
Manipulation of categorical data edits and error

localization with the editrules package

package version 1.9.0

Mark van der Loo and Edwin de Jonge

November 16, 2011

Abstract

Analyses of categorical data are often hindered by the occurrence
of inconsistent or incomplete raw data. Although R has many features
for analyzing categorical data, the functionality for error localization
and correction are currently limited. The editrules package is designed
to offer a user-friendly interface for edit definition, manipulation, and
error localization based on the generalized paradigm of Fellegi and
Holt. The package is a toolbox, providing basic functionality such as
rule definition, error checking, rule consistency tests and more. On top
of that, the package includes algorithms which localize errors based on
the generalized paradigm of Fellegi and Holt.

Under the hood, the package has several innovations of which the
most important one is a variable elimination method which -as far as
the authors know- is new to the field of data editing. The paper also
introduces an elegant description of edit rule manipulation in terms of
the so-called resolution operator.

This is the second paper describing functionalities of the R editrules
package and marks the completion of editrules version 2.0. The first
paper (De Jonge and Van der Loo, 2011) describes methods and imple-
mentation for handling numerical data while this paper is concerned
with handling categorical data.

1

Contents

1 Introduction 3

2 Categorical data and edit rules 3
2.1 Boolean representation of records and edits 4
2.2 The editarray object . 7
2.3 Coercion, checking, redundancy and feasibility 10

3 Manipulation of categorical restrictions 12
3.1 Value substitution . 12
3.2 Variable elimination by category resolution 13
3.3 Some properties of the elimination method 15
3.4 An example with eliminate . 18

4 Error localization in categorical data 19
4.1 A Branch and bound algorithm 19
4.2 Error localization with localizeErrors 21
4.3 Error localization with errorLocalizer 23

5 Conclusions 25

A Notation 27

Index 28

List of Algorithms

1 isSubset(E) . 11
2 substValue(E,k,v) . 13
3 eliminate(E,k) . 15

Reading guide. This paper describes the algorithms and some of the
math behind the package as well as the functionality of the editrules package.
Readers less interested in the technical background who want to get started
quickly can skip some technical sections and read sections 1→ 2.2→ 2.3→
3.1 → 3.4 → 4.2 → 4.3.

2

1 Introduction

Analyses of categorical data are often hindered by occurrences of incomplete
or inconsistent raw data records. The process of locating and correcting such
errors is referred to as data editing, and it has been estimated that National
Statistics Institutes spend up to 40% of their resources on this process (De
Waal et al., 2011). For this reason, considerable attention is paid to the
development of data editing methods that can be automated. Since data
are often required to obey many interrelated consistency rules, data editing
can be too complex to perform manually. Winkler (1999) mentions practical
cases where records have to obey 250, 300 or even 750 internal consistency
rules. Although the R statistical environment has numerous facilities for
analyzing categorical data [See e.g. Husson et al. (2010)], the options for
error localization and record correction are currently limited.

This paper presents the editrules package which was developed to help
closing the gap between raw data retrieval and data analysis with R. The
main purpose of the editrules package is to provide a user-friendly environ-
ment for handling data restriction rules, to apply those rules to data, and to
localize erroneous fields in data based on the generalized principle of Fellegi
and Holt (1976). The package does not offer functionality for data correc-
tion. However, it does facilitate the identification of the set of solutions for
an error correction problem.

Under the hood, the package contains several innovations with respect
to the branch-and-bound algorithm for error localization in categorical data
described in De Waal et al. (2011). The most important innovation is a
variable elimination algorithm which allows for on-the-fly redundant rule
removal. As far as the authors know, this algorithm is new to the field of data
editing. To facilitate the description of algorithms and their properties, we
also introduce a formulation of categorical edit manipulations in terms of the
so-called resolution operator. This formulation allows for elegant algebraic
proofs of properties of the algorithms and rule manipulations applied in the
editrules package.

The current paper complements our previous paper on the treatment
of numerical data (De Jonge and Van der Loo, 2011). We describe the
algorithms underlying editrules’ functionality and the internal representation
of categorical data. Examples in R code are given throughout the text to
assist new users in getting started with the package.

2 Categorical data and edit rules

The value domain of categorical data records is usually limited by rules
interrelating these variables. The simplest examples are cases where the
value of one variable excludes values of another variable. For example: if

3

the age class of a person is “child”, then (by law) the marital status cannot
be “married”. In survey or administrative data, violations of such rules are
frequently encountered. Resolving such violations is an important step prior
to data analysis and estimation.

In this section we describe the representation of edits and records as im-
plemented in the editrules package. Subsection 2.1 describes the background
while subsection 2.2 describes implementation and gives coded examples.

2.1 Boolean representation of records and edits

A categorical data record v with n variables may be defined as an element
of the Cartesian product space D (for domain):

D = D1 ×D2 × · · · ×Dn, (1)

where each Dk is a finite set of dk possible categories for variable k. The
value domain defined above is also referred to as the data model of a dataset.
We label the categories as follows:

Dk = {vk ∈ Dk | vk = 1, 2, . . . , dk}. (2)

A restriction e is a subset of D and we say that if v ∈ e then v violates e.
Conversely, when v 6∈ e we say that v satisfies e. In data editing literature,
such rules are referred to as edit rules or edits, in short. In the context of
contingency tables they are referred to as structural zeros since each rule
implies that one or more cells in the d1 × d2 × · · · × dn contingency table
must be zero. A record is valid if it satisfies every edit imposed on D.

Categorical records may be represented as a vector of boolean values. A
boolean vector of dimension d is an element of the boolean algebra

Bd =
(
{0, 1}d,∧,∨,¬

)
, (3)

where 0 and 1 have the usual interpretations false and true and the logical
operators work element-wise on their operands. To facilitate the discussion
we will also allow the standard arithmetic operations addition and subtrac-
tion on boolean vectors (this is also consistent with the way R handles vectors
of class logical).

To represent a record v = (v1, v2, . . . , vn), we assign to every category vk
in Dk a unique standard basis vector ~δk(vk) of Bdk . The boolean represen-
tation ρ(v) of the full record is the direct sum

v
ρ−→ ~δ1(v1)⊕ ~δ2(v2)⊕ · · · ⊕ ~δn(vn), (4)

which we will write as the direct vector sum

ρ(v) = v1 ⊕ v2 ⊕ · · · ⊕ vn ≡ v. (5)

4

The dimension d of ρ(v) is given by the total number of categories of all
variables

d =
n∑
k=1

dk. (6)

Example 2.1.1. Consider the variables marital status, age, and position in
household from the domain D = D1 ×D2 ×D3. We define

D1 = {married, unmarried,widowed, divorced} (7)

D2 = {under-aged, adult} (8)

D3 = {partner, child, other}. (9)

The record r = (married, adult, partner) has boolean representation

ρ(r) = (1, 0, 0, 0)1 ⊕ (0, 1)2 ⊕ (1, 0, 0)3 = (1, 0, 0, 0, 0, 1, 1, 0, 0). (10)

�

An edit e is a subset of records inD which can be written as the Cartesian
product

e = A1 ×A2 · · · ×An, where Ak ⊆ Dk, k = 1, 2, · · ·n. (11)

The interpretation of an edit is that if a record v ∈ e, then v is considered
invalid. The following properties follow immediately.

Remark 2.1.2. If e ⊂ D and e′ ⊂ D are edits, then e ∪ e′ = {e, e′} and
e ∩ e′ = A1 ∩A′1 ×A2 ∩A′2 × · · · ×An ∩A′n are also edits. �

An edit, expressed as in Eq. (11) is said to be in normal form. A variable
k is involved in an edit if Ak ⊂ Dk. Conversely, we say that e involves k if k
is involved in e. A variable k for which Ak = Dk is not involved in e. Since
every category vk is mapped to a unique basis vector ~δk(vk), edits have a
boolean representation ρ(e), given by

e
ρ−→ ∨

v1∈A1

~δ1(v1)⊕ ∨
v2∈A2

~δ2(v2)⊕ · · · ⊕ ∨
vn∈An

~δn(vn), (12)

which may simply be written as

ρ(e) = a1 ⊕ a2 ⊕ · · · ⊕ an ≡ a. (13)

Example 2.1.3. Using the domain from Example 2.1.1, the edit that says
that under-aged people cannot be married has set representation

e = {married} × {under-aged} × {partner, child, other} (14)

which translates to the boolean representation

ρ(e) = (1, 0, 0, 0)⊕ (1, 0)⊕ (1, 1, 1) = (1, 0, 0, 0, 0, 1, 1, 1, 1). (15)

�

5

In the boolean representation some properties can be checked by simple
calculations. For example, an edit involves variable k if and only if the inner
product 1dk · ak < dk, where 1dk is a dk vector of ones.

A record v violates an edit if every vk ∈ Ak. In the boolean representation
this can be written as a condition on the standard inner product between
the boolean representation of a record and an edit:

n∑
k=1

~δk(vk) · ak = v · a = n. (16)

Each edit may be written as the union of every record it contains. We
therefore introduce the following definition.

Definition 2.1.4 (domination). Given two edits e and e′. If each record
v ∈ e is also in e′, we say that e′ dominates e. We use the notation e ≺ e′ if
e′ contains at least one record more than e and e � e′ otherwise. Similarly,
if E and E′ are sets of edits, and every v ∈ E is also in E′, we write E ≺ E′
or E � E′.

We introduce the symbols ≺ and � to indicate a difference with ⊂ and ⊆.
The first symbols are used to in connection with the space of records covered
by a set of edits. The latter are used to indicate subsets of explicitly defined
edits. The symbols ≺ and � are independent of the explicit definition of
edits while ⊂ and ⊆ are dependent.

Example 2.1.5. Consider a 2-variable domain D = D1 × D2 with D1 =
{a, b, c} and D2 = {d, e}. Furthermore, we have the edits e1 = {a,b}× {d},
e2 = {a} × {d} and e3 = {b} × {d}. Then e2 ≺ e1 and e3 ≺ e1. Also, if
E = {e2, e3} then {e2} ⊂ E and e1 � E. In contrast, {e1} 6⊆ E.

Remark 2.1.6 (edit redundancy). Suppose that E is a set of edits of the
form described in Eq. (11). It is not difficult to verify that an edit e ∈ E is
redundant if

Ak = ∅, for any k ∈ 1, 2, . . . , n (17)

or

e � e′ with e′ ∈ E. (18)

In (17), e is redundant since it cannot contain any records. It can be tested
by checking if any 1dk · ak = 0. In the case of (18), e is redundant because
any edit violating e also violates e′. Using ρ(e) = a and ρ(e′) = a′, this can
be tested by checking if a ∧ a′ = a or equivalently if a ∨ a′ = a′. �

Remark 2.1.7. The boolean representation of records and edits a bijection.
For convenience we use the symbols ∈, ≺ and � for edits and record in set as
well as in boolean representation. For example, in stead of writing v · a = n
we write v ∈ a (which is equivalent to v ∈ e) when convenient. �

6

In the editrules package, the boolean representation is mainly used to
store edits and to manipulate them through variable substitution and elim-
ination. Data records can be stored in data.frame objects, as usual.

2.2 The editarray object

In the editrules package, a set of categorical edits is represented as an editarray
object. Formally, we denote an editarray E for n categorical variables and
m edits as (brackets indicate a combination of objects)

E = 〈A, ind〉, with A ∈ {0, 1}m×d and d =
n∑
k=1

dk, (19)

Each row a of A contains the boolean representation of one edit, and the dk
denote the number of categories of each variable. The object ind is a nested
list which relates columns of A to variable names and categories. Labeling
variables with k ∈ 1, 2, . . . , n and category values with vk ∈ 1, 2, . . . , dk, we
use the following notations:

ind(k, vk) =
∑
l<k

dl + vk (20)

ind(k) = {ind(k, vk) | vk ∈ Dk}. (21)

So ind(k, vk) is the column index in A for variable k and category vk and
ind(k) is the set of column indices corresponding to all categories of variable
k. The editarray is the central object for computing with categorical edits,
just like the editmatrix is the central object for computations with linear
edits.

It is both tedious and error prone to define and maintain an editarray
by hand. In practice, categorical edits are usually stated verbosely, such
as: “a male subject cannot be pregnant”, or “an under-aged subject cannot
be married”. To facilitate the definition of edit arrays, editrules is equipped
with a parser, which takes R-statements in character format, and translates
them to an editarray.

Figure 1 shows a simple example of defining an editarray with the edit-
rules package. The first two edits in Figure 1 define the data model. The
editarray function derives the datamodel based on the variable names and
categories it finds in the edits, whether they are univariate (defining do-
mains) or multivariate. This means that if all possible variables and cate-
gories are mentioned in the multivariate edits, the correct datamodel will be
derived as well.

When printed to the screen, the boolean array is shown with column
heads of the form

<abbreviated var. name><separator><abbreviated cat. label>

7

> E <- editarray(c(

+ "gender %in% c('male','female')",

+ "pregnant %in% c('yes','no')",

+ "if (gender == 'male') pregnant == 'no'"

+)

+)

> E

Edit array:

levels

edits gndr:feml gndr:male prgn:no prgn:yes

e1 FALSE TRUE FALSE TRUE

Edit rules:

d1 : gender %in% c('female', 'male')

d2 : pregnant %in% c('no', 'yes')

e1 : if(gender == 'male') pregnant != 'yes'

> datamodel(E)

variable value

1 gender female

2 gender male

3 pregnant no

4 pregnant yes

Figure 1: Defining a simple editarray with the editarray function. The array
is printed with abbreviated column heads, which themselves consist of vari-
able names and categories separated by a colon (by default). When printed
to screen, a character version of the edits is shown as well, for readability.

where both variable names and categories are abbreviated for readability,
and the standard separator is a colon (:). The separator may not occur as a
symbol in either variable or category name, and its value can be determined
by passing a custom sep argument to editarray. For convenience, the function
datamodel accepts an editarray as input and returns an overview of variables
and their categories for easy inspection in the form of a data.frame.

Internally, editarray uses the R internal parse function to transform the
character expressions to a parse tree, which is subsequently traversed recur-
sively to derive the entries of the editmatrix. The opposite is also possible.
The R internal function as.character has been overloaded to derive a char-
acter representation from a boolean representation. When printed to the
screen, both the boolean and textual representation are shown.

Univariate edits define the domain of a variable. The domains form
together a data model. A domain can be defined with common R syntax
using the %in% operator. If a domain is defined explicitly, it must follow
the following syntax diagram.

-- " 〈variable〉 %in% �c(� , �� ’〈category〉’ �)� 〈identifier〉 �� c(TRUE, FALSE) �
� " -�

8

Here, 〈variable〉 is the name of a categorical variable, and 〈category〉 is a lit-
eral category name. Note that the category name is enclosed by single quotes
while the entire statement is between double quotes. That is, the entire
statement has to be offered in string format to editarray. The 〈identifier〉
is the name of a predefined character variable storing the unique categories
for a variable. In principle, 〈identifier〉 may be replaced by any valid R
symbol evaluating to a character or factor vector. However, such construc-
tions are not recommended, since multivariate edit rules depend on a fixed
datamodel.

The multivariate rules can be defined in two ways. The most useful and
common way to define edits follows the following syntax diagram.

-- "if (

� � &&� & �� �� 〈set expression〉 �) �
� � ||� | �� �� 〈set expression〉 �� false �� " -�

Where each 〈set expression〉 is a logical statement, following

-- �� ! �� 〈variable〉 �� � ==� != ���’〈category〉’� �true�false �� �
� �

� %in% �c(� , �� ’〈category〉’ �)� 〈identifier〉 �� �true�false �� �
� �

� -�

The reader can check that the examples given in Figure 1 follow this
syntax. The example below illustrates the use of separately defined data
models and boolean categories.

> xval <- letters[1:4]

> yval <- c(TRUE,FALSE)

> (M <- editarray(c(

+ "x %in% xval",

+ "y %in% yval",

+ "if (x %in% c('a','b')) !y "

+)))

Edit array:

levels

edits x:a x:b x:c x:d y:FALS y:TRUE

e1 TRUE TRUE FALSE FALSE FALSE TRUE

Edit rules:

d1 : x %in% c('a', 'b', 'c', 'd')

d2 : y %in% c(FALSE, TRUE)

e1 : if(x %in% c('a', 'b')) y == FALSE

The second way to define multivariate edits is based on rewriting on the
basic classical logic law P ⇒ Q = ¬P ∨Q. It involves the following syntax
diagram.

9

-- "

� � ||� | �� �� 〈set expression〉 � " -�

Where each 〈setexpression〉 is as in the syntax diagram above. In practice,
a user will commonly not use this form since it is less readable. However,
the as.character method for editarray can generate such statements by passing
the argument useIf=FALSE, as shown below.

> as.character(M,useIf=FALSE)

d1 d2

"x %in% c('a', 'b', 'c', 'd')" "y %in% c(FALSE, TRUE)"

e1

"!(x %in% c('a', 'b')) | y == FALSE"

The main advantage of this form is that contrary to the if() form, it allows
for vectorized checking of edits, which is why it is used internally.

2.3 Coercion, checking, redundancy and feasibility

The editrules package is equipped with functions operating on sets of edits
represented as an editarray. An overview is given in Table 1. The datamodel
function extracts the variables and categories from an editarray, and returns
them as a two-column data.frame. With as.data.frame or as.character one
can coerce an editarray so that it can be written to a file or database.
Character coercion is used when edits are printed to the screen. Optionally,
coercing the datamodel to character form can be switched off. The result
of as.data.frame has columns with edit names, a character representation of
the edits and a column for remarks.

The function violatedEdits takes an editarray and a data.frame as input
and returns a logical matrix indicating which record (rows) violate which
edits (columns). It works by parsing the editarray to R-expressions and
evaluating them within the data.frame environment. By default, the records
are checked against the data model. This can be turned off by providing the
optional argument datamodel=FALSE.

When manipulating edit sets, redundant edits of the form of Eq. (17) may
arise. Such redundancies can be detected in the boolean representation with
isObviouslyRedundant. By default, this function also checks for duplicate
edits, but this may be turned off. The function duplicated is overloaded from
the standard R function and the function isSubset (pseudocode in Algorithm
1) detects which edits are a subset or duplicate of another one. In the actual
R implementation, the only explicit loop is a call to R’s vapply function. The
other loops are avoided using R’s indexing and vectorization properties.

Manipulations may also lead to edits of the form e = D, in which case
every possible record is invalid, and the editarray has become impossible to
satisfy. The function isObviouslyInfeasible detects whether any such edits are

10

Table 1: Functions for objects of class editarray. Only mandatory arguments
are shown, refer to the built-in documentation for optional arguments.

Function description

datamodel(E) get datamodel
getVars(E) get a list of variables
as.data.frame(E) coerce edits to data.frame
contains(E) which edits contains which variable
as.character(E) coerce edits to character vector
blocks(E) Get list of independent blocks of edits
reduce(E) Remove empty unnecessary variables and rows
isObviouslyRedundant(E) find redundancies [Eq. (17)], duplicates
duplicated(E) find duplicate edits
isSubset(E) find edits, subset of another edit [Eq. (18)]
isObviouslyInfeasible(E) detect simple contradictions
isFeasible(E) detect if at least 1 valid record exists
substValue(E,var,value) substitute a value
eliminate(E,var) eliminate a variable (sect. 3.4)
violatedEdits(E,dat) check which edits are violated by x
localizeErrors(E,dat) localize errors (sect. 4.2)
errorLocalizer(E,x) backtracker for error localization (sect. 4.3)
summary(E) summarize the content of E
plot(E) plot a graph of E (requires igraph package)

Algorithm 1 isSubset(E)

Input: An editarray E = 〈A, ind〉.
1: s← (false)m

2: for (a(i),a(i′)) ∈ rows(A)× rows(A) do
3: if a(i) ∨ a(i′) = a(i′) then
4: si ← true

Output: Boolean vector s indicating which edits represented by A are a
subset of another edit.

present. The function isFeasible checks if the set of edits in it’s argument
allows at least one valid record. This may yield results which are counter-
intuitive at first glance. For example, consider set of edits on the domain
D = {(x, y) ∈ {a, b} × {c, d}}.
> M <- editarray(c(

+ "x %in% c('a','b')",

+ "y %in% c('c','d')",

+ "if (x == 'a') y == 'c'",

+ "if (x == 'a') y != 'c'"))

>

This set of edits is feasible, even though edits e1 and e2 seem to contradict
each other:

11

> isFeasible(M)

[1] TRUE

The explanation is that e1 and e2 contradict each other only when x = a, so

> isFeasible(substValue(M,'x','a'))

[1] FALSE

where the function substValue is discussed in the next section. One can check
that the record (x = b, y = d) indeed satisfies all edits in M.

The feasibility check works by eliminating all variables in an editarray
one by one until either no edits are left or an obvious contradiction is found.
Eliminating all variables amounts constructing the solution of an error lo-
calization problem in the branch-and-bound algorithm of De Waal (2003)
where all variables have to be adapted. Variable elimination is discussed
further in the next section while error localization is discussed in Section 4.

3 Manipulation of categorical restrictions

The basic operations on sets of categorical edits are value substitution and
variable elimination. The former amounts to adapting the datamodel un-
derlying the edit set while the latter amounts to deriving relations between
variables not involving the eliminated variable.

In the next subsection we give an example of value substitution with the
editrules package, as well as some background. In subsection 3.2 we describe
a variable elimination method, which to the authors seems new to the field
of data editing. In subsection 3.3 it is shown that the method yields results
equivalent to Fellegi and Holt’s elimination method. Finally, in subsection
3.4 we give an example of eliminating variables with the editrules package.

3.1 Value substitution

If it is assumed that in a record, one of the variables takes a certain value,
that value may be substituted in the edit rules. In the boolean representation
this amounts to removing all edits which exclude that value, since the record
cannot violate those edits. Secondly, the columns related to the substituted
variable but not to the substituted category are removed, thereby adapting
the datamodel to the new assumption. Algorithm 2 gives the pseudocode
for reference purposes.

In the editrules package, value substitution is performed by the substValue
function, which accepts an editarray, a variable name and a category name.
In the following example the editmatrix defined in Figure 1 is used.

> substValue(E,"gender","female")

12

Algorithm 2 substValue(E,k,v)

Input: an editarray E = 〈A, ind〉, a variable index k and a value v
1: i← ind(k, v)
2: A← A\{a ∈ rows(A) | ai = false} . Remove rows not involving v
3: A← A\{atj ∈ columns(A) | j ∈ ind(k)\i} . Remove categories 6= v
4: Update ind

Output: 〈A, ind〉 with v substituted for variable k.

Edit array:

levels

edits gndr:feml gndr:male prgn:no prgn:yes

Edit rules:

d1 : gender %in% c('female', 'male')

d2 : pregnant %in% c('no', 'yes')

In this case, the variable gender is substituted by the value female. The
rules concerning gender = male may be deleted, so here only the datamodel
is left without any multivariate rules. In fact, the datamodel itself may be
reduced, which can be achieved by setting the option reduce=TRUE.

> substValue(E,"gender","female",reduce=TRUE)

Edit array:

levels

edits gndr:feml prgn:no prgn:yes

Edit rules:

d1 : gender %in% 'female'

d2 : pregnant %in% c('no', 'yes')

3.2 Variable elimination by category resolution

Given two edits e and e′, with boolean representations a and a′ respectively.
We define the resolution operator Rk as:

aRk a′ = a1 ∧ a′1 ⊕ · · · ⊕ ak−1 ∧ a′k−1

⊕ ak ∨ a′k ⊕ ak+1 ∧ a′k+1 ⊕ · · · ⊕ an ∧ a′n. (22)

For two edit sets A and A′, we also introduce the notation

ARk A′ = {aRk a′ | (a,a′) ∈ rows(A)× rows(A′)}. (23)

Remark 3.2.1. The resolution operator has the following properties relevant
for record checking.

if v ∈ aRk a′ then v ∈ a ∨ v ∈ a′ (24)

if v ∈ a then
(
v ∈ aRk a′

)
∨
(
aRk a′ = ∅

)
, (25)

13

where we used notation as defined in remark 2.1.7. That is, if a record
violates aRk a′, it does so because it violates a and/or a′. Therefore, aRk a′

is also an edit in the sense that a record is invalid if it falls in the derived
edit. When ak = a′k, the resulting edit is the intersection of the original
edits, in which case the resulting edit is redundant. �

The operator is called resolution operator since in certain cases its ac-
tion is equivalent to a resolution operation from formal (automated) logic
derivation (Robinson, 1965). If ak ∨ a′k = (true)dk , the operator “resolves”
or eliminates the kth variable and we are left with a relation between the
other variables, regardless of the value of variable k. The edit resulting from
a resolution operation on two explicitly defined edits is called an implied
edit. If the resolution operation happens to eliminate one of the variables,
it is called an essentially new implied edit. These terms were introduced by
Fellegi and Holt (1976) who first solved the problem of error localization for
categorical data.

Example 3.2.2. Consider again the variable domain of Example 2.1.1. We
define the edits

e(1): Under aged people cannot be married.

e(2): A marriage partner must be married.

In the boolean representation we get:

ρ(e(1)) = (1, 0, 0, 0)⊕ (1, 0)⊕ (1, 1, 1)

ρ(e(2)) = (0, 1, 1, 1)⊕ (1, 1)⊕ (0, 1, 1).

A new edit can be derived, using R1

ρ(e(1))R1 ρ(e(2)) = (1, 1, 1, 1)⊕ (1, 0)⊕ (0, 1, 1).

Which can be translated to the rule that under-aged people cannot be a mar-
riage partner.

The resolution operator can be used to eliminate a variable k from a set
of edits (represented by A) category by category as follows (Algorithm 3).
Suppose that j is the column index of the first category of k. Collect all
pairs of (a+,a−) obeying a+j = true and a−j = false. If there are no edits

of type a+, the variable cannot be eliminated and the empty set is returned.
Otherwise, copy all a+ to a new set of edits and add every a+Rk a−. By
construction, these new edits all have aj = true. Possibly, redundant edits
have been produced, and these may be removed. The procedure is iterated
for every category of k, adding a category for which each aj = true at each
iteration.

14

Algorithm 3 eliminate(E,k)

Input: an editarray E = 〈A, ind〉, a variable index k
1: for j ∈ ind(k) do
2: A+ = {a ∈ rows(A) : aj = true}
3: A− = {a ∈ rows(A) : aj = false}
4: if A+ = ∅ then
5: A← ∅
6: break
7: A← A+ ∪A+Rk A−

8: Delete rows which have isSubset(〈A, ind〉) = true.

Output: editarray 〈A, ind〉 with variable k eliminated

3.3 Some properties of the elimination method

In this subsection we prove that the function eliminate of Algorithm 3
generates all edits necessary to solve the error localization problem. A short
comparison with the elimination method of Fellegi and Holt (1976) is given
as well.

Given a set of m edits:

E = {e(i) ∈ P(D) | e(i) as in Eq. (11), i ∈ 1, 2, . . . ,m}, (26)

where P(D) is the power set of D. Fellegi and Holt (1976), but also De
Waal et al. (2011) define a way to derive new edits, which may be written
as a function Fk,

Fk(E) = ∩mi=1A
(i)
1 × ∩

m
i=1A

(i)
2 × · · · × ∩

m
i=1A

(i)
k−1×

× ∪mi=1A
(i)
k × ∩

m
i=1A

(i)
k+1 × · · · × ∩

m
i=1A

(i)
m , (27)

where k is called the generating variable. In the boolean representation, we
have A = ρ(E). Using the relations ρ(e ∩ e′) = ρ(e) ∧ ρ(e) and ρ(e ∪ e′) =
ρ(e) ∨ ρ(e′) we may write

Fk(A) = a(1)Rk a(2)Rk · · ·Rk a(m), a(i) = ρ
(
e(i)
)
, (28)

where we used some obvious properties (symmetry, associativity) of the ∧
and ∨ operators as well. The following lemma and corollary show that we
can do all the work, necessary for implied edit derivation with the resolution
operator.

Lemma 3.3.1 (Fellegi and Holt (1976)). If E is a set of edits, every edit,
logically implied by E can be derived by repeated application of Eq. (27) on
subsets of E.

Proof. The proof is given in the reference and will not be repeated here.

15

Corollary 3.3.2. If E is a set of edits, all implied edits can be derived by
repeated application of the resolution operator on elements of the boolean
representation of E.

Proof. This follows from the equivalence between Eqs. (27) and (28).

Having established the use of the resolution operator, it becomes inter-
esting to study its algebraic properties. By substitution in the definition,
it is easily shown that the resolution operator is symmetric, associative and
idempotent. As a reminder, these properties are defined as follows.

symmetry: aRk b = bRk a
associativity: (aRk b)Rk c = aRk(bRk c)
idempotency: aRk a = a.

(29)

The resolution operator (although not called as such) was found earlier and
independently of the current authors by Willenborg (1988), who also dis-
covered these properties. The following property shows that the resolution
operator leaves redundancy relations untouched.

Lemma 3.3.3. If b � c, then aRk b � aRk c.

Proof. We may write a = ak ⊕ a′ and similarly for b and c. This gives

aRk b = aRk(b ∧ c)

= ak ∨ (bk ∧ ck)⊕ a′ ∧ (b′ ∧ c′)

= (ak ∨ bk) ∧ (ak ∨ ck)⊕ (a′ ∧ b′) ∧ (a′ ∧ c′)

= aRk b ∧ aRk c � aRk c,

and we are done.

This lemma is important because it shows that removing redundant edits
(as shown in Algorithm 3) does not affect the outcome of eliminate in the
sense that the resulting edit set covers the same subset of D with or without
the redundancy removal step.

We now define more formally the notion of variable elimination.

Definition 3.3.4. Given a function f : P(D) → P(D), and a set of edits
E ⊂ P(D). If none of the edits in f(E) contain variable k, we say that f
eliminates that variable from E.

Remember that in the boolean representation, this means that ak =
(true)dk . The following theorem shows that every essentially new implied
edit, generated by k is found by Algorithm 3.

Theorem 3.3.5. If E is a set of edits, the function eliminate(E, k) gen-
erates every edit derived from E from which variable k has been eliminated.
Moreover, these edits are mutually non-redundant.

16

Proof. The rows are mutually non-redundant since redundant rows are re-
moved explicitly in line 8 of the algorithm. The fact that the removing these
rows does not alter the result (in the sense that the resulting edits will cover
the same subdomain of D) is a consequence of Lemma 3.3.3.

Denote by A(j) the state of A after j iterations. We have

A(1) = A+(0) ∪A+(0)Rk A−(0). (30)

Here A(1) contains every nonredundant derived edit with column ind(k, 1)
equal to true . For, if there is another derived edit, it must be in A+(0)Rk A+(0),
since A−(0)Rk A−(0) only generates edits where column number ind(k, 1)
is false . Now, consider two edits a+ and a′+ ∈ A+(0). We have a+Rk a′+ �
a+ ∪ a′+ � A+(0) � A(1) so each element of A+(0)Rk A+(0) is redundant
(remember Remarks 2.1.2 and 2.1.7). Now considerA(j). It follows from
the above that if A(j − 1) contains every nonredundant edit with columns
ind(k, 1), . . . , ind(k, j − 1) equal to true then A(j) contains all nonredun-
dant derived edits where columns ind(k, 1), . . . , ind(k, j) equal true . Since
the algorithm iterates over all j ∈ ind(k) the result follows.

It is interesting to compare the procedure in Algorithm 3 with the proce-
dure of Fellegi and Holt (1976) for generating implied edits. This procedure,
which is also described by De Waal et al. (2011) may be summarized as
follows.

1: function FH(E,k)
2: Find every Ej ⊆ E, with j ∈ 1, 2, . . . , s such that

� Fk(Ej) eliminates k.

� Ej is minimal in the sense that there is no E′j ⊂ E such that Fj(E
′
j)

eliminates k.

� The Ej are mutually non-redundant in the sense Fk(Ej) 6⊆ Fk(El).
3: E ← ∪sj=1Fk(Ej)
4: return E

Here, E is a set of categorical edits in some form, and k the variable to elim-
inate. Most of the computational complexity is contained in line 2, where
the search space is determined by the power set of E, yielding exponential
complexity in the number of edits.

The complexity of the eliminate algorithm is determined by the 7th
line in Algorithm 3, which is quadratic in the current number of edits in
the for-loop. This recurrence relation also yields exponential complexity in
the number of edits. However, by removing the redundant edits at every
iteration (a quadratic operation in itself), the actual number of edits can be
kept to a minimum which reduces the complexity encountered in practice.

17

3.4 An example with eliminate

The purpose of the eliminate function is to derive all possible non-redundant
edits from an edit set that do not contain a certain variable. For categorical
data edits, this amounts to logical resolution. For example, consider the
syllogism which was also discussed in Example 3.2.2:

P1 Under-aged people cannot be married
P2 A marriage partner has to be married

C An under-aged subject cannot be a marriage partner.

Here, the conclusion C is derived from premises P1 and P2 by eliminating
marital status. In editrules the above operation can be performed as follows.
We first define a data model and edit rules:

> E <- editarray(c(

+ "age %in% c('under-aged','adult')",

+ "maritalStatus %in% c('married','not married')",

+ "positionInHousehold %in% c('partner','child','other')",

+ "if (age == 'under-aged') maritalStatus != 'married'",

+ "if (positionInHousehold == 'partner') maritalStatus == 'married'"

+))

We may derive the conclusion by eliminating the marital status variable:

> eliminate(E,'maritalStatus')

Edit array:

levels

edits age:adlt age:und- mrtS:mrrd mrtS:ntmr psIH:chld psIH:othr psIH:prtn

e1 FALSE TRUE TRUE TRUE FALSE FALSE TRUE

Edit rules:

d1 : age %in% c('adult', 'under-aged')

d2 : maritalStatus %in% c('married', 'not married')

d3 : positionInHousehold %in% c('child', 'other', 'partner')

e1 : if(age == 'under-aged') positionInHousehold != 'partner'

This indeed yields the right conclusion. Alternatively, we may eliminate age:

> eliminate(E,'age')

Edit array:

levels

edits age:adlt age:und- mrtS:mrrd mrtS:ntmr psIH:chld psIH:othr psIH:prtn

e1 TRUE TRUE FALSE TRUE FALSE FALSE TRUE

Edit rules:

d1 : age %in% c('adult', 'under-aged')

d2 : maritalStatus %in% c('married', 'not married')

d3 : positionInHousehold %in% c('child', 'other', 'partner')

e1 : if(maritalStatus == 'not married') positionInHousehold != 'partner'

This deletes the only rule actually involving age. That is, no new rules not
involving age can be derived.

18

4 Error localization in categorical data

4.1 A Branch and bound algorithm

The editrules package implements an error localization algorithm, based
on the branch-and-bound algorithm of De Waal and Quere (2003). The
algorithm has been extensively described in De Waal (2003) and De Waal
et al. (2011). The algorithm is similar to the branch-and-bound algorithm
used for error localization in numerical data in the editrules package as
described in De Jonge and Van der Loo (2011), except that the elimination
and substitution subroutines are implemented for categorical data.

In short, a binary tree is created with the full set of edits and an erroneous
record at the root node. Two child nodes are created. In the first child
node the first variable of the record is assumed correct, and it’s values is
substituted in the edits. In the second child node the variable is assumed
incorrect and it is eliminated from the set of edits. The tree is continued
recursively until choices are made for each variable. Branches are pruned
when they cannot lead to a solution, leaving a partial binary tree where each
path from root to leaf represents a solution to the error localization problem.
Computational complexity is reduced further by pruning branches leading
to higher-weight solutions then solutions found earlier.

Recall the datamodel of Example 2.1.1, with variables marital status,
age and position in household. We define the following two edits:

e(1) An under-aged subject cannot be married

e(2) A (marriage) partner has to be married

As an example we treat the following record with the branch-and-bound
algorithm to localize the errors:

v = (married, under-aged, partner). (31)

At the beginning of the algorithm, only the root node is filled. The situation
may be represented as follows:

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r v 1 0 0 0 1 0 1 0 0

a(1) 1 0 0 0 1 0 1 1 1

a(2) 0 1 1 1 1 1 1 0 0

Root node, w = 0,

where v = ρ(v), and a(1) and a(2) are the boolean representations of e(1) and
e(2) respectively. The record and edits are denoted in boolean representation
as shown in Example 2.1.1. The weight w counts the number of variables
that are assumed to be incorrect, which at the root node is zero.

The tree is traversed in depth-first fashion. In the first step, we substitute
married in marital status, yielding

19

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r v 1 1 0 1 0 0

a(1) 1 1 0 1 1 1
Subst. mar. stat., w = 0.

Here, a(2) is removed, since it has no meaning for v anymore. The positions
for the categories unmarried, widowed and divorced are left empty here to
signify that the datamodel has a fixed marital status now. The dark part
of the tree on the left shows which nodes have been treated. Continuing we
find

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r

��r
��r v 1 1 1 0 0

a(1) 1 1 1 1 1
Subst. age., w = 0.

At this point we have fixed the value for marital status and age. It can be
seen from the value of a(1) for position in household that no matter what
value is chosen for that field, the value v · a(1) = 3. This shows that this
path will never lead to a valid solution. We therefore prune the tree here,
go up one node and turn right.

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r

��r
��r− AAr v 1 1 0 0

Elim. age, w = 1.

Eliminating the age variable yields an empty edit set. We may continue
down and substitute the value partner for position in household.

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r v 1 1

Subst. hh. pos., w = 1.

This yields the first solution: only the age variable needs to be changed. In
search for more solutions, we move up the tree and try to eliminate posi-
tion in household. However, since eliminating position in household would
increase the weight to 2 we will prune the tree at this point. Moving up to
the root node and eliminating marital status gives

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r
HHr v 1 0 1 0 0

a(3) 1 1 1 1 1 0 1 0 0
Elim. mar. stat., w = 1.

Here a(3) = a(1)R1 a(2). It is interpreted as the rule that under-aged people
cannot be a partner in the household (no matter what the value of marital
status is). Creating the next child node by substituting age, we get

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r
HHr
��r v 1 1 0 0

a(3) 1 1 1 1 1 1 0 0
Subst. age, w = 1.

Going down the tree and substituting position in household yields

20

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��rAAr��r
HHr
��r
��r v 1 1

a(3) 1 1 1 1 1 1
Subst. hh. pos., w = 1.

However, whatever value we would choose for marital status, it would always
result in an erroneous record since a(3) has true on all categories of that
variable. Therefore, we go up one step in the tree. Eliminating position
in household would increase the weight to 2, but since we already found a
solution with weight equal to 1, this path need not be followed. We go up
another node and bound on the fact that eliminating age would yield the
same problem. The final tree may be represented as follows:

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r
HHr
��r
��r− .

Here, every evaluated node is colored black, and a node is crossed when
a bound condition was encountered. The only (minimal) solution created
is represented by the path substitute marital status → eliminate age →
substitute position in household. This corresponds to the solution where age
has to be altered to fix the record, and indeed changing age from under-aged
to adult will make the record fully valid. Note that the branch-and-bound
algorithm reduced the number of nodes to be evaluated from 15 to 8 in this
case.

4.2 Error localization with localizeErrors

The function localizeErrors applies the branch-and-bound algorithm to
determine the minimal weight error location for every record in a data.frame.
The columns may be in character or factor format. The function has an iden-
tical interface for numerical data under linear edits and categorical data un-
der categorical edits. It is implemented as an S3 generic function, accepting
either an editmatrix or an editarray as the first argument and a data.frame as
the second argument. Further arguments are a vector of variable weights, a
maximum search time (in seconds) to spend on a single record, a maximum
weight and the maximum number of variables which may be changed. The
latter two arguments introduce extra bound conditions in the branch-and-
bound algorithm.

Even when variables are weighted, the solution to the error localization
problem may not be unique. In those cases localizeErrors will draw uni-
formly from the set of lowest-weight solutions. The degeneracy (number of
equivalent solutions found) is reported in the output.

The result of a call to localizeErrors is an object of class errorLocation.
It contains a boolean matrix with error locations for each record as well
as a status report containing degeneracies, solution weights run times and
whether the maximum runtime was exceeded. It also contains a timestamp

21

> E <- editarray(c(

+ "age %in% c('under-aged','adult')",

+ "maritalStatus %in% c('unmarried','married','widowed','divorced')",

+ "positionInHousehold %in% c('marriage partner', 'child', 'other')",

+ "if(age == 'under-aged') maritalStatus == 'unmarried'",

+ "if(positionInHousehold == 'marriage partner') maritalStatus == 'married'"

+)

+)

> (dat <- data.frame(

+ maritalStatus=c('married','unmarried','widowed'),

+ age = c('under-aged','adult','adult'),

+ positionInHousehold=c('marriage partner','other','marriage partner')

+))

maritalStatus age positionInHousehold

1 married under-aged marriage partner

2 unmarried adult other

3 widowed adult marriage partner

> set.seed(1)

> localizeErrors(E,dat)

Object of class 'errorLocation' generated at Wed Nov 16 15:25:27 2011

call : localizeErrors(E, dat)

slots: $adapt $status $call $user $timestamp

Values to adapt:

adapt

record maritalStatus age positionInHousehold

1 FALSE TRUE FALSE

2 FALSE FALSE FALSE

3 FALSE FALSE TRUE

Status:

weight degeneracy user system elapsed maxDurationExceeded

1 1 1 0.004 0.000 0.003 FALSE

2 0 1 0.000 0.004 0.002 FALSE

3 1 2 0.012 0.000 0.009 FALSE

Figure 2: Localizing errors in a data.frame of records. The data model is as
defined in Example 2.1.1. The randseed is set before calling localizeErrors to
make results reproducible. The third record has degeneracy 2, which means
that the chosen solution was drawn uniformly from two equivalent solutions
with weight 1.

(in the form of a Date object) and the name of the user running R. Table 2
gives an overview of the slots involved.

In Figure 2 an example of the use of localizeErrors is given. The data
model and rules are as in subsection 4.1. The records are given by

maritalStatus age positionInHousehold

1 married under-aged marriage partner

2 unmarried adult other

3 widowed adult marriage partner

The edits state that under-aged persons cannot be married and that one
cannot be a marriage partner if one is unmarried. Clearly, the first and

22

Table 2: Slots in the errorLocation object
Slot description.

$adapt boolean array, stating which variables must be adapted for
each record.

$status A data.frame, giving solution weights, number of equivalent
solutions, timings and whether the maximum search time was
exceeded.

$user Name of user running R during the error localization
$timestamp date() at the end of the run.
$call The call to localizeErrors

third record disobey some of these rules while the second record is valid.
The first record can be repaired by adapting age and the second record
can be made consistent by changing either position in household or marital
status. In the latter case, both solutions have equal weight and localizeErrors
has drawn one solution.

4.3 Error localization with errorLocalizer

Just like for linear edits, the function errorLocalizer gives more control over
the error localization process since it allows to parameterize the search se-
parately for each record. This can be useful, for example when reliability
weights are calculated for each record.

The errorLocalizer function is described extensively in De Jonge and
Van der Loo (2011), so here we will discuss the example shown in Figure 3.

The data model and edits are the same as in Figure 2. The difference
here is that a record must be offered as a named character vector. A call to
errorLocalizer generates a backtracker object which contains all information
necessary to start searching the binary tree. After calling $searchNext() the
weight and first found solution are returned, while the backtracker object
stores some meta-information about the process, most significantly the du-
ration of the search. A second call yields an equivalent solution and the
third call returns NULL, indicating that all minimal weight solutions have
been found.

23

> # Define a record

> r <- c(age = 'under-aged', maritalStatus='married', positionInHousehold='child')

> el <- errorLocalizer(E,r)

> el$searchNext()

$w

[1] 1

$adapt

age maritalStatus positionInHousehold

FALSE TRUE FALSE

> el$duration

user system elapsed

0.004 0.000 0.003

> el$maxdurationExceeded

[1] FALSE

> el$searchNext()

$w

[1] 1

$adapt

age maritalStatus positionInHousehold

TRUE FALSE FALSE

> el$searchNext()

NULL

Figure 3: Finding errors with errorLocalizer. The data model and edits in
E are as in Figure 2.

24

5 Conclusions

This paper describes the theory and implementation of categorical edit ma-
nipulation of the editrules package. Categorical restrictions may be defined
textually in standard R syntax. New edits may be derived with the reso-
lution method. A new formulation of the elimination method in terms of
the resolution operator was developed which facilitated the development of a
fast elimination algorithm which seems to be new in the field of data editing.

The package offers functionality to check records against rules and can
determine the location of errors based on the generalized principle of Fellegi
and Holt.

25

References

De Jonge, E. and M. Van der Loo (2011). Manipulation of linear edits and
error localization with the editrules package. Technical Report 201120,
Statistics Netherlands, The Hague.

De Waal, T. (2003). Processing of erroneous and unsafe data. Ph. D. thesis,
Erasmus University Rotterdam.

De Waal, T., J. Pannekoek, and S. Scholtus (2011). Handbook of statistical
data editing and imputation. Wiley handbooks in survey methodology.
John Wiley & Sons.

De Waal, T. and R. Quere (2003). A fast and simple algorithm for automatic
editing of mixed data. Journal of Official Statistics 19, 383–402.

Fellegi, I. P. and D. Holt (1976). A systematic approach to automatic edit
and imputation. Journal of the Americal Statistical Association 71, 17–35.

Husson, F., S. Lê, and J. Pagès (2010). Exploratory Multivariate Analysis
by Example Using R. Computer Sciences and Data Analysis. Chapman &
Hall/CRC.

Robinson, J. (1965). A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM 12, 23–41.

Willenborg, L. (1988). Computational aspects of data processing, Volume 54
of CWI Tract. Amsterdam: Centre for Mathematics and Computer Sci-
ence.

Winkler, W. E. (1999). State of statistical data editing and current research
problems. In Working paper no. 29. UN/ECE Work Session on Statistical
Data editing, Rome.

26

A Notation

Symbol Explanation and reference

⊕ Direct vector sum.
a An edit, in boolean representation: a = ρ(e), Eq. (13).
ak Boolean representation of one variable in a. a = ⊕nk=1ak.
A Set of edits, in m× d boolean representation.
D Set (domain) of all possible categorical records, Eq. (1).
Dk Set of possible categories for variable k. Eq. (2).
d Number of categories (in total), Eq. (6).
dk Number of categories in Dk.
e An edit, in set representation: e ⊆ D, [Eq. (11)].
E An editarray, Eq. (19), or a set of edits in set representation.
ind Function relating categories c of variable k to columns in A,

Eqs.(20) and (21).
i Row index in A (labeling edits).
j Column index in A (labeling categories).
k Labels a categorical variable.
m Number of edits.
n Number of variables.
Rk Resolution operator Eq. (22).
ρ Map, sending set representation to boolean representation.
v Categorical record, in set representation: v = (v1, . . . , vn) ∈

D.
vk Label for a single category of Dk.
v Categorical record, in boolean representation: v = ρ(v).
vk Boolean representation of a single variable v = ⊕nk=1vk.

27

Index

boolean algebra, 4

edit, 4, 5
boolean representation, 5
essentially new, 14
implied, 14
normal form, 5
redundancy, 6
satisfying, 4
violation, 4

editarray, 7
feasibility, 11
functions, 10
redundancy, 10
value substitution, 12
variable elimination, 14, 18

error localization
with errorLocalizer, 23
with localizeErrors, 21

record
boolean representation, 4
value domain, 4

resolution operator, 13

28

