim.na(freeze(eg4.DSE.data.names)))

trim.naon aTSdataobject removesNAs from the ends and truncates bothinputandoutput
to the same sub-sample.l() does not easily give forecasts beyond the period where all d
is available. (Optional arguments can be used to achieve this, but the functionforecast is
more convenient.)

Forecasts are conditioned oninput so it must be supplied for periods for which
forecasts are to be calculated. (That is,input is not forecast by the model.) When more
data is available forinput than foroutput, as innew.data generated above, thenforecast()
will use input data and produce a forecast ofoutput.

z <- forecast(TSmodel(eg4.DSE.model), new.data)

The input data can also be specified as a separate argument. For example, the same
will be achieved with

z <- forecast(TSmodel(eg4.DSE.model), trim.na(new.data),
conditioning.inputs=input.data(new.data))

14 Brief User’s Guide: DSE

other
Theconditioning.inputs overrideinput in theTSdata supplied in the second argument to
the function.

To see plots of the forecasts use

tfplot(z, start=c(1990,6))

which produces this result:

Sometimes a forecast for input data comes from another source, perhaps an
model. Rather than construct theconditioning.inputs as described above, another way to
combine this forecast with the historical input data is to use the argument
conditioning.inputs.forecasts:

C
P

I

1991 1992 1993 1994

0.
0

1.
0

2.
0

Predictions (dotted) and actual data (solid)

G
D

P

1991 1992 1993 1994

-1
.0

0.
0

em
pl

oy
m

en
t

1991 1992 1993 1994

-0
.4

0.
0

0.
4

0.
8

P
F

X

1991 1992 1993 1994

-1
0

1
2

Evaluating Forecasting Models 15

 use

iod

del

sed

g

z <- forecast(eg4.DSE.model, conditioning.inputs.forecasts=matrix(.5,6,1))

This would use theinput data fromeg4.DSE.model and append 6 periods of 0.5 to it.

z <- forecast(TSmodel(eg4.DSE.model), freeze(eg4.DSE.data.names),
conditioning.inputs.forecasts=matrix(.5,6,1))

retrieves new data and appends 6 periods of 0.5 to the input series

Some generic functions which work with the structure returned by forecast:

summary(z)
print(z)
tfplot(z)
tfplot(z, start=c(1990,1))

If you actually want the numbers from the forecast they can be extracted with

forecasts(z)[[1]]

The[[1]] indicates the first forecast (in this example there is only one, but the same
structures are used for other purposes discussed below. To see a subset of the data
tfwindow:

tfwindow(forecasts(z)[[1]], start=c(1994,5))

This prints values starting in the fifth period of 1994.

The horizon for the forecast is determined by the available input data
(conditioning.inputsor conditioning.inputs.forecasts). If neither of these are supplied then
the argumenthorizon, which has a default value of 36, is used to replicate the last per
of data to the indicated horizon. For models with no input variables the argumenthorizon
controls the length of the forecast.

8. Evaluating Forecasting Models

How well does the model do at forecasting? The first thing to check is that mo
forecasts actually track the data more or less. The generic functiontfplot() works with
results from the following functions. Recall that the functionl() applies aTSmodel to
TSdata and returns aTSestModel which includes one-step ahead forecasts. It can be u
with anyTSmodel andTSdata of corresponding dimension. So

z <- l(TSmodel(eg4.DSE.model), new.data)

applies the previously estimated model to the new data, and

tfplot(z)

would plot the one-step ahead forecasts. The functionforecast discussed in the previous
section calculates multi-step ahead forecasts from the end of the data. For evaluatin

16 Brief User’s Guide: DSE

ble

s
 of
del.)
le.
iods.
gh it

ing
eriods.
forecasting models it is more useful to calculate forecasts within the sample of availa
data. This is for two reasons. First, the forecast can be compared against the actual
outcome. Second, if the model has aninput then the forecast is conditioned on it. If data i
available then the actualinput data can be used. (But beware that this is not a true test
the model’s ability to forecast if the whole sample has been used to estimate the mo
There are two methods to calculate multi-step ahead forecasts within the data samp
featherForecasts produces multiple period ahead forecasts beginning at specified per
The name comes from the fact that the graph sometimes looks like a feather (althou
will not if the forecasts are good).

z <- featherForecasts(TSmodel(eg4.DSE.model), new.data)
tfplot(z)

In the example above the forecasts begin by default every tenth period. In the follow
example the forecasts begin at periods 20, 50, 60, 70 and 80 and forecast for 150 p

z <- featherForecasts(TSmodel(eg4.DSE.model), new.data,
from.periods =c(20, 50, 60, 70, 80), horizon=150)

tfplot(z)

Evaluating Forecasting Models 17
The plot looks like this:

The second method,horizonForecasts, produces forecasts from every period for
specified horizons.

z <- horizonForecasts(TSmodel(eg4.DSE.model), new.data, horizons=c(1,3,6))
tfplot(z)

C
P

I

1980 1990 2000

0.
0

1.
0

2.
0

Predictions (dotted) and actual data (solid)

G
D

P

1980 1990 2000

-1
0

1
2

em
pl

oy
m

en
t

1980 1990 2000

-1
.0

0.
0

P
F

X

1980 1990 2000

-2
0

1
2

3

18 Brief User’s Guide: DSE

ctual
ch

on
nd
xt,
well

 of

 So
produces forecasts 1, 3 and 6 steps ahead. The plot looks like this:

The result is aligned so that the forecast for a particular period is plotted against the a
outcome for that period. Thus, in the last example, the plot will show the data for ea
period along with the forecast produced from 1, 3, and 6 periods prior. This plot is
particularly useful for illustrating when models do well and when they do not. A comm
experience with economic data is that models do well during periods of expansion a
contraction, but miss the turning points. The forecast covariance, to be discussed ne
averages over all periods. It is quite possible that a model can indicate turning points
but not do so well on average, and thus be overlooked if only forecast covariance is
considered. It is always useful to keep in mind the intended use of the model.

The numbers which generate the above plot can be extracted from the result
horizonForecastswith forecasts(). This gives an array with the first dimension
corresponding to the horizons and the time frame aligned to correspond to the data.

C
P

I

1980 1990

0.
0

1.
0

2.
0

Actual data (solid)
G

D
P

1980 1990

-1
0

1
2

em
pl

oy
m

en
t

1980 1990

-1
.0

0.
0

P
F

X

1980 1990

-2
0

1
2

3

Evaluating Estimation Methods 19

od

us
put
ad, but

s.

))

see

T)

n the

n be
iable
s is
nt.

d to
e true
rue”

y
tions
forecasts(z)[2,30,]from the above example will be the prediction made for the 30th peri
from 3 periods previous (the second element indicated inhorizons is 3) and
forecasts(z)[3,30,]will be the prediction made for the 30th period from 6 periods previo
(horizons[3] is 6). Remember that these forecasts are conditioned on the supplied in
data, which means that the output variables here are forecast 1, 3 and 6 periods ahe
true, not forecasted, input data is used.

If the forecasts look reasonable then examine the forecast errors more
systematically. The following calculates the forecast covariances at different horizon

fc <- forecastCov(TSmodel(eg4.DSE.model), data=eg4.DSE.data)
tfplot(fc)
tfplot(forecastCov(TSmodel(eg4.DSE.model), data=eg4.DSE.data, horizons= 1:4

The last example calculates for horizons from 1 to 4 rather than the default 1 to 12. To
how the model forecasts relative to a zero forecast and a trend forecast:

fc <- forecastCov(TSmodel(eg4.DSE.model), data=eg4.DSE.data, zero=T, trend=
tfplot(fc)

This is a very useful check (and often very humbling).

You can also get out-of-sample forecast covariances. This will be discussed i
next section.

There is not yet implemented in DSE any measure of forecast errors which ca
compared across models - inevitably the covariance of the error is smaller for less var
series and is also affected by scaling of the series. This may just mean that the serie
easier to predict or has a different scale, not that the forecast equation is more brillia
MAPE may be implemented sometime.

9. Evaluating Estimation Methods

One way to test estimation techniques is to specify a “true” model which is use
produce simulated data and then examine how well an estimation technique finds th
model. This is not as general as theoretical results, since it is really only valid at the “t
parameter values and for the sample size tested, however, it can be illustrative and
theoretical results for small samples are very difficult to obtain. It also provides a ver
good cross check of the simulation and estimation code. Also, equivalent representa
may have effects which are not yet fully appreciated in the theoretical literature. The
following models from Gilbert (1995) will be used to illustrate.

 mod1 <- ARMA(A=array(c(1,-.25,-.05), c(3,1,1)), B=array(1,c(1,1,1)))
mod2 <- ARMA(A=array(c(1,-.8, -.2), c(3,1,1)), B=array(1,c(1,1,1)))
 mod3 <- ARMA(

A=array(c(
1.00,-0.06,0.15,-0.03,0.00,0.02,0.03,-0.02,0.00,-0.02,-0.03,-0.02,

20 Brief User’s Guide: DSE

or

size

e

nd
 and
t is
0.00,-0.07,-0.05,0.12,1.00,0.20,-0.03,-0.11,0.00,-0.07,-0.03,0.08,
0.00,-0.40,-0.05,-0.66,0.00,0.00,0.17,-0.18,1.00,-0.11,-0.24,-0.09)
,c(4,3,3)),

B=array(diag(1,3),c(1,3,3)))

mod2has a unit root, as can be verified withroots(mod2) or stability(mod2).

The functionMonteCarloSimulations runssimulate repeatedly to give many data
samples.

z <- MonteCarloSimulations(mod1, sampleT=100)
tfplot(z)
distribution(z)

Usually it is not necessary to useMonteCarloSimulations and actually save all the
simulations since the seed and other information about the random number generat
(RNG) can be used to reproduce the samples. Thus functions for testing estimation
methods can produce the same samples when they are needed.

The functionEstEval simulates and then estimates models:

 e.ls.mod1 <- EstEval(mod1, replications=100,
simulation.args=list(sampleT=100, sd=1),
estimation=”est.VARX.ls”, estimation.args=list(max.lag=2),
criterion=”TSmodel”,
rng=list(kind="default", normal.kind="default",

 seed=c(13,44,1,25,56,0,6,33,22,13,13,0)))# Splus seed - see below

In this example simulation and estimation will be repeated 100 times with samples of
100 and the standard deviation of the model noise will be set to 1.simulation.args are
passed to the functionsimulate, which may take different arguments depending on the
class of the model. Estimation is done with the functionest.VARX.ls andestimation.args
are passed to it. The argumentcriterion specifies what should be returned from the
estimation. In this case the model is returned (An object of classTSmodel) but not
additional information as is usually returned in the objectTSestModel. It is also possible to
specifycoefor roots to return only that specific information, but that information can b
extracted from theTSmodel as illustrated below. In generalEstEval will work with any
estimation method which will take the results ofsimulate applied to the supplied model
and returns something thatcriterion can extract. That is, if
criterion(estimation(simulate(model))) returns something (withcriterion andestimation replaced
by the functions you supply andmodel replaced by the model you supply), thenEstEval
should work with your functions. This does not mean that plots described below will
necessarily work or make sense.

The argumentrng is optional here and in all the examples below. If supplied, the RNG a
seed will be set. This is useful if an experiment is to be reproduced. Using Splus 3.2
3.3 the settings indicated in this section will reproduce the results in Gilbert (1995). I

Evaluating Estimation Methods 21

lus

ox-
l
ction
possible to generate similar random experiments in S and in R, but not using the Sp
default generator. If the argumentrng above is given as

rng=list(kind="Wichmann-Hill", seed=c(979,1479,1542), normal.kind="Box-
Muller")

then the uniform RNG is set to Wichmann-Hill, the normal transformation is set to B
Muller, and the initial seed is set. With the RNG set in this way both Splus and R wil
produce similar results. These settings are reset to their previous values when the fun
completes. They can be set so that they do not revert using the function

set.RNG(kind="Wichmann-Hill", seed=c(979,1479,1542), normal.kind="Box-
Muller")

The argumentseed is optional (and other values can be supplied but they should be
consistent with the generator). An initial seed will be generated if it is omitted.

The following usesmod2 as the true model.

e.ls.mod2 <- EstEval(mod2, replications=100,
simulation.args=list(sampleT=100, sd=1),
estimation=”est.VARX.ls”, estimation.args=list(max.lag=2),
criterion=”TSmodel”,

rng=list(kind="default", normal.kind="default",
seed=c(13,43,7,57,62,3,30,29,24,54,47,2)) #Splus seed

)

To plot a line chart of the cumulative average of the estimated parameters usecoef
to extract the parameters (coefficients) from theTSmodel:

par(mfcol=c(2,1))# set the number of plots on the graphics device

tfplot(coef(e.ls.mod1))
tfplot(coef(e.ls.mod2))

22 Brief User’s Guide: DSE

eters

. The
The second plot looks like this:

The straight line indicates the true value. To plot a line chart of the estimated param
usecoef to extract the parameters from the TSmodel:

par(mfcol=c(2,1))# set the number of plots on the graphics device

tfplot(coef(e.ls.mod1), cum=F, bounds=F)
tfplot(coef(e.ls.mod2), cum=F, bounds=F)

bounds controls whether or not estimated one standard deviation bounds are plotted
second plot looks like this:

To plot the distribution of estimates:

 distribution(coef(e.ls.mod1), bandwidth=.2)

0 20 40 60 80 100

−
0.

8
−

0.
4

0.
0

matrix(seq(nrow(r)), nrow(r), 1)

cb
in

d(
0,

 tr
ue

.li
ne

s,
 r

, O
m

)

0 20 40 60 80 100

−
1.

0
−

0.
4

matrix(seq(nrow(r)), nrow(r), 1)

cb
in

d(
0,

 tr
ue

.li
ne

s,
 r

, O
m

)

Evaluating Estimation Methods 23
 distribution(coef(e.ls.mod2), bandwidth=.2)

The second plot looks like this:

To plot the roots of the estimated model useroots to extract the roots from the
TSmodel:

e.ls.mod1.roots <- roots(e.ls.mod1)
plot(e.ls.mod1.roots)
plot(e.ls.mod1.roots, complex.plane=F)
plot(roots(e.ls.mod2), complex.plane=F)
distribution(e.ls.mod1.roots, bandwidth=.2)
distribution(roots(e.ls.mod2), bandwidth=.1)

−1.5 −1.0 −0.5 0.0

0.
0

1.
0

density(x = r[, i], bw = bandwidth)

parameter 1

de
ns

ity

−1.0 −0.5 0.0 0.5

0.
0

1.
0

density(x = r[, i], bw = bandwidth)

parameter 2

de
ns

ity

24 Brief User’s Guide: DSE

e last

sary
 VAR

oot
del
ers

uate

el
bandwidthis an argument passed to the kernel estimator used to generate the plot. Th
plot looks like this:

Some attention to the equivalence of different model representations is neces
when evaluating estimation methods. For example, if the state space equivalent of a
model is used as the true model for simulation andest.VARX.lsis used for estimation then
parameter estimates will be very different from those of the state space model (but r
estimates should still be similar). Many estimation techniques may also do some mo
selection (such asest.black.boxdoes), so the returned models may have different numb
of parameters and/or lags.

Evaluating models based on their forecast performance avoids some of these
difficulties. In any case, since forecasting is often the end objective, it is useful to eval
models directly on their forecasting performance. The function
forecastCov.estimatorsWRTtrue() evaluates estimation methods using a given true mod

0.6 0.8 1.0 1.2

0
1

2
3

density(x = r[, i], bw = bandwidth)

Mod root 1

de
ns

ity

−0.2 0.0 0.2 0.4 0.6

0.
0

1.
5

3.
0

density(x = r[, i], bw = bandwidth)

Mod root 2

de
ns

ity

Evaluating Estimation Methods 25

s

 then

 are

rom

the

tion

out-

l be
for simulation. It calculates the covariance of forecast errors of the estimated model
relative to the output of the true model:

 pc <- forecastCov.estimatorsWRTtrue(mod3,
estimation.methods=list(est.VARX.ls=list(max.lag=6)),
est.replications=2, pred.replications=10,
trend=F, zero=F,
rng=list(kind="default", normal.kind="default",

seed=c(53,41,26,39,10,1,19,25,56,32,28,3))) #Splus seed

The names of the elements in the listestimation.methods specify the estimation methods
and their value is a list of the arguments to the method. If no arguments are required
the value should be specified asNULL. Optional argumentstrend andzero indicate if the
covariance for forecasts of zero and a simple trend should also be calculated. These
useful benchmarks.est.replications controls the number of times a sample is generated
and used for estimating a model with each estimation method.pred.replications controls
how many times the forecasts from the estimated model are compared with output f
the true model. Thus the total number of simulations isest.replications + est.replications *
pred.replications, so 22 in the above example.

A similar function is available which applies a model reduction procedure after
estimation:

pc.rd <- forecastCov.reductionsWRTtrue(mod3,
estimation.methods=list(est.VARX.ls=list(max.lag=3)),
est.replications=2, pred.replications=10,
rng = list(kind = "default", normal.kind="default",

seed=c(29,55,47,18,33,1,15,15,34,46,13,2)))

The reduction procedure used isreduced.models.Mittnik.An optional argument
criteria can be specified. This controls the model selection criteria used by the reduc
technique.

It is possible to compare different estimation techniques on the basis of their
of-sample forecasting error with respect to a data sample. In the following example
estimation.sample controls the portion of the sample used for estimation. It can be a
fraction indicating a portion of the sample, or it can be an integer in which case it wil
treated as the number of periods to use for estimation.

z <-out.of.sample.forecastCov.estimatorsWRTdata(trim.na(eg1.DSE.data),
estimation.sample=.5,
estimation.methods = list(est.VARX.ar=NULL, est.VARX.ls=NULL),
trend=T)

tfplot(z)

26 Brief User’s Guide: DSE
The plot looks like this:

In the example below the number of lags is limited (the default is 12 for
est.black.box4) and printing of intermediate results is suppressed.

z <-out.of.sample.forecastCov.estimatorsWRTdata(trim.na(eg1.DSE.data),
estimation.sample=.5,
estimation.methods = list(

est.black.box4=list(max.lag=3, verbose=F),
est.VARX.ls=list(max.lag=3)),

trend=T, zero=T)
tfplot(z)

The object returned byout.of.sample.forecastCov.estimatorsWRTdata()contains
the estimated models so it is possible to extract the models and usel, horizonForecastsand
featherForecasts. In the above example the model estimated withest.black.box4is the first
model and that estimated with est.VARX.ls is the second, so

horizon

M
1

1 2 3 4 5 6 7 8 9 10 11 12

0
10

^8
2.

5*
10

^8

Prediction variance relative to given data.

horizon

G
D

P
l2

1 2 3 4 5 6 7 8 9 10 11 12

0
10

^1
0

horizon

C
P

I

1 2 3 4 5 6 7 8 9 10 11 12

0
50

0
10

00

trend
est.VARX.ar NULL
est.VARX.ls NULL

Adding New TSdata Classes 27

ated

e

y
s
ly

he

class

e

zz <- horizonForecasts(TSmodel(z, select=1) , TSdata(z), horizons=c(1,3,6))

would generate an object with the actual forecasts for the model estimated with
est.black.box4 (rather than the covariance of the forecast errors) andforecasts(zz)[3,30,]
will then be the prediction made for the 30th period from 6 (the third element ofhorizons)
periods previous. The generic functionhorizonForecasts()can also be applied directly toz
and the appropriate information will be extracted to generate forecasts for all the estim
models.

10. Adding New TSdata Classes

Data used by functions in this library are objects of classTSdata. The default
methods assume that this is a list with an elementoutput and optionally an elementinput,
each of which is a (multivariate) time series object. New classes of time series can b
defined and the DSE library should work as long as the methods describe in thetframe
library are implemented for the new time series class. This usually will not require an
changes toTSdata methods (or anything else in the DSE library). The time series clas
tfPADIdatadefined in thetframelibrary is an object which does not contain data, but on
a description of where to get the data. The generic functionfreeze() calls
freeze.tfPADIdata() which uses the location descriptor in order to get a fixed copy of t
data as a time series matrix.

More generally, it is possible to define new specific classes ofTSdata. The
TSPADIdata object described in the appendix on database interfaces is an object of
TSdata and specific classTSPADIdata. Theinputandoutput for this class are time series
location descriptors of classtfPADIdata. Many functions in this library require matrices
for input andoutput in order to do calculations. In this case they use the functionfreeze()
before doing any calculations. The methodfreeze.TSPADIdata() usesfreeze.tfPADIdata()
on each element.

11. Adding New TSmodel Classes

Models used in the library are of class“TSmodel” with secondary classes to
indicate specific types of models. The original library supported subclass“ARMA” and
“SS” . The current version also support subclass“troll” . (*** The interface for running
troll models is broken at present. Another, more easily available example is under
construction) To run models in this subclass requires the Troll software from Intex
Solutions, Inc. It also requires the TSPADI interface. The main methods which will b
necessary for a new class of models “xxx” are print.xxx, is.xxx, l.xxx, simulate.xxx,
seriesNamesInput.xxx, seriesNamesOutput.xxx, check.consistent.dimensions.xxx,and
MonteCarloSimulations.xxx. Also, the methodto.xxxis useful for converting models from
existing classes to this new class where possible. Models should inherit fromTSmodel.

28 Brief User’s Guide: DSE

n for
h

y are

 of

ded

the
ly

 that
Thetroll class of models is fairly interesting from a programming perspective,
since the data is not native to S/R and the models are not run within S/R. One reaso
wanting to do this is to use all of the other tools in the library to analyze models whic
have already been built and are running in other environments. Troll has very good
algorithms for running “forward looking models” which are currently popular in
economics. The tools in the DSE library (e.g. functions for analyzing forecasting
properties) can be used as if the troll models were run directly in S/R, even though the
actually run with completely separate software.

Thetroll TSmodelsprovide an example of how to implement additional classes
models.

12. Curvature Calculations

13. Juice Functions

14. Cookbook for Monitoring Models

This section gives a brief recipe for building short term forecasting models. It is inten
to be self-contained although there are references to other sections for additional
information. The function described in this section are made available in R by:

library(“padi”) #for database interface.

library(“dsepadi”) #for the dse layer on top of database interface.

library(“monitor”) #for monitoring model functions.

The term “monitoring” comes from the fact that one is often trying to monitor
current state of the economy based on data from prior periods, since there is typical
some lag before statistical agencies release data for the current period. The steps,
explained in more detail below, are:

1/ specify the data series to use in the model

2/ estimate a model and confirm that it is reasonable

3/ repeat 1 and 2 if other series are to be considered for competing models (beware
fishing can be dangerous)

4/ run the monitoring program to produce forecasts

and optionally

Cookbook for Monitoring Models 29

For
me
the
phics

/R

e
ns.

s and

e
gth.

is is

rnate
.

5/ set up an automatic program to run the monitoring program and distribute results

This library use the TS PADI interface explained in more detail in an appendix.
example purposes it is assumed that the data can be retrieved from an “economic ti
series” (ets) server. The examples use names of series which are used internally at
Bank of Canada and are probably not available elsewhere. Start S/R and open a gra
window with

motif() # or something else in Splus

or

x11() # in R

If running remotely it may be necessary to use an argument like"-display
YourWorkstation:0.0"to display on your workstation. A few more details on running S
are given in Section 2 of this guide.

Step 1- specify the data

The data is specified in an variable which indicates the name of the series, th
source, any transformations which should be applied, and possibly some other optio
For more details see the appendix. An example of a model which contains two output
no inputs is

cbps.manuf.data2.ids <- TSPADIdata2(
 output=list(c("ets", "", "i37013","percent.change","cbps.prod."),
 c("ets", "", "i37005","percent.change","manuf.prod.")),
 pad.start=F,
 pad.end =T)

With the above, the data will be converted to percent change when it is read from th
database. The default behaviour for data retrieval is to trim all series to the same len
The length is such that there are no missing values on the ends.pad.startandpad.endcan
be used to modify this behaviour. Withpad.end=T all series are padded on the end with
NAs to give a length which will include the most recent data value from any series. Th
preferred for forecasting but theNAs have to be trimmed withtrim.na for estimation
procedures. The data is actually retrieved from the database with

cbps.manuf.data2 <- freeze(cbps.manuf.data2.ids)

The following example specifies one input series and one output series. It uses an alte
constructor (TSPADIdata vs.TSPADIdata2) which takes arguments in a different format
(The result is the same but different styles sometimes seem more convenient.)

manuf.data.ids <- TSPADIdata(
 input ="lfsa455", input.transforms="percent.change",
 input.names="manuf.emp.",
 output="I37005", output.transforms="percent.change",

30 Brief User’s Guide: DSE

l case
nd of

m the
er

ince
ot so
with
 output.names="manuf.prod.",
 server="ets", pad.start=F, pad.end =T)
manuf.data <- freeze(manuf.data.ids)

The data can be plotted with

tfplot(manuf.data)

In this example the plot shows missing data in the middle. In this somewhat unusua
it is necessary to trim the beginning of the data set to remove the portion up to the e
the missing data. This could be done with

manuf.data <- tfwindow(manuf.data, start=c(1976,2))

However, the trimming would have to be repeated each time the data is updated fro
database, which is especially inconvenient for automatic procedures described furth
below. A better way is to set the starting period for retrieved data with

manuf.data.ids <- modify.TSPADIdata(manuf.data.ids, start=c(1976,2))

then when data is retrieved with

manuf.data <- freeze(manuf.data.ids)

it will start after the missing data. The start can also be specified with the argumentstart
for the functionTSPADIdata.

A more detailed plot of the last portion of the data can be produced with

tfplot(manuf.data, start.=c(1995,11))

Note the “.” after start is part of the name of the argument. It is often not necessary s
truncated arguments usually match without problem, but is required in the case of tfpl
that the argument is not confused with the function start. To specify and retrieve data
two input series and one output series

cbps.manuf.data.ids <- TSPADIdata(
 input =c("lfsa462","lfsa455"), input.transforms="percent.change",
 input.names=c("cbps.emp.", "manuf.emp"),
 output="i37013", output.transforms="percent.change",

output.names="cbps.prod.",
 start=c(1976,2),
 server="ets", db="", pad.start=F, pad.end =T)
cbps.manuf.data <- freeze(cbps.manuf.data.ids)

To specify and retrieve data with one input variable and two output variable

cbps.manuf.data3.ids <- TSPADIdata(
 input ="lfsa462",
 input.transforms="percent.change",input.names="cbps.emp.",
 output=c("i37013", "i37005"),

Cookbook for Monitoring Models 31

issing

w

 are

e to
aller

sing

 in
 output.transforms=c("percent.change", "percent.change"),
 output.names=c("cbps.prod.","manuf.prod."),
 start=c(1976,2),
 server="ets", db ="", pad.start=F, pad.end =T)
cbps.manuf.data3 <- freeze(cbps.manuf.data3.ids)

Settingstart is only necessary because of this rather unusual case were there are m
values in the middle of one series

Step 2 - estimate model

At this point it may be useful to make S/R prompt for a return before each ne
graph is produced. This is done with

 dev.ask(T)

A model can be estimated with various estimation techniques, some of which
described in Section 6. For example:

manuf.model <- bft(trim.na(manuf.data))

This uses a “brute force technique” described in Gilbert (1995). It might take some tim
run. It uses a default maximum number of lags of 12. The estimation is faster if a sm
number of lags is specified using

manuf.model <- bft(trim.na(manuf.data), max.lag=5)

By default the bft procedure prints information as it proceeds. This can be stopped u

manuf.model <- bft(trim.na(manuf.data), verbose=F, max.lag=5)

To display the parameters of the estimated model just type the name of the variable
which it was stored:

manuf.model

and to plot it:

tfplot(manuf.model)
tfplot(manuf.model, start=c(1990,1))
tfplot(manuf.model, start=c(1995,1))

Models for the other specified data sets can be estimated in the same way:

cbps.manuf.model <- bft(trim.na(cbps.manuf.data),verbose=F)
tfplot(cbps.manuf.model)
tfplot(cbps.manuf.model, start=c(1995,1))

To forecast with the model using all available data

z <- forecast(TSmodel(manuf.model), trim.na(manuf.data),
conditioning.inputs=input.data(manuf.data))

32 Brief User’s Guide: DSE

 the

for

he
d, is
then

 set is

a
 for
tfplot(z, start=c(1995,1))

To see the forecast use

forecasts(z)[[1]]
tfwindow(forecasts(z)[[1]], start=c(1996,3))

Forecasting is discussed in Section 7.

To evaluate how well the model does at forecasting, look at the covariance of
forecast error at different horizons with

fc <- forecastCov(manuf.model)
tfplot(fc)

It is also good to consider how well the forecast does relative to a zero and a trend
forecast:

fc <- forecastCov(manuf.model, zero=T, trend=T)
tfplot(fc)

The above forecast error analysis is done within the sample which was used
estimating the model. An out-of-sample forecast error analysis is typically a better
indication of how well the model will really do. This can be done by usingtfwindow to
truncate the data to a subset for estimation and then evaluate the forecast error on t
remainder. Another compromise, which is attractive when short data sets are involve
to do an out-of-sample evaluation of the performance of an estimation procedure, and
hope that the procedure will continue to estimate good models when the whole data
used.

outfc <-out.of.sample.forecastCov.estimatorsWRTdata(trim.na(manuf.data),
estimation.sample=.5,
estimation.methods = list(bft=list(verbose=F), est.VARX.ls=NULL),
trend=T, zero=T)

tfplot(outfc)

Thebft procedure is generally fairly good but it can sometimes be out performed by
simple least squares estimation, especially for univariate models. Its real strength is
multivariate models:

outfc <-out.of.sample.forecastCov.estimatorsWRTdata(
 trim.na(cbps.manuf.data3),
 estimation.sample=.5,
 estimation.methods = list(bft=list(verbose=F), est.VARX.ls=NULL),
 trend=T, zero=T)
tfplot(outfc)

More details are given in Section 8.

Cookbook for Monitoring Models 33

ach

eved

r
input

, the

can
Once a model has been chosen it can be re-used, rather than re-estimating e
time there is a new data point. This is done by extracting the model from the object
returned by the estimation procedure. This object is a model with data and some
estimation information. If you want to use different data then the data needs to be retri
again using the variable which indicates the source. For example

new.data <- freeze(manuf.data.ids)

To run the model and get one-step-ahead predictions with the new data use

z <- l(TSmodel(manuf.model), trim.na(new.data))

Or the data retrieval can be done in the same step with

z <- l(TSmodel(manuf.model), trim.na(tfwindow(freeze(manuf.data.ids),
start=c(1976,2))))

tfplot(z)
tfplot(z, start=c(1995,8))

Forecasts more than one-step-ahead require input series up to the horizon fo
which the forecast is to be produced. To run the model and get forecasts when more
than output data is available:

z <- forecast(TSmodel(manuf.model), trim.na(new.data),
conditioning.inputs=trim.na(input.data(new.data)))

tfplot(z, start=c(1995,6))

The effect of this is to trimNAs frominputseparately fromoutputso thatinputwill not be
truncated to the same ending period asoutput. If you actually want the numbers rather
than plots of the data use

forecasts(z)[[1]]

or

tfwindow(forecasts(z)[[1]], start=c(1996,2))

will print values starting in the second period of 1996.

The horizon for a model with no inputs is determined by the argumenthorizon,
which has a default value of 36. For a model which requires input (conditioning) data
horizon for the forecast is determined by the input data,conditioning.inputs or
conditioning.inputs.forecasts. If none of these are supplied then the argumenthorizon is
used to replicate the last period of input data to the indicated horizon.

At the Bank of Canada PADI is an interface to a Fame server. The forecast data
be put into a Fame database with

putpadi(forecasts(z)[[1]], dbname="nameofdatabase.db",
series=seriesNamesOutput(z))

34 Brief User’s Guide: DSE

 by

t.
series

ing
ted,
at
of

ctory

ne
 the
arate

data
rst
In the above

seriesNamesOutput(z)

extracts a character vector of the series names.

Step 3 - reconsider the data and model

The performance of alternative models on a given data set can be compared
looking at the forecast error covariance from forecastCov. Repeat the required parts of
steps one and two and choose the model which does best at the horizons of interes
Sometimes the real purpose of a monitoring model is just to forecast one series (the
of primary interest). Other series are included only because they provide additional
information for forecasting the series of primary interest. One disadvantage of includ
additional series is that it increases the number of parameters which must be estima
and thus reduces the quality of the estimates. At this step you should reconsider wh
series are included for the model. Choose the model which does best on the series
primary interest (but see also “Juice Functions”).

Step 4 - run the monitoring

During the S session, variables (e.g. models and data) are saved in a subdire
.Data below the directory where you started S. (In R they are in the file .RData.) The
variables will be available the next time S/R is started from the same subdirectory. O
danger is that you can overwrite an existing variable just by assigning a new value to
name. Once you have a model to use for forecasting it is a good idea to save it in a sep
file so it will not be lost by accident. The modelmanuf.model and the corresponding data
identifiers can be saved in the file "manuf.model.definition" with

dump(c("manuf.model","manuf.data.ids"), fileout="manuf.model.definition")

If necessary they can then be retrieved with

source("manuf.model.definition")

The model can be run to produce a forecast and mail the results to a list of
recipients. The function to do this compares the current data to a previous copy of the
in order to determine if an updated forecast should be run. The comparison data is fi
initialized with

manuf.previous.data <- freeze(manuf.data.ids)

then in order to make the data look like it has changed

output.data(manuf.previous.data)[1,1] <- NA

and to run the forecast and E-mail the results

r <-simple.monitoring(manuf.model, manuf.data.ids, manuf.previous.data,
 mail.list="pgilbert@bank-banque-canada.ca",

Cookbook for Monitoring Models 35

e

d.

it

nts
es not

 a
 message.title=" Manufacturing Monitoring ",
 message.subject="Manufacturing Monitoring",
 show.start= c(0,-3),
 report.variables=seriesNames(manuf.data.ids),
 data.sub.heading=" %chg %chg",
 message.footnote=" f - forecast value" ,
 data.tag=" ",
 forecast.tag="f")

The status of the result can be checked with

r$status

and the comparison data should also be updated with

manuf.previous.data <- r$data

Especially for debugging purposes it is often useful to keep a more complete
record of the data and model used to produce the forecast This can be done with th
simple.monitoring argumentsave.as which can be set to specify a file name. Setting
save.as=paste("Manufacturing.monitoring.", make.names(date()), sep="") in the above
would make a file name which includes a time stamp. Also, setting the argument
run.again=T will run the forecast without checking to see if the data has been update

The argumentmail.list allows the output to be mailed to a list of recipients, but
may be more convenient to mail the result to a list server which can be used for
distribution purposes. This may be easier to maintain, as the list server list of recipie
can be changed at any time (and in automatic mode described next the program do
have to be restarted.)

Step 5 - automatic program to run the monitoring

To run the above and e-mail forecast directly from the Unix command prompt
shell script can be set up as follows:

#!/bin/csh
cd /...path to directory...

setenv S_SILENT_STARTUP quiet
Splus <<eofS
r <- simple.monitoring(as above)
manuf.previous.data <- r[[“data”]]
q()
eofS

Below it is assumed this is in a file calledmanufacturing. To run this automatically every
20 minutes from 7am to 10am the script

#!/bin/csh

36 Brief User’s Guide: DSE

t

irly
 (R
base
e file
ated at
ript
lar
the argument should be a script to run
between 7am and 10am check every 1200sec = 20 min.
 @ start = 7
 @ stop = 10
 @ f = 1200
lp:
 $1
 set h = `date +%H`
 set m = `date +%M`
 if ($h < $start) then
 @ s = ($start - (1 + $h)) * 3600 + (60 - $m) * 60
 else
 if ($h > ($stop - 1)) then
 @ s = $start * 3600 + (23 - $h) * 3600 + (60 - $m) * 60
 else
 @ s = $f
 endif
 endif
 sleep $s
goto lp

could be put in a filemonitoring.daemon and then this can be started at the Unix promp
with the command

unix prompt: monitoring.daemon manufacturing

The disadvantage of this approach is that the overhead for starting Splus is fa
heavy and it may be difficult to use your computer for much else from 7am to 10am.
may be better in this respect.) If you have direct access to the files used for the data
then the script could be modified to check time stamps on the files and only run if th
date has changed. If database files are used to store many series, and not all are upd
the same time, then the savings will not be much. At the Bank of Canada another sc
calledData.trigger.daemoncan be used to run a Fame procedure to check if the particu
series have been updated, and then runmanufacturing only in that case.

Cookbook for Monitoring Models 37

elp
Appendix I: Mini-Reference

Following is a short list of some of the more important functions. The online h
contains more complete information on the use of a functions.

OBJECTS

ARMA - define an ARMATSmodel

SS - define a state-spaceTSmodel

TSdata - define a data structure forTSmodels

MODEL INFORMATION

print - display model arrays

summary - summary information about a model

tfplot - plot data or model predictions.

MODEL PROPERTIES

McMillan.degree- calculate the McMillan degree of a model

roots - calculate the roots of a model

stability - check stability of model

MODEL CONVERSION

to.SS - convert to an equivalent state space innovations representation

to.ARMA- convert to an ARMA representation

SIMULATION, ONE-STEP PREDICTIONS & RELATED STATISTICS

simulate - Simulate a model to generate artificial data.

l - evaluate a TSmodel with TSdata and return a TSestModel object

smoother- calculate smoothed state for a state space model.

check.residuals -distribution, autocorrelation and partial autocorrelation of residuals

information.tests- print model selection criteria

38 Brief User’s Guide: DSE

ue

95),

s

MODEL ESTIMATION & REDUCTION

est.VARX.ls - estimate VAR model with exogenous variable using OLS

est.VARX.ar - estimate VAR model with exogenous variable using autocorrelations

est.SS.from.VARX - estimate a VARX model and convert to state space

est.SS.Mittnik - estimate state space model using Mittnik’s markov parameter techniq

est.max.like - Maximum likelihood estimation of models.

est.black.box - estimate and find the best reduced model

est.black.box4 - estimate and find the best reduced model by techniques in Gilbert (19
also referred to asbft

reduction.Mittnik - nested-balanced state space model reduction by svd of Hankel
generated from a model

FORECAST AND FORECAST EVALUATION

forecast - generate a forecast from given model and data.

featherForecasts - forecast from specified periods

horizonsForecasts - forecast specified periods ahead

forecastCov - calculate covariance of multi-period ahead forecasts

ESTIMATION EVALUATION

EstEval - evaluate specified estimation techniques using a given true model

out.of.sample.forecastCov.estimatorsWRTdata - evaluate specified estimation technique
using a given data set

Cookbook for Monitoring Models 39

has
ch are

ce

an
ually,
ases

a

ata is

d.
ost of
n
ble to
 is
t.

are
Appendix II: TS PADI Data Retrieval

This section describes utilities for retrieving data from an online database. This
been implemented using the TS PADI interface. The examples use series names whi
specific to the Bank of Canada.

Building a database plug will typically require some programming effort. This
effort can be reduced by using a standardized interface. Code and a description of a
prototype of a standard for a Time Series Protocol for Application - Database Interfa
(TS PADI) is available athttp://www.bank-banque-canada.ca/pgilbert. The code includes
a working S interface to a Fame database. It may also be useful to check with your
database software vendor to get an update on the status of commercial support for
interface. PADI also allows direct connection to databases over the Internet, so event
when the interface is more widely supported, it may be possible to connect to datab
which are not maintained at your site.

Data is retrieved with a description which gives an indication of where the dat
comes from, which series are model inputs and which are model outputs, any
transformations which should be applied to the data, and some padding information
indicating whether the series should be padded withNAs to the length of the longest
available series or truncated to the subset where all data is available for all series. D
retrieved by using the generic functionfreeze() on the description. Whenfreeze() is a
applied to an object which is already time series data then the data is simply returne
When applied to a data description object the data is retrieved from the data base. M
the functions in the DSE library use the functionfreeze()on data, so data descriptions ca
be used interchangeably with data. For model estimation purposes it is usually desira
retrieve the data and work with a fixed data set, but once a model is established and
routinely used with newly available data then the data description is more convenien

The following simple example specifies the seriesI37005from theetsserver as the
single output series, and gives it a more descriptive name. No data transformations
performed.

eg2.DSE.data.names <- TSPADIdata(output= “I37005”,
output.names= “manuf.prod.” , server=“ets”)

Settingoutput.names is optional. If they are set then they will be used in many
printing and plotting routines. The following line then returns the data.

eg2.DSE.data <- freeze(eg2.DSE.data.names)

The following example specifies one input and one output series.

eg3.DSE.data.names <- TSPADIdata(
input=”lfsa455”, input.transformations= “percent.change”,
input.names= “manuf.emp.”,
output=“i37005”, output.names=“manuf.prod.”,
output.transformations= “percent.change”,

40 Brief User’s Guide: DSE

f
so

on
pad.start=F, pad.end =T, server= “ets”)
eg3.DSE.data <- freeze(eg3.DSE.data.names)

Here is a multivariate example used in Gilbert (1995):

 JofF.VAR.data.names <-TSPADIdata(
input = “B14017”, input.transformations= “diff”, input.names=“R90”,
output = c(“P484549”, “I37026”, “b1627”, “b14013”,

 “b4237”, “D767608”, “b3400”, “M.BCPI”,
 “M.JQIND”, “M.CUSA0”),

output.transformations=c(“percent.change”,
“percent.change”,“percent.change”,
“diff”, “diff”, “percent.change”,
“percent.change”, “percent.change”,
“percent.change”, “percent.change”),

output.names=c(“CPI”, “GDP”, “M1”, “RL”, “TSE300”,
“employment”, “PFX”, “com. price ind.”,
“US ind. prod.”, “US CPI”),

server=“ets”)
JofF.VAR.data <- freeze(JofF.VAR.data.names)

The variablespad, pad.start, and pad.end control what happens at the beginning
and end of multivariate data when all series are not available for the same periods. I
pad.startis TRUEthenNAsare placed at the beginning of series if data is not available,
the multivariate series starts with the first available data. Ifpad.start is FALSE then the
beginning is truncated so that the first multivariate data point contains values for all
variables. Similarly,pad.end works with the last periods of the series.pad can be used in
place ofpad.start andpad.end.

Most estimation routines require a complete data set for all variables (pad=F), but
for many purposes it is useful to have all the data. The functiontrim.na takes a complete
data set and removes padding at both ends. This is a convenient way to removeNAs from
the beginning and end before estimation. The functiontfwindow can also be used to
truncate series to a desired sample period.

An alternate form for specifying the data names can be given using the functi
TSPADIdata2:

 alt.JofF.VAR.data.names <- TSPADIdata2(
input = list(c(“ets”, ““ , “B14017”, “diff”, “R90”)),
output = list(

c(“ets”, ““, “P484549”,”percent.change”, “CPI”),
c(“ets”, ““, “I37026”, “percent.change”, “GDP”),
c(“ets”, ““, “b1627”, “percent.change”, “M1”),
c(“ets”, ““, “b14013”, “diff”, “RL”),
c(“ets”, ““, “b4237”, “diff”, “TSE300”),

Cookbook for Monitoring Models 41

. For
he
se
nnot

tabase.
c(“ets”, ““, “D767608”,”percent.change”, “employment”),
c(“ets”, ““, “b3400”, “percent.change”, “PFX”),
c(“ets”, ““, “M.BCPI”, “percent.change”, “com. price ind.”),
c(“ets”, ““, “M.JQIND”,”percent.change”,”US ind. prod.”),
c(“ets”, ““, “M.CUSA0”,”percent.change”,”US CPI”)))

The result is the same but this form may be more convenient is some circumstances
each series the character strings indicate the server, additional server information, t
series identifier, any transformation, and finally a series description. The order of the
strings is important. The additional server information may be empty, as above, but ca
be omitted. For some servers it may be used to pass information such as a source da
If no data transformation is to be done then the third string should be empty (““).

A smaller example, also used in Gilbert (1995), is given by:

 eg4.DSE.data.names <-TSPADIdata(
input = “B14017”, input.transformations= “diff”, input.names=“R90”,
output = c(“P484549”, “I37026”, “D767608”, “b3400”)
output.transformations=c(“percent.change”, “percent.change”,

“percent.change”, “percent.change”),
output.names=c(“CPI”, “GDP”, “employment”, “PFX”) ,
server=“ets)

eg4.DSE.data <- freeze(eg4.DSE.data.names)

42 Brief User’s Guide: DSE

sing

re. (In

plus.)
ee
lic

web

es
code)

some

itial

orks
ed in
Appendix III: Installation

If you are connected to the Internet and using R then installation can be done u
install.packages(“dse”, “dseplus”) or update.packages(“dse”, “dseplus”). If you are
using R but not connected to the Internet then use the R package installation procedu
Unix this is “R INSTALL dse_xxx-x.tar.gz” from the command line or “R INSTALL dse”
in the directory above the uncompressed and untarred package, and similarly for dse
If you are using Splus then installation is done with the Unix script called INSTALL. S
the Splus installation instructions in the READ.ME file for more details. The latest pub
version of this software is available at <http://www.bank-banque-canada.ca/pgilbert>and
should also be on CRAN. If you have not yet installed the software then, before
proceeding, please check if a more recent version is available. Also available at the
site are postscript and pdf files of the text Gilbert (1993)

 The code should be a complete working system. There are no essential piec
missing, however, there may be references in the documentation (and options in the
to additional features and functions which are not yet included.

In Splus, the library is attached withattach() or library(). Users can dynamically
load the fortran code withload.DSE.fortran():

library(“DSE”, first=T)
load.DSE.fortran()

In R, the library is attached with

library(“syskern”)
library(“tframe”)
library(“dse1”) #for the base functionality

library(“dse2”) #for functions described later in the guide.

In R the compiled code is automatically loaded.

You should consider putting these lines in your.First function, which is
automatically executed each time you start. (This is especially advisable in Splus as
of the more advanced functions in this library spawn separate sessions to speed
calculations.)

It is necessary for the library to over-ride some functions in some versions of
Splus, so it is important that it is near the beginning of the search path.

The DSE library help is integrated into the R help facility. In Splus the help is
accessible as HTML documents which can be viewed with any WWW browser. The in
point to load into your browser is the file dsehome.htm.

 The core part of this code, discussed in this Guide, has been tested and w
well. Errors in the documentation are more likely. Other parts of the code, not discuss

Cookbook for Monitoring Models 43

cally
d on
the Guide, may contain more errors. Using equivalent representations there are typi
many simple ways to confirm results, and that is strongly advised. All code is provide
an “as is” basis, but please report any errors that you find.

44 Brief User’s Guide: DSE

.”

r
d

”

References

Becker, R. A., J. M. Chambers, and A. Wilks. 1988.The New S Language Pacific Grove:
Wadsworth & Brooks/Cole.

Burns, Patrick.Spoetry available at <http://www.seanet.com/~pburns/Spoetry>

Gilbert, P.D. 1993. “State space and ARMA models: An overview of the equivalence
Working Paper 93-4, Bank of Canada.

Gilbert, P.D. 1995 “Combining VAR Estimation and State Space Model Reduction fo
Simple Good Predictions”J. of Forecasting: Special Issue on VAR Modelling an
Forecasting.14:229-250

Gilbert, P.D. 2000 “A note on the computation of time series model roots”Applied
Economics Letters. 7:423-424

Ihaka, R. and R. Gentleman. 1996, “R: A Language for Data Analysis and Graphics
Journal of Computational and Graphical Statistics. 5: 299-314

Krause, A. and M. Olson,The Basics of S and S-Plus Springer-Verlag.

Ripley, B.D. 1994.Introductory Guide to Splus. Available from statlib by “send SGuide
from S”

W.N. Venables, and B. D. Ripley.Modern Applied Statistics with S-Plus. Springer-Verlag.

	Brief User’s Guide:
	Dynamic Systems Estimation Library
	Paul Gilbert, December 2001.
	Copyright 1993, 1994, 1995, 1996, 1999, 2000, 2001 Bank of Canada.

	Contents
	1. Introduction
	2. Getting Started with S/R
	3. General Outline of DSE Objects and Methods
	4. Defining a TSdata Structure
	5. ARMA and State Space TSmodels
	A(L) yt = B(L) et + C(L) ut
	zt = F zt-1 + G ut +K et-1
	yt = H zt + et
	zt = F zt-1 + G ut + Q nt
	yt = H zt + R et
	6. Model Estimation
	7. Forecasting
	8. Evaluating Forecasting Models
	9. Evaluating Estimation Methods
	10. Adding New TSdata Classes
	11. Adding New TSmodel Classes
	12. Curvature Calculations
	13. Juice Functions
	14. Cookbook for Monitoring Models
	Step 1- specify the data
	Step 2 - estimate model
	Step 3 - reconsider the data and model
	Step 4 - run the monitoring
	Step 5 - automatic program to run the monitoring

	Appendix I: Mini-Reference
	OBJECTS
	MODEL INFORMATION
	MODEL PROPERTIES
	MODEL CONVERSION
	SIMULATION, ONE-STEP PREDICTIONS & RELATED STATISTICS
	MODEL ESTIMATION & REDUCTION
	FORECAST AND FORECAST EVALUATION
	ESTIMATION EVALUATION

	Appendix II: TS PADI Data Retrieval
	Appendix III: Installation
	References

