
Guide to using the ecoengine R package

The Berkeley Ecoengine (http://ecoengine.berkeley.edu) provides an open API to a wealth of museum data
contained in the Berkeley natural history museums. This R package provides a programmatic interface to
this rich repository of data allowing for the data to be easily analyzed and visualized or brought to bear in
other contexts. This vignette provides a brief overview of the package’s capabilities.

The API documentation is available at http://ecoengine.berkeley.edu/developers/. As with most APIs it
is possible to query all the available endpoints that are accessible through the API itself. Ecoengine has
something similar.

library(ecoengine)
ee_about()

type

wieslander_vegetation_type_mapping
wieslander_vegetation_type_mapping
wieslander_vegetation_type_mapping
wieslander_vegetation_type_mapping
data
data
data
data
actions
meta-data
meta-data

Table 1: Table continues below

endpoint

https://ecoengine.berkeley.edu/api/vtmplots_trees/
https://ecoengine.berkeley.edu/api/vtmplots/
https://ecoengine.berkeley.edu/api/vtmplots_brushes/
https://ecoengine.berkeley.edu/api/vtmveg/
https://ecoengine.berkeley.edu/api/checklists/
https://ecoengine.berkeley.edu/api/sensors/
https://ecoengine.berkeley.edu/api/observations/
https://ecoengine.berkeley.edu/api/photos/
https://ecoengine.berkeley.edu/api/search/
https://ecoengine.berkeley.edu/api/footprints/
https://ecoengine.berkeley.edu/api/sources/

1

http://ecoengine.berkeley.edu
https://bnhm.berkeley.edu/
http://ecoengine.berkeley.edu/developers/

The ecoengine class

The data functions in the package include ones that query obervations, checklists, photos, vegetation records,
and a variety of measurements from sensors. These data are all formatted as a common S3 class called
ecoengine. The class includes 4 slots.

• [Total results on server] A total result count (not necessarily the results in this particular object
but the total number available for a particlar query)

• [Args] The arguments (So a reader can replicate the results or rerun the query using other tools.)

• [Type] The type (photos, observation, checklist, or sensor)

• [Number of results retrieved] The data. Data are most often coerced into a data.frame. To access
the data simply use result_object$data.

The default print method for the class will summarize the object.

Notes on downloading large data requests

For the sake of speed, results are paginated at 1000 results per page. It is possible to request all pages
for any query by specifying page = all in any function that retrieves data. However, this option should
be used if the request is reasonably sized. With larger requests, there is a chance that the query might
become interrupted and you could lose any data that may have been partially downloaded. In such cases the
recommended practice is to use the returned observations to split the request. You can always check the
number of requests you’ll need to retreive data for any query by running ee_pages(obj) where obj is an
object of class ecoengine.

request <- ee_photos(county = "Santa Clara County", quiet = TRUE, progress = FALSE)
Use quiet to suppress messages. Use progress = FALSE to suppress progress
bars which can clutter up documents.
ee_pages(request)

#> [1] 1

Now it's simple to parallelize this request You can parallelize across
number of cores by passing a vector of pages from 1 through the total
available.

Specimen Observations

The database contains over 2 million records (2861286 total). Many of these have already been georeferenced.
There are two ways to obtain observations. One is to query the database directly based on a partial or exact
taxonomic match. For example

pinus_observations <- ee_observations(scientific_name = "Pinus", page = 1, quiet = TRUE,
progress = FALSE)

pinus_observations

#> [Total results on the server]: 43363
#> [Args]:

2

#> country = United States
#> scientific_name = Pinus
#> georeferenced = FALSE
#> page_size = 1000
#> page = 1
#> [Type]: FeatureCollection
#> [Number of results retrieved]: 1000

For additional fields upon which to query, simply look through the help for ?ee_observations. In addition
to narrowing data by taxonomic group, it’s also possible to add a bounding box (add argument bbox) or
request only data that have been georeferenced (set georeferenced = TRUE).

lynx_data <- ee_observations(genus = "Lynx", georeferenced = TRUE, quiet = TRUE,
progress = FALSE)

lynx_data

#> [Total results on the server]: 701
#> [Args]:
#> country = United States
#> genus = Lynx
#> georeferenced = True
#> page_size = 1000
#> page = 1
#> [Type]: FeatureCollection
#> [Number of results retrieved]: 701

Notice that we only for the first 1000 rows. But since 795 is not a big
request, we can obtain this all in one go.
lynx_data <- ee_observations(genus = "Lynx", georeferenced = TRUE, page = "all",

progress = FALSE)

#> Search contains 701 observations (downloading 1 of 1 pages)

lynx_data

#> [Total results on the server]: 701
#> [Args]:
#> country = United States
#> genus = Lynx
#> georeferenced = True
#> page_size = 1000
#> page = all
#> [Type]: FeatureCollection
#> [Number of results retrieved]: 701

Other search examples

animalia <- ee_observations(kingdom = "Animalia")
Artemisia <- ee_observations(scientific_name = "Artemisia douglasiana")
asteraceae <- ee_observationss(family = "asteraceae")
vulpes <- ee_observations(genus = "vulpes")
Anas <- ee_observations(scientific_name = "Anas cyanoptera", page = "all")

3

loons <- ee_observations(scientific_name = "Gavia immer", page = "all")
plantae <- ee_observations(kingdom = "plantae")
grab first 10 pages (250 results)
plantae <- ee_observations(kingdom = "plantae", page = 1:10)
chordata <- ee_observations(phylum = "chordata")
Class is clss since the former is a reserved keyword in SQL.
aves <- ee_observations(clss = "aves")

Additional Features

As of July 2014, the API now allows you exclude or request additional fields from the database, even if they
are not directly exposed by the API.

To request additional fields

aves <- ee_observations(clss = "aves", extra = "kingdom,genus")

#> Search contains 170263 observations (downloading 1 of 171 pages)

#> | | | 0% | |===| 100%

names(aves$data)

#> [1] "longitude" "latitude" "type"
#> [4] "url" "observation_type" "scientific_name"
#> [7] "country" "state_province" "begin_date"
#> [10] "end_date" "source" "remote_resource"
#> [13] "kingdom" "genus"

aves <- ee_observations(clss = "aves", exclude = "source,remote_resource")

#> Search contains 170263 observations (downloading 1 of 171 pages)

#> | | | 0% | |===| 100%

names(aves$data)

#> [1] "longitude" "latitude" "type"
#> [4] "url" "observation_type" "scientific_name"
#> [7] "country" "state_province" "begin_date"
#> [10] "end_date"

Mapping observations

The development version of the package includes a new function ee_map() that allows users to generate
interactive maps from observation queries using Leaflet.js.

lynx_data <- ee_observations(genus = "Lynx", georeferenced = TRUE, page = "all",
quiet = TRUE)

ee_map(lynx_data)

4

Figure 1: Map of Lynx observations across North America

5

Photos

The ecoengine also contains a large number of photos from various sources. It’s easy to query the photo
database using similar arguments as above. One can search by taxa, location, source, collection and much
more.

photos <- ee_photos(quiet = TRUE, progress = FALSE)
photos

#> [Total results on the server]: 60863
#> [Args]:
#> page_size = 1000
#> georeferenced = 0
#> page = 1
#> [Type]: photos
#> [Number of results retrieved]: 1000

The database currently holds 60863 photos. Photos can be searched by state province, county, genus, scientific
name, authors along with date bounds. For additional options see ?ee_photos.

Searching photos by author

charles_results <- ee_photos(author = "Charles Webber", quiet = TRUE, progress = FALSE)
charles_results

#> [Total results on the server]: 3656
#> [Args]:
#> page_size = 1000
#> authors = Charles Webber
#> georeferenced = FALSE
#> page = 1
#> [Type]: photos
#> [Number of results retrieved]: 1000

Let's examine a couple of rows of the data
charles_results$data[1:2,]

#> authors locality county
#> 1 Charles Webber Yosemite National Park, Badger Pass Mariposa County
#> 2 Charles Webber Yosemite National Park, Yosemite Falls Mariposa County
#> photog_notes
#> 1 Tan Oak
#> 2 <NA>
#> url
#> 1 https://ecoengine.berkeley.edu/api/photos/CalPhotos%3A8076%2B3101%2B2933%2B0025/
#> 2 https://ecoengine.berkeley.edu/api/photos/CalPhotos%3A8076%2B3101%2B0667%2B0107/
#> begin_date end_date geojson.type longitude latitude
#> 1 <NA> <NA> Point -119.657387 37.663724
#> 2 <NA> <NA> Point -119.597389 37.753851
#> record
#> 1 CalPhotos:8076+3101+2933+0025
#> 2 CalPhotos:8076+3101+0667+0107

6

#> remote_resource
#> 1 http://calphotos.berkeley.edu/cgi/img_query?seq_num=21272&one=T
#> 2 http://calphotos.berkeley.edu/cgi/img_query?seq_num=14468&one=T
#> collection_code scientific_name
#> 1 CalAcademy Notholithocarpus densiflorus
#> 2 CalAcademy Rhododendron occidentale
#> url
#> 1 https://ecoengine.berkeley.edu/api/observations/CalPhotos%3A8076%2B3101%2B2933%2B0025%3A1/
#> 2 https://ecoengine.berkeley.edu/api/observations/CalPhotos%3A8076%2B3101%2B0667%2B0107%3A1/
#> media_url
#> 1 http://calphotos.berkeley.edu/imgs/512x768/8076_3101/2933/0025.jpeg
#> 2 http://calphotos.berkeley.edu/imgs/512x768/8076_3101/0667/0107.jpeg
#> source
#> 1 https://ecoengine.berkeley.edu/api/sources/9/
#> 2 https://ecoengine.berkeley.edu/api/sources/9/

Browsing these photos

view_photos(charles_results)

This will launch your default browser and render a page with thumbnails of all images returned by the search
query. You can do this with any ecoengine object of type photos. Suggestions for improving the photo
browser are welcome.

Other photo search examples

All the photos in the CDGA collection
all_cdfa <- ee_photos(collection_code = "CDFA", page = "all", progress = FALSE)

7

All Racoon pictures
racoons <- ee_photos(scientific_name = "Procyon lotor", quiet = TRUE, progress = FALSE)

Species checklists

There is a wealth of checklists from all the source locations. To get all available checklists from the engine,
run:

all_lists <- ee_checklists()

#> Returning 52 checklists

head(all_lists[, c("footprint", "subject")])

#> footprint
#> 1 https://ecoengine.berkeley.edu/api/footprints/angelo-reserve/
#> 2 https://ecoengine.berkeley.edu/api/footprints/angelo-reserve/
#> 3 https://ecoengine.berkeley.edu/api/footprints/angelo-reserve/
#> 4 https://ecoengine.berkeley.edu/api/footprints/hastings-reserve/
#> 5 https://ecoengine.berkeley.edu/api/footprints/angelo-reserve/
#> 6 https://ecoengine.berkeley.edu/api/footprints/hastings-reserve/
#> subject
#> 1 Mammals
#> 2 Mosses
#> 3 Beetles
#> 4 Spiders
#> 5 Amphibians
#> 6 Ants

Currently there are 52 lists available. We can drill deeper into any list to get all the available data. We can
also narrow our checklist search to groups of interest (see unique(all_lists$subject)). For example, to
get the list of Spiders:

spiders <- ee_checklists(subject = "Spiders")

#> Returning 1 checklists

spiders

#> record
#> 4 bigcb:specieslist:15
#> footprint
#> 4 https://ecoengine.berkeley.edu/api/footprints/hastings-reserve/
#> url
#> 4 https://ecoengine.berkeley.edu/api/checklists/bigcb%3Aspecieslist%3A15/
#> source subject
#> 4 https://ecoengine.berkeley.edu/api/sources/18/ Spiders

8

Now we can drill deep into each list. For this tutorial I’ll just retrieve data from the the two lists returned
above.

library(plyr)
spider_details <- ldply(spiders$url, checklist_details)
names(spider_details)

#> [1] "url" "observation_type"
#> [3] "scientific_name" "collection_code"
#> [5] "institution_code" "country"
#> [7] "state_province" "county"
#> [9] "locality" "begin_date"
#> [11] "end_date" "kingdom"
#> [13] "phylum" "clss"
#> [15] "order" "family"
#> [17] "genus" "specific_epithet"
#> [19] "infraspecific_epithet" "source"
#> [21] "remote_resource" "earliest_period_or_lowest_system"
#> [23] "latest_period_or_highest_system"

unique(spider_details$scientific_name)

#> [1] "Holocnemus pluchei" "Oecobius navus"
#> [3] "Uloborus diversus" "Neriene litigiosa"
#> [5] "Theridion " "Tidarren "
#> [7] "Dictyna " "Mallos "
#> [9] "Yorima " "Hahnia sanjuanensis"
#> [11] "Cybaeus " "Zanomys "
#> [13] "Anachemmis " "Titiotus "
#> [15] "Oxyopes scalaris" "Zora hespera"
#> [17] "Drassinella " "Phrurotimpus mateonus"
#> [19] "Scotinella " "Castianeira luctifera"
#> [21] "Meriola californica" "Drassyllus insularis"
#> [23] "Herpyllus propinquus" "Micaria utahna"
#> [25] "Trachyzelotes lyonneti" "Ebo evansae"
#> [27] "Habronattus oregonensis" "Metaphidippus "
#> [29] "Platycryptus californicus" "Calymmaria "
#> [31] "Frontinella communis" "Undetermined "
#> [33] "Latrodectus hesperus"

Our resulting dataset now contains 33 unique spider species.

Sensors

Sensor data come from the Keck HydroWatch Center.

You’ll need a sensor’s id to query the data for that particular metric and location. The ee_list_sensors()
function will give you a condensed list with the location, metric, binning method and most importantly the
sensor_id. You’ll need this id for the data retrieval.

head(ee_list_sensors())

9

http://nrs.ucop.edu/research/special_projects/Keck_HydroWatchl.htm

properties.station_name properties.units properties.variable

Angelo Meadow WS degree celcius Air Temp C
Cahto Peak WS degree celcius Air Temp C
Angelo HQ WS degree celcius Air Temp C
Angelo HQ SF Eel Gage degree celcius Air Temp C
Angelo HQ WS millibar Barometric Pressure mb
Angelo Meadow WS millibar Barometric Pressure mb

Table 3: List of stations (continued below)

properties.method_name record

Conversion to 30-minute timesteps 1602
Conversion to 30-minute timesteps 1603
Conversion to 30-minute timesteps 1604
Conversion to 30-minute timesteps 1606
Conversion to 30-minute timesteps 1607
Conversion to 30-minute timesteps 1608

Let’s download solar radiation for the Angelo reserve HQ (sensor_id = 1625).

First we can grab the list of sensor ids
sensor_ids <- ee_list_sensors()$record
In this case we just need data for sensor with id 1625
angelo_hq <- sensor_ids[1]
results <- ee_sensor_data(angelo_hq, page = 2, progress = FALSE)

#> Search contains 98527 records (downloading 1 page(s) of 99)

results

#> [Total results on the server]: 98527
#> [Args]:
#> page_size = 1000
#> sensor_id = 1602
#> page = 2
#> [Type]: sensor
#> [Number of results retrieved]: 1000

Notice that the query returned 98527 observations but has only retrieved the 25-50 since we requested records
for page 2 (and each page by default retrieves 25 records). You can request page = "all" but remember
that this will make 3941 requests. Now we can examine the data itself.

head(results$data)

10

#> local_date value
#> 1 2008-05-23 13:30:00 17.58
#> 2 2008-05-23 14:00:00 17.93
#> 3 2008-05-23 14:30:00 18.50
#> 4 2008-05-23 15:00:00 18.50
#> 5 2008-05-23 15:30:00 17.93
#> 6 2008-05-23 16:00:00 17.69

We can also aggregate sensor data for any of the above mentioned sensors. We do this using the
ee_sensor_agg() function. The function requires a sensor id and how the data should be binned. You
can specify hours, minutes, seconds, days, weeks, month, and years. If for example you need the data
binned every 15 days, simply add days = 15 to the call. Once every 10 days and 2 hours would be
ee_sensor_agg(sensor_id = 1625, days = 10, hours = 2)

stations <- ee_list_sensors()
This gives you a list to choose from
sensor_df <- ee_sensor_agg(sensor_id = stations[1, c("record")], weeks = 2,

progress = FALSE)

#> Search contains 147 records (downloading 1 page(s) of 1)

sensor_df

#> [Total results on the server]: 147
#> [Args]:
#> page_size = 1000
#> interval = 2W
#> page = 1
#> [Type]: sensor
#> [Number of results retrieved]: 147

head(sensor_df$data)

#> begin_date mean min max sum count
#> 1 2008-05-11 10.80 -2.018 28.08 5888 545
#> 2 2008-05-25 15.45 2.823 36.11 10385 672
#> 3 2008-06-08 11.73 1.798 24.25 7880 672
#> 4 2008-06-22 17.45 3.506 33.85 11729 672
#> 5 2008-07-06 17.07 4.395 31.80 11474 672
#> 6 2008-07-20 20.73 6.787 40.72 13933 672

As with other functions, the results are paginated. Since we only need 85 records in this case:

sensor_df <- ee_sensor_agg(sensor_id = 1625, weeks = 2, page = "all", progress = FALSE)

#> Search contains 94 records (downloading 1 page(s) of 1)

sensor_df

11

#> [Total results on the server]: 94
#> [Args]:
#> page_size = 1000
#> interval = 2W
#> page = all
#> [Type]: sensor
#> [Number of results retrieved]: 94

library(ggplot2)
ggplot(sensor_df$data, aes(begin_date, mean)) + geom_line(size = 1, color = "steelblue") +

geom_point() + theme_gray() + ylab("Solar radiation total kj/m^2") + xlab("Date") +
ggtitle("Data from Angelo HQ")

Figure 2: Mean solar radiation at Angelo HQ

Searching the engine

The search is elastic by default. One can search for any field in ee_observations() across all available
resources. For example,

The search function runs an automatic elastic search across all resources
available through the engine.
lynx_results <- ee_search(query = "genus:Lynx")
lynx_results[, -3]
This gives you a breakdown of what's available allowing you dig deeper.

12

field results

animalia 712
California 469
Nevada 105
Alaska 82
British Columbia 47
Arizona 36
Baja California Sur 25
Baja California 16
New Mexico 14
Oregon 13
Zacatecas 11
mammalia 898
Observations 900
felidae 898
Lynx rufus californicus 391
Lynx canadensis canadensis 137
Lynx rufus baileyi 135
Lynx rufus pallescens 119
Lynx rufus fasciatus 30
Lynx rufus peninsularis 27
Lynx rufus 18
Lynx rufus rufus 14
Lynx rufus escuinapae 13
Lynx rufus ssp. 4
chordata 900
lynx 900
carnivora 898

Similarly it’s possible to search through the observations in a detailed manner as well.

all_lynx_data <- ee_search_obs(query = "Lynx", page = "all", progress = FALSE)

#> Search contains 992 observations (downloading 1 of 1 pages)

all_lynx_data

#> [Total results on the server]: 992
#> [Args]:
#> q = Lynx

13

#> page_size = 1000
#> page = all
#> [Type]: observations
#> [Number of results retrieved]: 992

Miscellaneous functions

Footprints

ee_footprints() provides a list of all the footprints.

footprints <- ee_footprints()
footprints[, -3] # To keep the table from spilling over

name

Angelo Reserve
Sagehen Reserve
Hastings Reserve
Blue Oak Ranch Reserve

Table 6: Table continues below

url

https://ecoengine.berkeley.edu/api/footprints/angelo-reserve/
https://ecoengine.berkeley.edu/api/footprints/sagehen-reserve/
https://ecoengine.berkeley.edu/api/footprints/hastings-reserve/
https://ecoengine.berkeley.edu/api/footprints/blue-oak-ranch-reserve/

Data sources

ee_sources() provides a list of data sources for the specimens contained in the museum.

source_list <- ee_sources()
unique(source_list$name)

name

UCMP Vertebrate Collection
VTM plot data
VTM plot coordinates
BIGCB Sensors

14

name

Consortium of California Herbaria
MVZ Mammals
MVZ Mammals Observations
VTM plot data trees
VTM plot data brushes
CAS Herpetology

sessionInfo()

#> R version 3.1.0 (2014-04-10)
#> Platform: x86_64-apple-darwin13.1.0 (64-bit)
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> attached base packages:
#> [1] methods stats graphics grDevices datasets utils base
#>
#> other attached packages:
#> [1] plyr_1.8.1 pander_0.3.8 ggplot2_1.0.0
#> [4] ecoengine_1.4.3.99 codetools_0.2-8 rmarkdown_0.2.49
#> [7] knitr_1.6 devtools_1.5
#>
#> loaded via a namespace (and not attached):
#> [1] assertthat_0.1 colorspace_1.2-4 coyote_0.1
#> [4] digest_0.6.4 dplyr_0.2 evaluate_0.5.5
#> [7] formatR_0.10 grid_3.1.0 gtable_0.1.2
#> [10] htmltools_0.2.6 httr_0.3.0.99 jsonlite_0.9.9
#> [13] labeling_0.2 leafletR_0.2-1 lubridate_1.3.3
#> [16] MASS_7.3-33 memoise_0.2.1 munsell_0.4.2
#> [19] parallel_3.1.0 proto_0.3-10 Rcpp_0.11.2
#> [22] RCurl_1.95-4.3 reshape2_1.4.0.99 RJSONIO_1.3-0
#> [25] scales_0.2.4 stringr_0.6.2 tools_3.1.0
#> [28] whisker_0.3-2

Please send any comments, questions, or ideas for new functionality or improvements to <karthik.ram@
berkeley.edu>. The code lives on GitHub under the rOpenSci account. Pull requests and bug reports are
most welcome.

library(httr)
x <- content(GET("http://ipinfo.io/"), as = "parsed")

Karthik Ram
Aug, 2014
Berkeley, California

15

karthik.ram@berkeley.edu
karthik.ram@berkeley.edu
https://github.com/ropensci/ecoengine
https://github.com/ropensci/ecoengine/issues?state=open

	Guide to using the ecoengine R package
	The ecoengine class
	Notes on downloading large data requests
	Specimen Observations
	Photos
	Species checklists
	Sensors
	Searching the engine
	Miscellaneous functions

