Brief User’'s Guide:

Dynamic Systems Estimation Library

Paul Gilbert, December 2001.
Copyright 1993, 1994, 1995, 1996, 1999, 2000, 2001 Bank of Canada.

The user of this software has the right to use, reproduce and distribute it. The Bank
of Canada makes no warranties with respect to the software or its fithess for any
particular purpose. The software is distributed by the Bank of Canada solely on an “as is”
basis. By using the software, user agrees to accept the entire risk of using this software.

The software documented in this guide is available by following the links to DSE
at <http://www.bank-banque-canada.ca/pgilber®lease check there for new versions.

This draft reflects many changes which were incorporated in October 1999. Due to
these changes, the 1996 version of the guide gives a better description of any version of
the code prior to October 1999. | have tested the version of the code described here
(December 2001) with Splus 3.3 on Solaris and with R 1.4.0 (pre-release) on Solaris and
Linux. | believe everything should work with Splus 3.4 but | have not tested it. There are
known problems with Splus 5. Please report errors you find.

Caveat: This software is the by-product of ongoing research. It is not a commercial
product. Limited effort is put into maintaining the documentation. There may be
references to functions which do not yet work and/or have not been distributed, and the
documentation may not correspond to the current capabilities of the functions. While the
software does many standard time-series things, it is really intended for doing some non-
standard things. The main difference between this library and many widely available
packages is that the library is designed for studying estimation techniques and modeling
techniques. If your interest is simply in simulation of time-series models or in estimation
with well established techniques, you may find many commercial products which are
better. If your interest is in new techniques and time-series research then you will find that
this software is very good, both because of the design and because you have direct access
to the code, so you can add your own functions and make changes. In addition, the S and R
languages are very powerful for doing statistical calculations. Direct access to the code
and function results may also make the software useful for teaching purposes.

In an effort to foster communications among users, | have set up an e-mail list for
guestions and discussion of problems. To subscribe to the list send a message to
<boc_list@bank-banque-canada.caith a line in the body:

subscribe boc_dse Your Name

Subsequent message to the list should be setioio dse@bank-banque-canada.ca>.
Constructive suggestions and comments are welcomed. | can be reached at
<pgilbert@bank-banque-canada.car at PaulGilbert@Ottawa.com»r by phone at
(613) 782-7346.

Brief User’s Guide: DSE

Contents

1. Introduction

2. Getting Started with S/R

3. General Outline of DSE Objects and Methods

4 Defining a TSdata Structure

5. ARMA and State-Space TSmodels
6. Model Estimation

7. Forecasting

8. Evaluation of Forecasting Models
9. Evaluating Estimation Methods
10. Adding New TSdata Classes

11. Adding New TSmodel Classes
12.Curvature Calculations

13.Juice Functions

14. Cookbook for Monitoring Models
A. I. Mini-Reference

A. 1. TS PADI Data Retrieval

A. lll. Installation

References

11
13
15
19
27
27
not yet

not yet

Introduction 3
1. Introduction

The functions in this library are designed for studying multi-variate time-series
models and estimation techniques. The library was originally designed with linear, time-
invariant auto-regressive moving-average (ARMA) models and state-space (SS) models in
mind. These remain the most well developed models in the library and provide the basis
for most of the examples in this guide. However, the library implements object oriented
methods for studying new estimation techniques and other kinds of time series models.
Methods are implemented for studying Troll (Intex Solutions, Inc.) models (currently
broken) and some neural net architectures are being explored. These provide examples for
implementing new model objects and estimation methods. Users are encouraged to
consider specific representations used in this guide as examples in the context of the
library’s broader objectives.

In order to provide examples the library also implements some estimation
techniques and methods for converting among various representations of time series
models. Many functions for the usual diagnostics which are preformed with time series
data and models are included as well. Additional information on specific functions is
available through the help facility. For details of some of the underlying theory of ARMA
and SS model equivalence and examples of some of the capabilities of the library see
Gilbert (1993). For examples of using the library to evaluate estimation methods see
Gilbert (1995). Examples of the use of several functions are illustrated in the files in the
demo subdirectories. (In R séemo())

2. Getting Started with S/R

This library works with the Splus (MathSathttp:www.insightful.com version
of the S language and the similar R language (Ihaka and Gentleman,<@g&)/cran.r-
project.org> The notation S/R will be used to indicate both languages and S or R will be
used when a remark is specific to one or the other. Splus will be indicated when a remark
may be specific to Splus but notto S in general. Italics will be used to indicate examples as
well as functions and objects, af)dwvill frequently be added to function names to help
distinguish them as such. Anything entered after a # is a comment in S/R.

This guide tries to explain certain aspects of S/R in order to make the library
accessible to users unfamiliar with S/R. However, knowledge of the S/R language is
extremely useful. Users are referred to Becker, Chambers and Wilks (1988, commonly
known asThe Blue Book Venables and Ripley (various editions), Ripley (1994),
Burns(...), Krause and Olson(...), or to the user manuals for their implementation. Users
already familiar with S/R please ignore the simplified explanations given here.

An important point is that S/R functions take arguments in bra¢kgteven
when there are no argument. So, for example, the function to get out of S/R and back to
the operating system ¢g). Values are assigned to S/R variables with the two character
symbol“<-" or the one character underscore synibol. Also, it is important to be

4 Brief User’s Guide: DSE

aware that upper and lower case letters are different. Most examples in this guide show
only the user input, not the computer output.

If DSE is not installed on your system, please see the appendix on installation.
Once S/R is started the DSE library must be made available. In S this is done with:

library(“DSE”, first=T)
load.DSE.fortran()

orin R by:

library(“dsel”) #for the base functionality. (This also attaches syskern and tframe.)
library(“dse2”) #for functions described later in the guide.

library(“padi”) #for database interface.

library(“dsepadi”) #for the dse layer on top of database interface.
library(“monitor”) #for monitoring model functions described later in the guide.
library(“juice™) #for functions (not yet described in the guide)

library(“curve”) #for functions (not yet described in the guide)

You should consider putting these lines in ydtirst function, which is automatically
executed each time you start. (This is especially advisable in Splus as some of the more
computationaly intensive functions in this library spawn separate Splus sessions to speed
calculations.)

Descriptions of functions and objects are available in the help system. This is
integrated with the R help system which is started by

help.start()

HTML help is available in S and can be viewed with a web browser. From an S session the
help facility can be started with the function

help.start. DSE(} tries to start Netscape by default
help.start. DSE(browser= “my.browser”)

The string passed asowsershould be a system command for starting a web (HTML)
browser.

3. General Outline of DSE Objects and Methods

The library implements three main classes of obj@@stata TSmodeland
TSestModelThese are respectively, representations of data, models, and models with data
and estimation information.

TSdatas an object which contains a (multivariate) time series object callgout
and optionally another calledput Methods for defining the general version of this class
of object are described in the next section and more details are provided in the help for
TSdata Input and output correspond to what are often lab&lkuly in econometrics

General Outline of DSE Objects and

and time series discussions of ARMA models. These are sometimes called exogenous and
endogenous variables, though those terms are often not correct for these models.
Statistically, output is the variable which is modelled and input is the conditioning data.
From a practical and computational point of view, the model forecasts output data and
input data must always be supplied. In particular, to forecasts multiple periods into the
future requires that input data for the future must be supplied so that the model can
calculate outputs. The terms input and output are commonly used in the engineering
literature, and often correspond to a control variable and the output from a physical
system. However, the causal interpretation in this context is not always appropriate for
other uses of time series models. In addition, even when a causal direction is known or
assumed, it is not always desirable to define the exogenous variable as an input. If the
model is to give forecasts into the future then it may be better to define exogenous
variables as outputs and let the model forecast them, unless better forecasts of the
exogenous variables are available from other sources. One context in which an input
variable is important is to examine policy scenarios. In this context the policy variable is
defined as the input and forecasts are produced conditioned on different assumptions
about the policy.

TSmodebbjects are models which are arranged toTi&#ata These objects
always have another specific class indicating the type of modeARKEAandSS
constructor methods for ARMASmoded and state-spadésmoded are described in a
section below. Other specific classeg&moded can be defined and many of the methods
in this library will work with these new models, as long as they TiSdataand have a few
important methods implemented. More details on defining other classes of models are
given in a later section of this guide. Details on the representation of models are provided
in the help foiTSmodeblnd the help for specific model constructors.

TSestModebbjects are objects which contdiBdata aTSmodeland some
statistical information generated lfgnodel, data) Thel() method originally meant
likelihood, but the method returns the one-step-ahead predictions and other information
based on those predictions. Methods for studying one-step-ahead model forecasts extract
the predictions from these objects. Other methods Ti®astModebbjects as a simple
way to group together a model and data. For example, methods for studying multi-step
forecasts need to generate the forecasts, so they do not use the predictions in the
TSestModebbject. More detail abotiSestModebbjects is available in the help system.

The default method fof Sdata()constructs & Sdataobject, as will be described in
the next section. The generic methdddmodel(andTSdata()can also be used to extract
the TSmodebr TSdataobject from another object (such as%estMode!

The functions in this library can be used by starting with data and estimating a
model, or by starting with a model and producing simulated data. The next section
described Sdataobjects, but it would be equally possible to start with models as
described in the sections following.

6 Brief User's Guide: DSE
4. Defining a TSdata Structure

Several data sets are included with this library and will be used in examples in this
guide. In S these are available when the library is attached. In R they are made available by

data(package="dsel"} to see the names of the data sets
data(xxx, package="dsel¥ replace xxx by the name of the data set to be made available

This section describes how to constru@iStlatastructure if you have other data you

would like to use. Section 10 discusses adding new kinds of TSdata classes. Some
installations may have an online database and it may be possible to connect directly to this
data. An appendix on TSPADI data retrieval gives more detail on one possibility for doing
this.

For many people the situation will be that the data is in some ASCII file. This can
be loaded into session variables with a number of standard S/R functions, the most useful
of which are probablgcan()andread.table().Following is an example which reads data
from an ASCII file callecegl.datand puts it in the variable callesty1.DSE.daté&which is
also one of the available data sets). The ASCII file is distributed with this library and can
be found in the data directory below where the library is installed. The value of the
variableDSE.HOMEshould indicate where the library is installedpsste(DSE.HOME,
“/data/egl.dat”, sep="") will give the location of the file. The file has five columns of
numbers and 364 rows. The first column just enumerates the rows and is discarded.

egl.DSE.data <- t(matrix(scan(paste(DSE.HOME, “/data/egl.dat”, sep="")),
5, 364))[, 2:5]

This matrix can be used to formT&dataobject by

egl.DSE.data <- TSdata(input= eg1.DSE.data[,1,drop = F],
output=egl.DSE.data][, 2:4, drop = F])

The matrix and the resultingSdataobject do not have a good time scale associated with
points. A better time scale can be added by

egl.DSE.data <-tframed(egl.DSE.data, list(start=c(1961,3), frequency=12))

There are several different possibilities for representing time in S/R objects. The most
common is thes matrix object, which is used in the above deftitdimedmethod. {sis

not truly a class of object in S, since it is the default representation of time series which
existed before classes were introduced.) The abfow@edmethod ands can also be used
directly on the matrix before thESdataobject is formed. However, [,] in Splus results in
the time scale being lost, so it would need to be reassigned toghtandoutputmatrices

of the TSdateaobject. The methods from the tframe library are used extensively in the DSE
library because they provide a common way to proceed in Splus and R, extend to other
time representations in additionts) and provide a mechanism for extending methods to
other objects likd' SdataandTSmodels

Names can be given to the series with

Defining a TSdata Structure 7

seriesNamesinput(egl.DSE.data) <- “R90”
seriesNamesOutput(egl.DSE.data) <- c(“M1""GDPI2", “CPI”)

Setting the series names is not necessary but many functions can use the names if they are
available. (This overlaps somewhat with S/R dimnames, but is the preferred method in this
library as it extends to data which is not a matrix.) Tif&dataobject with elementsput
andoutputis the structure which the functions in this library expect. More details on this
structure are available in the help T8data The input and output elements can be

defined in a number of different ways and new representations can be fairly easily added.
For example, when the data is on a remote database as described in the appendix on TS
PADI data retrieval, the S/R object is just a description of where the data comes from,
rather than the data itself. In this casefteeze()function is used automatically by many
functions in the DSE library in order to get a copy of the data when calculations are to be
performed.

Once data is available a model can be estimated:

modell <- est.VARX.Is(egl.DSE.data)
model2 <- est.SS.Mittnik(egl.DSE.data)

(Note: these models are not the same as those reported in Gilbert,1993. In that paper a
variant of est.VARX.ar was used.) The scale of the serieglirDSE.datare very

different, with the result that the covariance matrix of the residuals from the estimation is
nearly singular. This is detected during the calculation of residual statistics. Statistics are
then calculated using only the non-degenerate subspace and a warning message is printed.
A better model might be obtained if the data were scaled differently.

Information about the estimated models can be displayed, for example:

summary(modell)
summary(model2)

modell

model2

stability(modell)

stability(model2)
information.tests(modell, model2).

Typing the name of an object in S/R results in the object being printed. To display plots it
is first necessary to open a graphics window:

x11() #inR

motif() #or something else depending on your GUI in Splus
Once a graphics display is active then plots can be viewed:

tfplot(modell)
plot(modell)
tfplot(model2)

8 Brief User’s Guide: DSE

tfplot(egl.DSE.data)
check.residuals(modell)
check.residuals(model2)

The functiontfplot produces separate graphs for each series ploievill put all series
on one graph, which may be useful sometimes. You should experiment with both. The first
tfplot command produces this graphic

One step ahead predictions (dotted) and actual data (solid)

yl
0 10000 20000 30000 40000
{
3\

1960 1970 1980 1990

500000
\
{
{

300000

y2
|
|

0 100000

1960 1970 1980 1990

0 20 40 60 80 100 120

Note that initial conditions have been set to zero, but the effect of this dies out quickly.
(Also note that the graph labels may be slightly different depending on which version DSE
and of R or S you are using.)

5. ARMA and State Space TSmodels

Specifying ARMA and SS models is described below, but first their definition is
outlined. The linear time-invariant ARMA representation is

AL) y=B(L) gt + C(L) w

wherey; is ap dimensional vector of observed output variablgss anmdimensional
vector of input variablesg is ap dimensional unobserved disturbance vector process and

ARMA and State Space TSmodels 9

A, BandC are matrices of the appropriate dimension in the lag (back shift) operator
VAR models can be thought of as a special case of ARMA modelB@i)kl. ARIMA
models are also a special case of ARMA models.

Note that the time convention here implies that the input variglden influence
the output variablg; in the same time period. This convention is not always used in time-
series models but is important for economics data, especially at annual frequencies.

A linear time-invariant state space representation in innovations form is given by
z=Fz1+Guy+Kg g
yt =H Zt + St

wherez is the unobserved underlyimgdimensional state vectd¥,is the state transition
matrix, G, the input matrixH, the output matrix, an{, the Kalman gain. The library also
has some limited capabilities to work with the more general non-innovations form:

z=Fz1+Gu+Qv
yt:HZt+R€t

wherevt is the system nois&), the system noise matrix, aiitkthe output (measurement)
noise matrix.

Models are specified by setting up the arrays that define the model and grouping
them into aTSmodebbject. Here is an example ARMA model with two series, a second
order AR polynomial, a first order MA polynomial and no exogenous variable:

AR<- array(c(1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3) ,c(3,2,2))
MA <- array(c(1, .2, 0, .1, 0, 0, 1, .3), ¢(2,2,2))

arma <- ARMA(A=AR, B=MA, C=NULL)

rm(AR, MA)# these can be removed from the environment as they are no longer needed
arma

stability(arma)

data.arma.sim <- simulate(arma)

arma <- [(arma, data.arma.sim)

summary(arma)

tfplot(data.arma.sim)

tfplot(arma)

Note that arrays are filled in the order of their dimensions, which may not be what you
expect. The internal representationf@moded may be described in the help for the

specific model constructors, but in general it should be considered “opaque” and an
understanding of the internal data structure should not be necessary to use the models. The
functionl() evaluates the model with the simulated data. Functions generally use default
values for some arguments. For example, the length of the simulation and the covariance

10 Brief User's Guide: DSE

of the noise can be specified. The above example uses the default values. See the help on
simulatefor more details. In the example aboaamnais initially assigned an object of
classTSmodelbut it is then re-assigned the value returnet{)pyvhich is an object of
classTSestModelAlso, many functions work with different classes of objects, and do
different things depending on the class of the argument. The furtigtiotf) works with

objects of clas§ SdataandTSestModel

Here is an example of a state space model:

f <-array(c(.5, .3, .2, .4), c(2,2})peware: do not use capital F=FALSE as a variable name
h <- array(c(1, 0, 0, 1), c(2,2))

k <- array(c(.5, .3, .2, .4), c(2,2))

ss <- SS(F=f, H=h, K=k} F here is the function argument not a variable name

print(ss)

stability(ss)

data.ss.sim <- simulate(ss)

ss <- I(ss, data.ss.sim)

summary(ss)

tfplot(ss)

Data which has been generated vgithulateis aTSdataobject and can be used
with estimation routines. This provides a convenient way to generate data for estimation
algorithms, but remember that estimation will not necessarily get back to the model you
start with, since there are equivalent representations (see Gilbert, 1993). However, a good
estimate will get close to the likelihood and predictions of the original model.

Here is an example of changing between state space and ARMA representations
using the models defined in the previous example:

ss.from.arma <- I(to.SS(arma), data.arma.sim)
arma.from.ss <- I(to.ARMA(ss), data.ss.sim)
summary(ss.from.arma)

summary(arma)

summary(arma.from.ss)

summary(ss)

stability(arma)

stability(ss.from.arma)

The functionroots() is used bystability() and can be used by itself to return the
roots but not evaluate their magnitlildb!vhen their arguments affeSmodelshe functions
to.SS(rndto.ARMA()return objects of clasESmodelvhich are not assigned to a variable

1. By default the roots of an ARMA model are calculated by converting the model to state space form, for
reasons explained in Gilbert (2000). By specifyliygpoly=Tthe method can be changed to use an expan-
sion of the polynomial determinant.

Model Estimation 11

in the above example, but used in the evaluatid() of he models are returned as part of
the TSestModeteturned by().

6. Model Estimation

The example dategl.DSE.datandegJofF.1dec93.datare available with the
DSE library and are used in examples in this section.

To estimate an AR model with the default number of lags:
model.egl.ls <- est. VARX.Is(trim.na(egl.DSE.data))

In this exampldrim.naremovesNA padding from the ends of the data, since the
estimation method cannot handle missing values. This padding may not be present,
depending on how the data was retrieved.

It is also possible to select a subsample of the data:
subsample.data <- tfwindow(egl.DSE.data, start=c(1972,1) end=c(1992,12))

This creates a new variable with data starting in January 1972 and ending in December
1992. The S/R functiowindowalso usually works, however the functitwindowis

typically used in the DSE library and this guide because it has occasionally been necessary
to correct some problems withindow Various functions can be applied to the estimation
result:

summary(model.egl.Is)
print(model.egl.1s)
tfplot(model.egl.Is)
tfplot(model.egl.Is, start=c(1990,1))
check.residuals(model.egl.ls)

Other estimation techniques are available:

model.egl.ar <- est.VARX.ar(trim.na(egl.DSE.data))
model.egl.ss <- est.SS.from.VARX(trim.na(egl.DSE.data))
model.egl.bft <- bft(trim.na(egl.DSE.data))

model.egl.mle <- est.max.like(model.egl.lsyethote below

Most of these have several optional parameters which control the estimation. Consult the
help for the individual functiongst.max.likeextracts data from &8SestModeand uses

the model structure and initial parameter values for the estimation. (Note: Maximum
likelihood estimation can be very slow and may not converge in the default number of
iterations. It also tends to over fit unless used with care, so that out-of-sample performance
is not good. | do not generally recommend it, although it does offer possibilities for
constraining the structure in specific ways (e.g. fixing some model matrix entries to zero
or one). You might consider comparing mle to other estimation techniques using functions
discussed in the following sections.)

12 Brief User's Guide: DSE

An important point to note is that the one-step-ahead predictions and related
statistics returned by these estimation techniques are calculated by evaé{oaide,
data)as the final step after the model has been estimated. This can give different results
than might be expected using the estimation residuals, particularly with respect to initial
condition effects. (For stable models initial condition effects should not be too important.
If they are an important factor check the documentation for specific models regarding the
specification of initial conditions.)

Also remember when estimating a model that, if you want to predict future values
of a variable, it will need to be an output in fédataobject.

For the next example a four variable subset of the dagJofF. 1dec93.dataill
be used. This subset is extracted by

eg4.DSE.data<- egJofF.1dec93.data
output.data(eg4.DSE.data) <- output.data(eg4.DSE.data, series=c(1,2,6,7))

which selects the 1st, 2nd, 6th, and 7th series of the output data. The following uses the
currently preferred automatic estimation procedure:

model.eg4.bb <- est.black.box(trim.na(eg4.DSE.data), max.lag=3)

An optional argumenterbose=Fwill make the function print much less detail
about the steps of the procedure. The optional argumemt/ag=3,specifies the
maximum lag which should be considered. The defaak.lag=12may take a very long
time for models with several variablest.black.boxurrently usegst.black.bo%, also
known adsft(..., standardize=Tyvhich is called the brute force technique in Gilbert
(1995).

The traditional model information criteria tests can be performed to compare
models:

information.tests(model.egl.ar, model.egl.ss)

An arbitrary number of models can be supplied. The generated table lists several
information criteria. For state space models the calculations are done with both the
number of parameters (the number of unfixed entries in the model arrays) and the
theoretical parameter space dimension. See Gilbert (1993, 1995) for a more extensive
discussion of this subject.

Note that converting among representations produces input-output equivalent
models, so that predictions, prediction errors, and any statistics calculated from these, will
be the same for the models. However, different estimation techniques produce different
models with different predictions. Sest.VARX.Is(datagndto.SS(est.VARX.Is(datay)ll
produce equivalent models aest.SS.Mittnik(datedndto.ARMA(est.SS.Mittnik(data))
will produce equivalent models, but the first two will not be equivalent to the second two.

Forecasting 13

7. Forecasting

TheTSestModebbject returned by estimation isTé&&modelvith TSdataand some
estimation information. To use different data, the new data needs to be in a variable which
is aTSdataobject. For example, suppose a model is estimated by

eg4.DSE.model <- est.VARX.Is(eg4.DSE.data)

and suppose new data becomes available. If you have direct database access this might be
done with something like

new.data <- freeze(eg4.DSE.data.names)

If database access is not available then for example purposes new.data can be generated
with
new.data<-TSdata(input=ts(rbind(input.data(eg4.DSE.data),matrix(.1,10,1)),
start=start(eg4.DSE.data),
frequency=frequency(eg4.DSE.data)),
output=ts(rbind(output.data(eg4.DSE.data),matrix(.3,5,4)),
start=start(eg4.DSE.data),
frequency=frequency(eg4.DSE.data)))

This simply appends ten observations of 0.1 onto the input and five observations of 0.3
onto the outputs. The functiasassigns time series attributes which are taken from
eg4.DSE.dataThe model can be evaluated with the new data by

z <- |(TSmodel(eg4.DSE.model), trim.na(new.data))

Recall thafTSmodel(extracts th& Smodefrom theTSestModellf database access is
available the above can be done in one step:

z <- |(TSmodel(eg4.DSE.model), trim.na(freeze(eg4.DSE.data.names)))

trim.naon aTSdataobject removeslAs from the ends and truncates bothutandoutput

to the same sub-samplé. does not easily give forecasts beyond the period where all data
is available. (Optional arguments can be used to achieve this, but the flocttastis

more convenient.)

Forecasts are conditioned mput so it must be supplied for periods for which
forecasts are to be calculated. (Thainputis not forecast by the model.) When more
data is available fanputthan foroutput as innew.datagenerated above, thérecast()
will useinput data and produce a forecasoatput

z <- forecast(TSmodel(eg4.DSE.model), new.data)

Theinputdata can also be specified as a separate argument. For example, the same result
will be achieved with

z <- forecast(TSmodel(eg4.DSE.model), trim.na(new.data),
conditioning.inputs=input.data(new.data))

14 Brief User's Guide: DSE

Theconditioning.inputoverrideinputin theTSdatasupplied in the second argument to
the function.

To see plots of the forecasts use
tfplot(z, start=c(1990,6))

which produces this result:

Predictions (dotted) and actual data (solid)

CPI
1.0 20

0.0

1991 1992 1993 1994
o
o o
o
[
o
-
1991 1992 1993 1994
«
=
g =
o
£
2 °
£ o
[
<
e
1991 1992 1993 1994
~
« o
w
o
o
i
1991 1992 1993 1994

Sometimes a forecast for input data comes from another source, perhaps another
model. Rather than construct tb@nditioning.inputsas described above, another way to
combine this forecast with the historical input data is to use the argument
conditioning.inputs.forecasts

Evaluating Forecasting Models 15
z <- forecast(eg4.DSE.model, conditioning.inputs.forecasts=matrix(.5,6,1))

This would use thenput data fromeg4.DSE.modeind append 6 periods of 0.5 to it.
z <- forecast(TSmodel(eg4.DSE.model), freeze(eg4.DSE.data.names),
conditioning.inputs.forecasts=matrix(.5,6,1))

retrieves new data and appends 6 periods of 0.5 to the input series

Some generic functions which work with the structure returned by forecast:
summary(z)
print(z)
tfplot(z)
tfplot(z, start=c(1990,1))

If you actually want the numbers from the forecast they can be extracted with
forecasts(z)[[1]]
The[[1]] indicates the first forecast (in this example there is only one, but the same

structures are used for other purposes discussed below. To see a subset of the data use
tfwindow

tfwindow(forecasts(z)[[1]], start=c(1994,5))

This prints values starting in the fifth period of 1994.

The horizon for the forecast is determined by the available input data
(conditioning.inputsor conditioning.inputs.forecastdf neither of these are supplied then
the argumenhorizon which has a default value of 36, is used to replicate the last period
of data to the indicated horizon. For models with no input variables the argoionzaoin
controls the length of the forecast.

8. Evaluating Forecasting Models

How well does the model do at forecasting? The first thing to check is that model
forecasts actually track the data more or less. The generic futfptat) works with
results from the following functions. Recall that the funct{@rapplies af Smodeto
TSdataand returns dSestModelvhich includes one-step ahead forecasts. It can be used
with any TSmodebndTSdataof corresponding dimension. So

z <- [(TSmodel(eg4.DSE.model), new.data)

applies the previously estimated model to the new data, and
tfplot(z)

would plot the one-step ahead forecasts. The funtti@ecastdiscussed in the previous
section calculates multi-step ahead forecasts from the end of the data. For evaluating

16 Brief User's Guide: DSE

forecasting models it is more useful to calculate forecasts within the sample of available
data. This is for two reasons. First, the forecast can be compared against the actual
outcome. Second, if the model hasiaputthen the forecast is conditioned on it. If data is
available then the actumiput data can be used. (But beware that this is not a true test of
the model’s ability to forecast if the whole sample has been used to estimate the model.)
There are two methods to calculate multi-step ahead forecasts within the data sample.
featherForecastproduces multiple period ahead forecasts beginning at specified periods.
The name comes from the fact that the graph sometimes looks like a feather (although it
will not if the forecasts are good).

z <- featherForecasts(TSmodel(eg4.DSE.model), new.data)
tfplot(z)

In the example above the forecasts begin by default every tenth period. In the following
example the forecasts begin at periods 20, 50, 60, 70 and 80 and forecast for 150 periods.

z <- featherForecasts(TSmodel(eg4.DSE.model), new.data,
from.periods =c(20, 50, 60, 70, 80), horizon=150)
tfplot(z)

Evaluating Forecasting Models 17
The plot looks like this:

Predictions (dotted) and actual data (solid)

2.0

CPI
1.0

3 Ay -
WWMWJWWMWM -
A

01 2 3

PFX

A AR

1980 1990 2000

The second methotiprizonForecastsproduces forecasts from every period for
specified horizons.

z <- horizonForecasts(TSmodel(eg4.DSE.model), new.data, horizons=c(1,3,6))
tfplot(z)

18 Brief User's Guide: DSE

produces forecasts 1, 3 and 6 steps ahead. The plot looks like this:
Actual data (solid)

20

CPI
1.0

J\/‘/\ﬁt Mmoot VN\# «/

0.0

1980 1990

GDP

—_

| ot b

1980 1990

employment
0.0

Av@n\rm({v‘v\ﬁ W\’/\V\W%MVAVVA“M% &/(VWA I\VM i\,ﬂ\vﬂl\ﬂ /Vk‘ AI\q /\ﬁwhv /MVA\]

1980 1990

-1.0

01 2 3

PEX

AMWV/\ aun \,‘\m o V{W WAW(W\WL MN vn/w ”ij\"D VW

1980 1990

The result is aligned so that the forecast for a particular period is plotted against the actual
outcome for that period. Thus, in the last example, the plot will show the data for each
period along with the forecast produced from 1, 3, and 6 periods prior. This plot is
particularly useful for illustrating when models do well and when they do not. A common
experience with economic data is that models do well during periods of expansion and
contraction, but miss the turning points. The forecast covariance, to be discussed next,
averages over all periods. It is quite possible that a model can indicate turning points well
but not do so well on average, and thus be overlooked if only forecast covariance is
considered. It is always useful to keep in mind the intended use of the model.

The numbers which generate the above plot can be extracted from the result of
horizonForecastsvith forecasts() This gives an array with the first dimension
corresponding to the horizons and the time frame aligned to correspond to the data. So

Evaluating Estimation Methods 19

forecasts(z)[2,30,jrom the above example will be the prediction made for the 30th period
from 3 periods previous (the second element indicatédrizonsis 3) and
forecasts(z)[3,30,ill be the prediction made for the 30th period from 6 periods previous
(horizons[3]is 6). Remember that these forecasts are conditioned on the supplied input
data, which means that the output variables here are forecast 1, 3 and 6 periods ahead, but
true, not forecasted, input data is used.

If the forecasts look reasonable then examine the forecast errors more
systematically. The following calculates the forecast covariances at different horizons.

fc <- forecastCov(TSmodel(eg4.DSE.model), data=eg4.DSE.data)
tfplot(fc)
tfplot(forecastCov(TSmodel(eg4.DSE.model), data=eg4.DSE.data, horizons= 1:4))

The last example calculates for horizons from 1 to 4 rather than the default 1 to 12. To see
how the model forecasts relative to a zero forecast and a trend forecast:

fc <- forecastCov(TSmodel(eg4.DSE.model), data=eg4.DSE.data, zero=T, trend=T)
tfplot(fc)

This is a very useful check (and often very humbling).

You can also get out-of-sample forecast covariances. This will be discussed in the
next section.

There is not yet implemented in DSE any measure of forecast errors which can be
compared across models - inevitably the covariance of the error is smaller for less variable
series and is also affected by scaling of the series. This may just mean that the series is
easier to predict or has a different scale, not that the forecast equation is more brilliant.
MAPE may be implemented sometime.

9. Evaluating Estimation Methods

One way to test estimation techniques is to specify a “true” model which is used to
produce simulated data and then examine how well an estimation technique finds the true
model. This is not as general as theoretical results, since it is really only valid at the “true”
parameter values and for the sample size tested, however, it can be illustrative and
theoretical results for small samples are very difficult to obtain. It also provides a very
good cross check of the simulation and estimation code. Also, equivalent representations
may have effects which are not yet fully appreciated in the theoretical literature. The
following models from Gilbert (1995) will be used to illustrate.

mod1l <- ARMA(A=array(c(1,-.25,-.05), c(3,1,1)), B=array(1,c(1,1,1)))
mod2 <- ARMA(A=array(c(1,-.8, -.2), ¢(3,1,1)), B=array(1,c(1,1,1)))
mod3 <- ARMA(
A=array(c(
1.00,-0.06,0.15,-0.03,0.00,0.02,0.03,-0.02,0.00,-0.02,-0.03,-0.02,

20 Brief User's Guide: DSE

0.00,-0.07,-0.05,0.12,1.00,0.20,-0.03,-0.11,0.00,-0.07,-0.03,0.08,
0.00,-0.40,-0.05,-0.66,0.00,0.00,0.17,-0.18,1.00,-0.11,-0.24,-0.09)
,c(4,3,3)),

B=array(diag(1,3),c(1,3,3)))

mod2has a unit root, as can be verified witbts(mod2)or stability(mod?2)

The functionMonteCarloSimulationsunssimulaterepeatedly to give many data
samples.

z <- MonteCarloSimulations(mod1, sampleT=100)
tfplot(z)
distribution(z)

Usually it is not necessary to uslnteCarloSimulationand actually save all the
simulations since the seed and other information about the random number generator
(RNG) can be used to reproduce the samples. Thus functions for testing estimation
methods can produce the same samples when they are needed.

The functionEstEvalsimulates and then estimates models:

e.ls.mod1 <- EstEval(mod1, replications=100,
simulation.args=list(sampleT=100, sd=1),
estimation="est.VARX.IS", estimation.args=list(max.lag=2),
criterion="TSmodel",
rng=list(kind="default", normal.kind="default",
seed=c(13,44,1,25,56,0,6,33,22,13,13,0% Bplus seed - see below

In this example simulation and estimation will be repeated 100 times with samples of size
100 and the standard deviation of the model noise will be sesimdlation.argsare
passed to the functisimulate which may take different arguments depending on the
class of the model. Estimation is done with the funaisinVARX.l@indestimation.args
are passed to it. The argumernterion specifies what should be returned from the
estimation. In this case the model is returned (An object of TEs®del but not
additional information as is usually returned in the objeSestModellt is also possible to
specifycoefor rootsto return only that specific information, but that information can be
extracted from th@ Smodehs illustrated below. In geneastEvalwill work with any
estimation method which will take the resultswhulateapplied to the supplied model
and returns something thaiterion can extract. That is, if
criterion(estimatioffSimulatefnode))) returns something (witériterion andestimationreplaced
by the functions you supply amtbdelreplaced by the model you supply), thestEval
should work with your functions. This does not mean that plots described below will
necessarily work or make sense.

The argumening is optional here and in all the examples below. If supplied, the RNG and
seed will be set. This is useful if an experiment is to be reproduced. Using Splus 3.2 and
3.3 the settings indicated in this section will reproduce the results in Gilbert (1995). It is

Evaluating Estimation Methods 21

possible to generate similar random experiments in S and in R, but not using the Splus
default generator. If the argumeng above is given as

rng=list(kind="Wichmann-Hill", seed=c(979,1479,1542), normal.kind="Box-
Muller")

then the uniform RNG is set to Wichmann-Hill, the normal transformation is set to Box-
Muller, and the initial seed is set. With the RNG set in this way both Splus and R will
produce similar results. These settings are reset to their previous values when the function
completes. They can be set so that they do not revert using the function

set.RNG(kind="Wichmann-Hill", seed=c(979,1479,1542), normal.kind="Box-
Muller")

The argumenseedis optional (and other values can be supplied but they should be
consistent with the generator). An initial seed will be generated if it is omitted.

The following usesnod2as the true model.

e.ls.mod2 <- EstEval(mod2, replications=100,
simulation.args=list(sampleT=100, sd=1),
estimation="est.VARX.Is”, estimation.args=list(max.lag=2),
criterion="TSmodel",

rng=list(kind="default", normal.kind="default",

seed=c(13,43,7,57,62,3,30,29,24,54,47,2)) #Splus seed

)

To plot a line chart of the cumulative average of the estimated parametersefse
to extract the parameters (coefficients) fromTiBenodel

par(mfcol=c(2,1))}# set the number of plots on the graphics device
tfplot(coef(e.ls.mod1l))
tfplot(coef(e.ls.mod2))

22 Brief User's Guide: DSE

The second plot looks like this:

matrix(seq(nrow(r)), nrow(r), 1)

€

© o _

= o

U'; — "T'T'."-"—":':':':":"__":“:':-Z~Z-Z~Z-Z~Z-Z~:-2~:-I~:-:~:-:~:-:~:-:~:-:-~:~=-:~:-:~:-:~:-:~=-:~:-;~=-:~=-=<:
e < S

= o A

1) |

> —

5 @ -

\o_: ? — ’;—::;:,:'E S, n S S ISR LD i T ISR I SR E-E S I S OO SR IO SO RS B ST s I eEeE e
2 | | | | | |
3 0 20 40 60 80 100

The straight line indicates the true value. To plot a line chart of the estimated parameters

usecoefto extract the parameters from the TSmodel:

par(mfcol=c(2,1))# set the number of plots on the graphics device
tfplot(coef(e.ls.mod1), cum=F, bounds=F)
tfplot(coef(e.ls.mod2), cum=F, bounds=F)

boundscontrols whether or not estimated one standard deviation bounds are plotted. The

second plot looks like this:

~
=
O
; p—
4
o] e N T T T
£ S
] — "y N \ .
> I I [N h . a N
= o - ,.\4‘_..,.,4‘_‘,.\.4:',.‘.‘.1.'.4~4,;,.‘.4‘:|..,~;:,,“_/,/u‘_,_‘\./ "‘Y""‘\‘l\”\"";"""',"'\/"'I‘"',""'! 44444444 b
d Fi |] \‘-l \ v "I 1 ‘ ' N
5 : "‘
c [[[[[[
5
o 0 20 40 60 80 100

matrix(seq(nrow(r)), nrow(r), 1)

To plot the distribution of estimates:
distribution(coef(e.Is.mod1), bandwidth=.2)

Evaluating Estimation Methods

distribution(coef(e.ls.mod2), bandwidth=.2)

The second plot looks like this:

2 o |

e

Q

ho}]
© 41 _
© | | | |

-1.5 -1.0 -0.5 0.0
parameter 1

> o

e 7

Q

© —]
© 41 _
© | | | |

-1.0 -0.5 0.0 0.5

parameter 2

To plot the roots of the estimated model ts#Es to extract the roots from the
TSmodel

e.ls.mod1.roots <- roots(e.ls.mod1)
plot(e.ls.mod1.roots)

plot(e.ls.mod1.roots, complex.plane=F)
plot(roots(e.ls.mod2), complex.plane=F)
distribution(e.ls.mod1.roots, bandwidth=.2)
distribution(roots(e.Is.mod?2), bandwidth=.1)

23

24 Brief User's Guide: DSE

bandwidthis an argument passed to the kernel estimator used to generate the plot. The last
plot looks like this:

density
0 1 2 3
|

0.6 0.8 1.0 1.2
Mod root 1
o
S
> _
2 0]
g - |
o
o _
= | | | | |
-0.2 0.0 0.2 04 0.6
Mod root 2

Some attention to the equivalence of different model representations is necessary
when evaluating estimation methods. For example, if the state space equivalent of a VAR
model is used as the true model for simulation asdVARX.|I$s used for estimation then
parameter estimates will be very different from those of the state space model (but root
estimates should still be similar). Many estimation techniques may also do some model
selection (such asst.black.boxloes), so the returned models may have different numbers
of parameters and/or lags.

Evaluating models based on their forecast performance avoids some of these
difficulties. In any case, since forecasting is often the end objective, it is useful to evaluate
models directly on their forecasting performance. The function
forecastCov.estimatorsWRTtruef)aluates estimation methods using a given true model

Evaluating Estimation Methods 25

for simulation. It calculates the covariance of forecast errors of the estimated models
relative to the output of the true model:

pc <- forecastCov.estimatorsWRTtrue(mod3,
estimation.methods=list(est.VARX.Is=list(max.lag=6)),
est.replications=2, pred.replications=10,
trend=F, zero=F,
rng=list(kind="default", normal.kind="default",
seed=c(53,41,26,39,10,1,19,25,56,32,28,3)p)us seed

The names of the elements in the distimation.methodspecify the estimation methods

and their value is a list of the arguments to the method. If no arguments are required then
the value should be specifiedMiJLL. Optional argumentsend andzeroindicate if the
covariance for forecasts of zero and a simple trend should also be calculated. These are
useful benchmarkgst.replicationsontrols the number of times a sample is generated

and used for estimating a model with each estimation mepinedl.replicationscontrols

how many times the forecasts from the estimated model are compared with output from
the true model. Thus the total number of simulatioresisreplications + est.replications *
pred.replicationsso 22 in the above example.

A similar function is available which applies a model reduction procedure after the
estimation:

pc.rd <- forecastCov.reductionsWRTtrue(mod3,
estimation.methods=list(est. VARX.Is=list(max.lag=3)),
est.replications=2, pred.replications=10,
rng = list(kind = "default”, normal.kind="default",
seed=c(29,55,47,18,33,1,15,15,34,46,13,2)))

The reduction procedure usedésluced.models.Mittnil&n optional argument
criteria can be specified. This controls the model selection criteria used by the reduction
technique.

It is possible to compare different estimation techniques on the basis of their out-
of-sample forecasting error with respect to a data sample. In the following example
estimation.sampleontrols the portion of the sample used for estimation. It can be a
fraction indicating a portion of the sample, or it can be an integer in which case it will be
treated as the number of periods to use for estimation.

z <-out.of.sample.forecastCov.estimatorsWRTdata(trim.na(egl.DSE.data),
estimation.sample=.5,
estimation.methods = list(est. VARX.ar=NULL, est.VARX.Is=NULL),
trend=T)

tfplot(z)

26 Brief User's Guide: DSE
The plot looks like this:

Prediction variance relative to given data.

2.5*10"8

M1

1078

horizon

GDPI2

0 100

horizon

CPI
500 1000

0

horizon

trend
----- est.VARX.ar NULL
— — est.VARX.Is NULL

In the example below the number of lags is limited (the default is 12 for
est.black.boxgand printing of intermediate results is suppressed.

z <-out.of.sample.forecastCov.estimatorsWRTdata(trim.na(egl.DSE.data),
estimation.sample=.5,
estimation.methods = list(
est.black.box4=list(max.lag=3, verbose=F),
est.VARX.Is=list(max.lag=3)),
trend=T, zero=T)
tfplot(z)

The object returned byut.of.sample.forecastCov.estimatorsWRTdatatains
the estimated models so it is possible to extract the models anghaseonForecastand
featherForecastdn the above example the model estimated wihblack.box4s the first
model and that estimated wigst.VARX.I$s the second, so

Adding New TSdata Classes 27
zz <- horizonForecasts(TSmodel(z, select=1) , TSdata(z), horizons=c(1,3,6))

would generate an object with the actual forecasts for the model estimated with
est.black.box4rather than the covariance of the forecast errorsjaadasts(zz)[3,30,]

will then be the prediction made for the 30th period from 6 (the third elemembiatong
periods previous. The generic functibarizonForecasts(¢an also be applied directly i

and the appropriate information will be extracted to generate forecasts for all the estimated
models.

10. Adding New TSdata Classes

Data used by functions in this library are objects of cl&s$ata The default
methods assume that this is a list with an elemoetgtutand optionally an elemeirtput,
each of which is a (multivariate) time series object. New classes of time series can be
defined and the DSE library should work as long as the methods describ#riantiee
library are implemented for the new time series class. This usually will not require any
changes td Sdatamethods (or anything else in the DSE library). The time series class
tfPADIdatadefined in thaframelibrary is an object which does not contain data, but only
a description of where to get the data. The generic funteere()calls
freeze.tfPADIdata(Jvhich uses the location descriptor in order to get a fixed copy of the
data as a time series matrix.

More generally, it is possible to define new specific classéSdéta The
TSPADIdataobject described in the appendix on database interfaces is an object of class
TSdataand specific clasESPADIdata Theinputandoutputfor this class are time series
location descriptors of clasgADIdata Many functions in this library require matrices
for inputandoutputin order to do calculations. In this case they use the furitéene()
before doing any calculations. The metti@ze. TSPADIdata(sedreeze.tfPADIdata()
on each element.

11. Adding New TSmodel Classes

Models used in the library are of cla§$&model” with secondary classes to
indicate specific types of models. The original library supported sub&lR88A” and
“SS”. The current version also support subctasdl” . (*** The interface for running
troll models is broken at present. Another, more easily available example is under
construction) To run models in this subclass requires the Troll software from Intex
Solutions, Inc. It also requires the TSPADI interface. The main methods which will be
necessary for a new class of modetsx’ are print.xxx, is.xxx, l.xxx, simulate.xxx,
seriesNamesInput.xxx, seriesNamesOutput.xxx, check.consistent.dimensimmg.xxx,
MonteCarloSimulations.xxAlso, the methodo.xxxis useful for converting models from
existing classes to this new class where possible. Models should inherit$moodel.

28 Brief User's Guide: DSE

Thetroll class of models is fairly interesting from a programming perspective,
since the data is not native to S/R and the models are not run within S/R. One reason for
wanting to do this is to use all of the other tools in the library to analyze models which
have already been built and are running in other environments. Troll has very good
algorithms for running “forward looking models” which are currently popular in
economics. The tools in the DSE library (e.g. functions for analyzing forecasting
properties) can be used as if the troll models were run directly in S/R, even though they are
actually run with completely separate software.

Thetroll TSmodelgprovide an example of how to implement additional classes of
models.

12. Curvature Calculations
13. Juice Functions

14. Cookbook for Monitoring Models

This section gives a brief recipe for building short term forecasting models. It is intended
to be self-contained although there are references to other sections for additional
information. The function described in this section are made available in R by:

library(“padi”) #for database interface.
library(“dsepadi”) #for the dse layer on top of database interface.
library(“monitor”) #for monitoring model functions.

The term “monitoring” comes from the fact that one is often trying to monitor the
current state of the economy based on data from prior periods, since there is typically
some lag before statistical agencies release data for the current period. The steps,
explained in more detail below, are:

1/ specify the data series to use in the model
2/ estimate a model and confirm that it is reasonable

3/ repeat 1 and 2 if other series are to be considered for competing models (beware that
fishing can be dangerous)

4/ run the monitoring program to produce forecasts

and optionally

Cookbook for Monitoring Models 29

5/ set up an automatic program to run the monitoring program and distribute results

This library use the TS PADI interface explained in more detail in an appendix. For
example purposes it is assumed that the data can be retrieved from an “economic time
series” (ets) server. The examples use names of series which are used internally at the
Bank of Canada and are probably not available elsewhere. Start S/R and open a graphics
window with

motif() # or something else in Splus

or
x11() #in R

If running remotely it may be necessary to use an argumeritdilsplay
YourWorkstation:0.0to display on your workstation. A few more details on running S/R
are given in Section 2 of this guide.

Step 1- specify the data

The data is specified in an variable which indicates the name of the series, the
source, any transformations which should be applied, and possibly some other options.
For more details see the appendix. An example of a model which contains two outputs and
no inputs is

cbps.manuf.data2.ids <- TSPADIdata2(

output=list(c("ets", ™, "i37013","percent.change","cbps.prod."),
c("ets", "™, "i37005","percent.change”,"manuf.prod.")),

pad.start=F,

pad.end =T)

With the above, the data will be converted to percent change when it is read from the
database. The default behaviour for data retrieval is to trim all series to the same length.
The length is such that there are no missing values on the padstartandpad.endcan

be used to modify this behaviour. Wighd.end=Tall series are padded on the end with
NAs to give a length which will include the most recent data value from any series. This is
preferred for forecasting but tiN&®s have to be trimmed witiim.na for estimation
procedures. The data is actually retrieved from the database with

cbps.manuf.data2 <- freeze(cbps.manuf.data2.ids)

The following example specifies one input series and one output series. It uses an alternate
constructor {SPADIdatavs. TSPADIdata? which takes arguments in a different format.
(The result is the same but different styles sometimes seem more convenient.)

manuf.data.ids <- TSPADIdata(
input ="lfsa455", input.transforms="percent.change”,
input.names="manuf.emp."”,
output="I137005", output.transforms="percent.change”,

30 Brief User's Guide: DSE

output.names="manuf.prod.",
server="ets", pad.start=F, pad.end =T)
manuf.data <- freeze(manuf.data.ids)

The data can be plotted with
tfplot(manuf.data)

In this example the plot shows missing data in the middle. In this somewhat unusual case
it is necessary to trim the beginning of the data set to remove the portion up to the end of
the missing data. This could be done with

manuf.data <- ttwindow(manuf.data, start=c(1976,2))

However, the trimming would have to be repeated each time the data is updated from the
database, which is especially inconvenient for automatic procedures described further
below. A better way is to set the starting period for retrieved data with

manuf.data.ids <- modify. TSPADIdata(manuf.data.ids, start=c(1976,2))

then when data is retrieved with

manuf.data <- freeze(manuf.data.ids)

it will start after the missing data. The start can also be specified with the arganent
for the functionTSPADIdata

A more detailed plot of the last portion of the data can be produced with
tfplot(manuf.data, start.=c(1995,11))

Note the “.” after start is part of the name of the argument. It is often not necessary since
truncated arguments usually match without problem, but is required in the case of tfplot so
that the argument is not confused with the function start. To specify and retrieve data with
two input series and one output series

cbps.manuf.data.ids <- TSPADIdata(
input =c("lfsa462","lfsa455"), input.transforms="percent.change”,
input.names=c("cbps.emp.", "'manuf.emp"),
output="i37013", output.transforms="percent.change",
output.names="cbps.prod.",
start=c(1976,2),
server="ets", db="", pad.start=F, pad.end =T)
cbps.manuf.data <- freeze(cbps.manuf.data.ids)

To specify and retrieve data with one input variable and two output variable

cbps.manuf.data3.ids <- TSPADIdata(
input ="lfsa462",
input.transforms="percent.change",input.names="cbps.emp.",
output=c("i37013", "i37005"),

Cookbook for Monitoring Models 31

output.transforms=c("percent.change", "percent.change"),

output.names=c("cbps.prod.","manuf.prod."),

start=c(1976,2),

server="ets", db ="", pad.start=F, pad.end =T)
cbps.manuf.data3 <- freeze(cbps.manuf.data3.ids)

Settingstartis only necessary because of this rather unusual case were there are missing
values in the middle of one series

Step 2 - estimate model
At this point it may be useful to make S/R prompt for a return before each new
graph is produced. This is done with
dev.ask(T)

A model can be estimated with various estimation techniques, some of which are
described in Section 6. For example:

manuf.model <- bft(trim.na(manuf.data))

This uses a “brute force technique” described in Gilbert (1995). It might take some time to
run. It uses a default maximum number of lags of 12. The estimation is faster if a smaller
number of lags is specified using

manuf.model <- bft(trim.na(manuf.data), max.lag=5)

By default the bft procedure prints information as it proceeds. This can be stopped using
manuf.model <- bft(trim.na(manuf.data), verbose=F, max.lag=5)

To display the parameters of the estimated model just type the name of the variable in
which it was stored:

manuf.model

and to plot it:

tfplot(manuf.model)
tfplot(manuf.model, start=c(1990,1))
tfplot(manuf.model, start=c(1995,1))

Models for the other specified data sets can be estimated in the same way:

cbps.manuf.model <- bft(trim.na(cbps.manuf.data),verbose=F)
tfplot(cbps.manuf.model)
tfplot(cbps.manuf.model, start=c(1995,1))

To forecast with the model using all available data

z <- forecast(TSmodel(manuf.model), trim.na(manuf.data),
conditioning.inputs=input.data(manuf.data))

32 Brief User's Guide: DSE
tfplot(z, start=c(1995,1))

To see the forecast use

forecasts(z)[[1]]
tfwindow(forecasts(z)[[1]], start=c(1996,3))

Forecasting is discussed in Section 7.

To evaluate how well the model does at forecasting, look at the covariance of the
forecast error at different horizons with

fc <- forecastCov(manuf.model)
tfplot(fc)

It is also good to consider how well the forecast does relative to a zero and a trend
forecast:

fc <- forecastCov(manuf.model, zero=T, trend=T)
tfplot(fc)

The above forecast error analysis is done within the sample which was used for
estimating the model. An out-of-sample forecast error analysis is typically a better
indication of how well the model will really do. This can be done by usmgdowto
truncate the data to a subset for estimation and then evaluate the forecast error on the
remainder. Another compromise, which is attractive when short data sets are involved, is
to do an out-of-sample evaluation of the performance of an estimation procedure, and then
hope that the procedure will continue to estimate good models when the whole data set is
used.

outfc <-out.of.sample.forecastCov.estimatorsWRTdata(trim.na(manuf.data),
estimation.sample=.5,
estimation.methods = list(bft=list(verbose=F), est. VARX.Is=NULL),
trend=T, zero=T)

tfplot(outfc)

Thebft procedure is generally fairly good but it can sometimes be out performed by a
simple least squares estimation, especially for univariate models. Its real strength is for
multivariate models:

outfc <-out.of.sample.forecastCov.estimatorsWRTdata(
trim.na(cbps.manuf.data3),
estimation.sample=.5,
estimation.methods = list(bft=list(verbose=F), est. VARX.Is=NULL),
trend=T, zero=T)

tfplot(outfc)

More details are given in Section 8.

Cookbook for Monitoring Models 33

Once a model has been chosen it can be re-used, rather than re-estimating each
time there is a new data point. This is done by extracting the model from the object
returned by the estimation procedure. This object is a model with data and some
estimation information. If you want to use different data then the data needs to be retrieved
again using the variable which indicates the source. For example

new.data <- freeze(manuf.data.ids)

To run the model and get one-step-ahead predictions with the new data use
z <- [(TSmodel(manuf.model), trim.na(new.data))

Or the data retrieval can be done in the same step with

z <- I[(TSmodel(manuf.model), trim.na(tfwindow(freeze(manuf.data.ids),
start=c(1976,2))))

tfplot(z)

tfplot(z, start=c(1995,8))

Forecasts more than one-step-ahead require input series up to the horizon for
which the forecast is to be produced. To run the model and get forecasts when more input
than output data is available:

z <- forecast(TSmodel(manuf.model), trim.na(new.data),
conditioning.inputs=trim.na(input.data(new.data)))
tfplot(z, start=c(1995,6))

The effect of this is to trinNAs frominput separately fronoutputso thatinputwill not be
truncated to the same ending periodaiput If you actually want the numbers rather
than plots of the data use

forecasts(z)[[1]]

or
tfwindow(forecasts(z)[[1]], start=c(1996,2))

will print values starting in the second period of 1996.

The horizon for a model with no inputs is determined by the argumoeizon
which has a default value of 36. For a model which requires input (conditioning) data, the
horizon for the forecast is determined by the input dataglitioning.inputsor
conditioning.inputs.forecastf none of these are supplied then the argurhentonis
used to replicate the last period of input data to the indicated horizon.

At the Bank of Canada PADI is an interface to a Fame server. The forecast data can
be put into a Fame database with

putpadi(forecasts(z)[[1]], dbname="nameofdatabase.db",
series=seriesNamesOutput(z))

34 Brief User's Guide: DSE

In the above

seriesNamesOutput(z)

extracts a character vector of the series names.

Step 3 - reconsider the data and model

The performance of alternative models on a given data set can be compared by
looking at the forecast error covariance frtorecastCovRepeat the required parts of
steps one and two and choose the model which does best at the horizons of interest.
Sometimes the real purpose of a monitoring model is just to forecast one series (the series
of primary interest). Other series are included only because they provide additional
information for forecasting the series of primary interest. One disadvantage of including
additional series is that it increases the number of parameters which must be estimated,
and thus reduces the quality of the estimates. At this step you should reconsider what
series are included for the model. Choose the model which does best on the series of
primary interest (but see also “Juice Functions”).

Step 4 - run the monitoring

During the S session, variables (e.g. models and data) are saved in a subdirectory
.Data below the directory where you started S. (In R they are in the file .RData.) The
variables will be available the next time S/R is started from the same subdirectory. One
danger is that you can overwrite an existing variable just by assigning a new value to the
name. Once you have a model to use for forecasting it is a good idea to save it in a separate
file so it will not be lost by accident. The modehnuf.mode&nd the corresponding data
identifiers can be saved in the file "manuf.model.definition” with

dump(c("manuf.model","manuf.data.ids"), fileout="manuf.model.definition")

If necessary they can then be retrieved with
source("manuf.model.definition™)

The model can be run to produce a forecast and mail the results to a list of
recipients. The function to do this compares the current data to a previous copy of the data
in order to determine if an updated forecast should be run. The comparison data is first
initialized with

manuf.previous.data <- freeze(manuf.data.ids)
then in order to make the data look like it has changed

output.data(manuf.previous.data)[1,1] <- NA

and to run the forecast and E-mail the results

r <-simple.monitoring(manuf.model, manuf.data.ids, manuf.previous.data,
mail.list="pgilbert@bank-banque-canada.ca",

Cookbook for Monitoring Models 35

message.title=" Manufacturing Monitoring ",
message.subject="Manufacturing Monitoring",
show.start= ¢(0,-3),
report.variables=seriesNames(manuf.data.ids),
data.sub.heading=" %chg %chg",
message.footnote=" f - forecast value"

data.tag="",
forecast.tag="f")

The status of the result can be checked with

r$status

and the comparison data should also be updated with

manuf.previous.data <- r$data

Especially for debugging purposes it is often useful to keep a more complete
record of the data and model used to produce the forecast This can be done with the
simple.monitoringargumensave.asvhich can be set to specify a file name. Setting
save.as=paste("Manufacturing.monitoring.”, make.names(date()), septhe above
would make a file name which includes a time stamp. Also, setting the argument
run.again=Twill run the forecast without checking to see if the data has been updated.

The argumeninail.list allows the output to be mailed to a list of recipients, but it
may be more convenient to mail the result to a list server which can be used for
distribution purposes. This may be easier to maintain, as the list server list of recipients
can be changed at any time (and in automatic mode described next the program does not
have to be restarted.)

Step 5 - automatic program to run the monitoring

To run the above and e-mail forecast directly from the Unix command prompt a
shell script can be set up as follows:

#!/bin/csh

cd /..path to directory...

setenv S_SILENT_STARTUP quiet
Splus <<eofS

r <- simple.monitoringfas above
manuf.previous.data <- r[[“data”]]

q0
eofS

Below it is assumed this is in a file call@@nufacturing To run this automatically every
20 minutes from 7am to 10am the script

#!/bin/csh

36 Brief User's Guide: DSE

the argument should be a script to run
between 7am and 10am check every 1200sec = 20 min.

@ start=7

@ stop =10

@ f=1200
Ip:

$1

set h = "date +%H"
set m = ‘date +%M"
if ($h < $start) then
@ s = ($start - (1 + $h)) * 3600 + (60 - $m) * 60
else
if ($h > ($stop - 1)) then
@ s = $start * 3600 + (23 - $h) * 3600 + (60 - $m) * 60
else
@ s =9%f
endif
endif
sleep $s
goto Ip

could be put in a filenonitoring.daemomnd then this can be started at the Unix prompt
with the command

unix prompt:monitoring.daemon manufacturing

The disadvantage of this approach is that the overhead for starting Splus is fairly
heavy and it may be difficult to use your computer for much else from 7am to 10am. (R
may be better in this respect.) If you have direct access to the files used for the database
then the script could be modified to check time stamps on the files and only run if the file
date has changed. If database files are used to store many series, and not all are updated at
the same time, then the savings will not be much. At the Bank of Canada another script
calledData.trigger.daemoian be used to run a Fame procedure to check if the particular
series have been updated, and themmanufacturingonly in that case.

Cookbook for Monitoring Models 37
Appendix I: Mini-Reference

Following is a short list of some of the more important functions. The online help
contains more complete information on the use of a functions.

OBJECTS
ARMA- define an ARMATSmodel
SS- define a state-spad&model
TSdata- define a data structure f6Smoded

MODEL INFORMATION
print - display model arrays
summary summary information about a model

tfplot - plot data or model predictions.

MODEL PROPERTIES
McMillan.degree calculate the McMillan degree of a model
roots - calculate the roots of a model
stability - check stability of model

MODEL CONVERSION

t0.SS- convert to an equivalent state space innovations representation
to.ARMA- convert to an ARMA representation

SIMULATION, ONE-STEP PREDICTIONS & RELATED STATISTICS

simulate- Simulate a model to generate artificial data.

| - evaluate a TSmodel with TSdata and return a TSestModel object

smoother calculate smoothed state for a state space model.

check.residuals distribution, autocorrelation and partial autocorrelation of residuals
information.tests print model selection criteria

38 Brief User's Guide: DSE

MODEL ESTIMATION & REDUCTION

est.VARXs - estimate VAR model with exogenous variable using OLS

est.VARXar - estimate VAR model with exogenous variable using autocorrelations
est.SS.from.VARXestimate a VARX model and convert to state space

est.SS.Mittnik estimate state space model using Mittnik’s markov parameter technique
est.max.like Maximum likelihood estimation of models.

est.black.box estimate and find the best reduced model

est.black.bo4 - estimate and find the best reduced model by techniques in Gilbert (1995),
also referred to asft

reduction.Mittnik- nested-balanced state space model reduction by svd of Hankel
generated from a model

FORECAST AND FORECAST EVALUATION
forecast- generate a forecast from given model and data.
featherForecasts forecast from specified periods
horizonsForecastsforecast specified periods ahead

forecastCov calculate covariance of multi-period ahead forecasts

ESTIMATION EVALUATION

EstEval- evaluate specified estimation techniques using a given true model

out.of.sample.forecastCov.estimatorsWRTdazaluate specified estimation techniques
using a given data set

Cookbook for Monitoring Models 39

Appendix Il: TS PADI Data Retrieval

This section describes utilities for retrieving data from an online database. This has
been implemented using the TS PADI interface. The examples use series names which are
specific to the Bank of Canada.

Building a database plug will typically require some programming effort. This
effort can be reduced by using a standardized interface. Code and a description of a
prototype of a standard for a Time Series Protocol for Application - Database Interface
(TS PADI) is available ahttp://www.bank-banque-canada.ca/pgilbérhe code includes
a working S interface to a Fame database. It may also be useful to check with your
database software vendor to get an update on the status of commercial support for an
interface. PADI also allows direct connection to databases over the Internet, so eventually,
when the interface is more widely supported, it may be possible to connect to databases
which are not maintained at your site.

Data is retrieved with a description which gives an indication of where the data
comes from, which series are model inputs and which are model outputs, any
transformations which should be applied to the data, and some padding information
indicating whether the series should be padded MAthto the length of the longest
available series or truncated to the subset where all data is available for all series. Data is
retrieved by using the generic functitveeze(Jon the description. Whdreeze()is a
applied to an object which is already time series data then the data is simply returned.
When applied to a data description object the data is retrieved from the data base. Most of
the functions in the DSE library use the functifseeze(Jon data, so data descriptions can
be used interchangeably with data. For model estimation purposes it is usually desirable to
retrieve the data and work with a fixed data set, but once a model is established and is
routinely used with newly available data then the data description is more convenient.

The following simple example specifies the set@&05from theetsserver as the
single output series, and gives it a more descriptive name. No data transformations are
performed.

eg2.DSE.data.names <- TSPADIdata(output= “137005",
output.names= “manuf.prod.” , server="ets”)

Settingoutput.namess optional. If they are set then they will be used in many
printing and plotting routines. The following line then returns the data.

eg2.DSE.data <- freeze(eg2.DSE.data.names)

The following example specifies one input and one output series.

eg3.DSE.data.names <- TSPADIdata(
input="Ifsa455", input.transformations= “percent.change”,
input.names= “manuf.emp.’,
output="i37005”", output.names="manuf.prod.”,
output.transformations= “percent.change”,

40 Brief User's Guide: DSE

pad.start=F, pad.end =T, server= “ets”)
eg3.DSE.data <- freeze(eg3.DSE.data.names)

Here is a multivariate example used in Gilbert (1995):

JofF.VAR.data.names <-TSPADIdata(
input = “B14017”, input.transformations= “diff”, input.names="R90",
output = c(“P484549”, “I37026", “b1627", “b14013",
“b4237”, “D767608", “b3400”, “M.BCPI",
“M.JQIND”, “M.CUSAO0"),
output.transformations=c(“percent.change”,
“percent.change”,“percent.change”,
“diff”, “diff”, “percent.change”,
“percent.change”, “percent.change”,
“percent.change”, “percent.change”),
output.names=c(“CPI", “GDP”, “M1”, “RL”", “TSE300",
“employment”, “PFX”, “com. price ind.,
“US ind. prod”, “US CPI"),
server="ets”)

JofF.VAR.data <- freeze(JofF.VAR.data.names)

The variablepad, pad.start, and pad.emntrol what happens at the beginning
and end of multivariate data when all series are not available for the same periods. If
pad.startis TRUEthenNAsare placed at the beginning of series if data is not available, so
the multivariate series starts with the first available dafmadfstartis FALSEthen the
beginning is truncated so that the first multivariate data point contains values for all
variables. Similarlypad.endworks with the last periods of the seripadcan be used in
place ofpad.startandpad.end

Most estimation routines require a complete data set for all varigbées=F), but
for many purposes it is useful to have all the data. The funiciitorna takes a complete
data set and removes padding at both ends. This is a convenient way to N&tsfreen
the beginning and end before estimation. The fun¢f@imdowcan also be used to
truncate series to a desired sample period.

An alternate form for specifying the data names can be given using the function
TSPADIdata2:

alt.JofF.VAR.data.names <- TSPADIdata2(

input = list(c(“ets”, “ , “B14017”, “diff”, “R90")),

output = list(
c(“ets”, *, “P484549" "percent.change”, “CPI”"),
c(“ets”, ™, “137026", “percent.change”, “GDP”),
c(“ets”, *, “b1627”, “percent.change”, “M1"),
c(“ets”, *, “b14013", “diff”, “RL"),
c(“ets”, “, “b4237”, “diff”, “TSE300"),

Cookbook for Monitoring Models 41

c(“ets”, *, “D767608""percent.change”, “employment”),
c(“ets”, *, “b3400", “percent.change”, “PFX"),

c(“ets”, *, “M.BCPI”", “percent.change”, “com. price ind.),
c(“ets”, “, “M.JQIND"’percent.change”;’US ind. prod.”),
c(“ets”, *, “M.CUSAOQ”,'percent.change”,’US CPI")))

The result is the same but this form may be more convenient is some circumstances. For
each series the character strings indicate the server, additional server information, the
series identifier, any transformation, and finally a series description. The order of these
strings is important. The additional server information may be empty, as above, but cannot
be omitted. For some servers it may be used to pass information such as a source database.
If no data transformation is to be done then the third string should be empty (““).

A smaller example, also used in Gilbert (1995), is given by:

eg4.DSE.data.names <-TSPADIdata(
input = “B14017”, input.transformations= “diff”, input.names="R90",
output = c(“P484549”, “I137026", “D767608", “b3400")
output.transformations=c(“percent.change”, “percent.change”,
“percent.change”, “percent.change”),
output.names=c(“CPI”, “GDP”, “employment”, “PFX”) ,
server="ets)

eg4.DSE.data <- freeze(eg4.DSE.data.names)

42 Brief User's Guide: DSE
Appendix IlI: Installation

If you are connected to the Internet and using R then installation can be done using
install.packages(“dse”, “dseplus”pr update.packages(“dse”, “dseplus”)f you are
using R but not connected to the Internet then use the R package installation procedure. (In
Unix this is “R INSTALL dse_xxx-x.tar.gz” from the command line or “R INSTALL dse”
in the directory above the uncompressed and untarred package, and similarly for dseplus.)
If you are using Splus then installation is done with the Unix script called INSTALL. See
the Splus installation instructions in the READ.ME file for more details. The latest public
version of this software is available at&p://www.bank-banque-canada.ca/pgilbedrd
should also be on CRAN. If you have not yet installed the software then, before
proceeding, please check if a more recent version is available. Also available at the web
site are postscript and pdf files of the text Gilbert (1993)

The code should be a complete working system. There are no essential pieces
missing, however, there may be references in the documentation (and options in the code)
to additional features and functions which are not yet included.

In Splus, the library is attached wailttach()or library(). Users can dynamically
load the fortran code witload.DSE.fortran()

library(“"DSE”, first=T)
load.DSE.fortran()

In R, the library is attached with

library(“syskern”)

library(“tframe”)

library(“dsel”) #for the base functionality
library(“dse2”) #for functions described later in the guide.

In R the compiled code is automatically loaded.

You should consider putting these lines in ydtirst function, which is
automatically executed each time you start. (This is especially advisable in Splus as some
of the more advanced functions in this library spawn separate sessions to speed
calculations.)

It is necessary for the library to over-ride some functions in some versions of
Splus, so it is important that it is near the beginning of the search path.

The DSE library help is integrated into the R help facility. In Splus the help is
accessible as HTML documents which can be viewed with any WWW browser. The initial
point to load into your browser is the file dsehome.htm.

The core part of this code, discussed in this Guide, has been tested and works
well. Errors in the documentation are more likely. Other parts of the code, not discussed in

Cookbook for Monitoring Models 43

the Guide, may contain more errors. Using equivalent representations there are typically
many simple ways to confirm results, and that is strongly advised. All code is provided on
an “as is” basis, but please report any errors that you find.

44 Brief User's Guide: DSE

References

Becker, R. A., J. M. Chambers, and A. Wilks. 19B8 New S Languad®acific Grove:
Wadsworth & Brooks/Cole.

Burns, PatrickSpoetryavailable at <http://www.seanet.com/~pburns/Spoetry>

Gilbert, P.D. 1993. “State space and ARMA models: An overview of the equivalence.”
Working Paper 93-4, Bank of Canada.

Gilbert, P.D. 1995 “Combining VAR Estimation and State Space Model Reduction for
Simple Good PredictionsJ. of Forecasting: Special Issue on VAR Modelling and
Forecasting14:229-250

Gilbert, P.D. 2000 “A note on the computation of time series model répisied
Economics Letters:423-424

Ihaka, R. and R. Gentleman. 1996, “R: A Language for Data Analysis and Graphics”
Journal of Computational and Graphical Statistibs299-314

Krause, A. and M. Olsorf,he Basics of S and S-Pl8pringer-Verlag.

Ripley, B.D. 1994Introductory Guide to Splug\vailable from statlib by “send SGuide
from S”

W.N. Venables, and B. D. Ripleyodern Applied Statistics with S-Plupringer-Verlag.

	Brief User’s Guide:
	Dynamic Systems Estimation Library
	Paul Gilbert, December 2001.
	Copyright 1993, 1994, 1995, 1996, 1999, 2000, 2001 Bank of Canada.

	Contents
	1. Introduction
	2. Getting Started with S/R
	3. General Outline of DSE Objects and Methods
	4. Defining a TSdata Structure
	5. ARMA and State Space TSmodels
	A(L) yt = B(L) et + C(L) ut
	zt = F zt-1 + G ut +K et-1
	yt = H zt + et
	zt = F zt-1 + G ut + Q nt
	yt = H zt + R et
	6. Model Estimation
	7. Forecasting
	8. Evaluating Forecasting Models
	9. Evaluating Estimation Methods
	10. Adding New TSdata Classes
	11. Adding New TSmodel Classes
	12. Curvature Calculations
	13. Juice Functions
	14. Cookbook for Monitoring Models
	Step 1- specify the data
	Step 2 - estimate model
	Step 3 - reconsider the data and model
	Step 4 - run the monitoring
	Step 5 - automatic program to run the monitoring

	Appendix I: Mini-Reference
	OBJECTS
	MODEL INFORMATION
	MODEL PROPERTIES
	MODEL CONVERSION
	SIMULATION, ONE-STEP PREDICTIONS & RELATED STATISTICS
	MODEL ESTIMATION & REDUCTION
	FORECAST AND FORECAST EVALUATION
	ESTIMATION EVALUATION

	Appendix II: TS PADI Data Retrieval
	Appendix III: Installation
	References

