
The fastclime Package for Fast Constrained l1
Minimization Approach to Sparse Precision Matrix

Estimation in R

Haotian Pang ∗ Han Liu † Robert Vanderbei ‡

May 20, 2013

Abstract

We describe an R package called fastclime (ver 1.0), which provides functions to esti-
mate sparse precision matrix by CLIME using parametric simplex method. Compared with
existing package clime, it has many extra advantages: (1) It gives a full path of the tuning
parameter lambdan for each column while solving the linear programming problem (2) It
only requires a few iteration to recover each sparse precision matrix column. (3) The entire
solver is written in C and it is easy to modify. (4) It recovers both precision matrix and
adjacency matrix for each iteration.

1 Background and the CLIME estimator

Estimating the covariance matrix and its inverse has been widely discussed in many statistical
analysis. Let X = (X1, ..., Xp)T be a p-variate random vector with Gaussian distribution N(µ,Σ).
The covariance matrix Σ can be easily estimated by the sample covariance:

Σn =
1

n

n∑
k=1

(xk − x)(xk − x)T (1)

where x = 1
n

n∑
k=1

xk is the sample mean.

The precision matrix, or sometimes called the concentration matrix, Ω, is defined as Ω = Σ−1.
Notice for Gaussian distribution, Ωjk = 0 indicates that Xi Xj are independent given other vari-
ables Xk(k 6= i, j). A closed related problem is the selection of graphical model. Let a graph
G = (V,E) denotes the conditional independence relation between the variables X. The vertex
set V is the set of variables X1, X2, ..., Xp. An edge between node i and node j is contained in edge
set E if and only if the two variables Xi and Xj is not independent given Xk(k 6= i, j). Therefore,
for gaussian distribution, recovering the structure of the conditional independence graph is the
same as estimating the support of a precision matrix.

Unlike precision matrix, there is no direct method to estimate the precision matrix. One famous
method is called l1 regularized log-determinant program [Banerjee et al., 2008]:

Ω = argmin trace(ΣnX)− log(det(X)) + λ‖X‖1 subject to: X � 0 (2)

This estimator can be solved efficiently by methods such as GLASSO (Graphical Lasso)[Friedman
et al., 2007] [Friedman et al., 2010] and ADMM (Alternating Direction Method of Multipliers)
[Boyd et al., 2010].

∗email: hpang@princeton.edu, Department of Electrical Engineering, Princeton University
†email: hanliu@princeton.edu, Department of Operational Research and Financial Engineering, Princeton U-

niversity
‡email: rvdb@princeton.edu, Department of Operational Research and Financial Engineering, Princeton Uni-

versity

1

Another simple estimator proposed recently is called CLIME (Constrained l1 Minimization Esti-

mator). Cai et al. [2010] defines the CLIME estimator Ω̂ as the solution to the following problem:

min ‖Ω‖1 subject to: |ΣnΩ− I|∞ ≤ λn, Ω ∈ Rp×p (3)

λn is defined as a tuning parameter. This minimization problem can be further decomposed into
p small problems, simply recovering the precision matrix column by column:

min ‖β‖1 subject to: |Σnβ − ei|∞ ≤ λn (4)

Of course, the estimator we obtained by solving these series of linear programming problems
are not symmetric, but we can simply take the average value of Ω̂ij and Ω̂ji. The result will

be positive definite with high probability. The error between the estimator Ω̂ and Ω satisfies
‖Ω̂ − Ω‖2 = Op(s

√
log(p)/n) and |Ω̂ − Ω|∞ = Op(

√
log(p)/n), where s denotes the sparsity of

the precision matrix. [Cai et al., 2010]

2 Parametric Simplex Method

We briefly describe the primal simplex method and introduces the parametric simplex methods
in this section.

Standard Linear Programming form is given by

max cTx subject to: Ax ≤ b, x ≥ 0 (5)

For primal simplex method, we requires that b ≥ 0. We call this property as primal feasibility.
We change the standard form into equality form with slack variables:

max cTx subject to: Ax+ w = b, x, w ≥ 0

A =


a1,1 a1,2 · · · a1,n 1
a2,1 a2,2 · · · a2,n 1

...
...

...
. . .

am,1 am,2 · · · am,n 1


b =

[
b1 b2 · · · bm

]T
c =

[
c1 c2 · · · cn 0 · · · 0

]T
x =

[
x1 x2 · · · xn w1 · · · wm

]T
=
[
x1 x2 · · · xn x1+1 · · · xn+m

]T
The new variables xn+1, ..., xn+m are called slack variables. Initially, we called the slack variables
basic variables and the original variables nonbasic variables. We separate the matrix A, the vector
b and the vector c into the basic and nonbasic parts as well. The first part of A corresponds to
basic variables and the identity matrix part corresponds to basic variables.

A =
[
N B

]
x =

[
xN
xB

]
c =

[
cN
cB

]
Ax = b can be written as NxN +BxB = b. We denote the objective cTx as ζ, then we have:

xB =B−1b−B−1NxN
=x∗B −B−1NxN

ζ =cTx (6)

=cTBxB + cTNxN

=cTB(B−1b−B−1NxN) + cTNxN

=cTBB
−1b− ((B−1N)T cB − cN)TxN

=ζ∗ − (z∗N)TxN

(7)

2

with ζ∗ = cTBB
−1b, x∗B = B−1b and z∗N = (B−1N)T cB − cN .

We call this two equations as ”primal dictionary” associated with current basis B. Primal feasi-
bility requires that xB ≥ 0, which is initially guaranteed by b ≥ 0 . We read off the values of xB
and ζ by setting xN to be zero.

The dual form of the Linear Programming Problem has the following form:

min bT y subject to: AT y ≥ c, y ≥ 0 (8)

We change it into equality form with slack variables as well:

min bT y subject to: AT y − z = c, y, z ≥ 0 (9)

The dual solution is given by:

z =
[
z1 z2 · · · zn y1 · · · ym

]T
=
[
z1 z2 · · · zn zn+1 · · · zn+m

]T
Similar to equation (6) and (7), the corresponding ”dual dictionary” is given by:

zN = (B−1N)T cB − cN + (B−1N)T zB = z∗N + (B−1N)T zB (10)

−ξ = −cTBB−1b+ (B−1b)T zB = −ζ∗ − (x∗B)T zB (11)

where ξ denotes the objective function in the dual form.

For each dictionary, we set xN and zB as 0 and reads off the solutions to xB and zN . Next, we
update the dictionary by removing one basic index and replacing it with a nonbasic index, then
we get an updated dictionary. The simplex method produces a sequence of steps to ”adjacent”
bases such that the objective value of the objective function is always increasing at each step.
Primal feasibility requires that xB ≥ 0, so while we update the dictionary, primal feasibility must
always be satisfied. This process will stop when zN ≥ 0, and this is the optimality condition since
it satisfies primal feasibility, dual feasibility and complementarity.

Now we introduce parametric simplex method [Vanderbei, 2008]. Generally speaking, we cannot
make the initial primal feasible assumption (b ≥ 0). The method we used here is adding some
nonnegative perturbation times a positive parameter µ to the dictionary. Now equations (6), (7),
(10) and (11) will become:

xB = (x∗B + µxB)−B−1NxN (12)

ζ = ζ∗ − (z∗N + µzN)TxN (13)

zN = (z∗N + µzN) + (B−1N)T zB (14)

−ξ = −ζ∗ − (x∗B + µxB)T zB (15)

When µ is large, the dictionary must be both primal and dual feasible (xB ≥ 0 and zN ≥ 0). At
this point, we start to decrease µ. The smallest value of µ is given by

µ∗ = min{µ : z∗N + µzN ≥ 0 and x∗B + µxB ≥ 0} (16)

We interchange one basic variable and one nonbasic variable and update the dictionary so that the
value of µ will be decreased. Eventually the value of µ will be decreased to zero which corresponds
to the optimal value. For each update, we need to make sure that the primal and dual feasibility
is satisfied.

Now we are ready to apply the parametric simplex method to solve CLIME. By setting β =
β+ − β− and ‖β‖1 = β+ + β−, equation (4) of CLIME can be written in the following form:

minβ+ + β− subject to:

[
Σn −Σn

−Σn Σn

](
β+

β−

)
≤
(
λn + ei
λn − ei

)
(17)

This is clearly in the form given by equation (12) and (13) with the following identification:

3

b =



1
0
...
0
−1
0
...
0


cN =

−1
...
−1

 zN = 0 xB =

1
...
1



Notice x∗B = B−1b and z∗N = (B−1N)T cB − cN .

3 Design and Implementation

The package fastclime consists of three parts: data generator, graph estimation and visualiza-
tion.

M1. Data Generator: The function fastclime.generator() is able to generate multivariate
Gaussian data with different graph structures, such as hub, cluster , band scale free, and Erdös-
Rényi random graphs. The user is also able to control and adjust the sparsity level of the graph
and the signal to noise ratio.

M2. Graph Estimation: fastclime is the main function used to estimate the graph. It takes
two parameters. The first parameter can be either a data matrix or a sample covariance matrix.
The second parameter is the required sparsity level. The function estimate the precision matrix
column by column, and stops when the required sparsity level has been reached at each column.
The estimator is based on a parametric simplex Linear Programming solver written in C. In order
to maintain the speed of the program, the path length is limited to be less than 50. Therefore,
when the required sparsity level is higher and the data dimension is huge, it will not be able to
recover the required sparsity level. This estimator is designed to take advantage of parametric
simplex method to recover sparse precision matrix only. When the precision matrix is not sparse,
it will take a long time to recover and the result it not that meaningful.

The list of precision matrix is stored in ”icov” and the list of adjacency matrix is stored in ”path”.
”mu” includes the full path information for every column, with zero filled in when the sparsity
level has been achieved in that column. ”sparsity” shows the sparsity level at each path step.
”df” is a matrix, whose row contains the number of nonzero coefficients along the solution path.
”nlambda” is the length of the solution path.

M3. Graph Visualization: The plotting functions fastclime.plot() provides a method
to plot the undirected graph at each path. Please note only adjacency matrix is allowed for
this function. Because of the limitation of igraph, only up to 2000 nodes can be shown when
using fastclime.plot(). plot() provides visualizations of the sparsity level versus the tuning
parameter /lambdan in the first column. To view the full path of another column, one can view
the ”sparsity” and ”lambda” component of the output object.

4

4 User Interface by Example

We illustrate the user interface by two examples. The first one is based on the data generated by
fastclime.generator(),

> library(fastclime) # Load the package huge

> L = fastclime.generator(n=200,d=50,graph="hub") # Generate data with hub structures

> out = fastclime(L$data) # Estimate the solution path

> fastclime.roc(out$path,L$theta) # Plot the ROC curve

> fastclime.plot(out$path[[3]])

> plot(out)

0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

Sparsity vs. Regularization

S
pa

rs
ity

 L
ev

el

Figure 1: The solution path

In this example, we first generate 200 samples from a 50-dimensional Gaussian distribution with
hub structure. All information, such as the true covariance matrix, sample covariance matrix,
the true precision matrix and adjacency matrix are stored in object ”L”. We try to estimate
the inverse covariance matrix by fastclime, we assume the sparsity level is about 0.1, which is
the default value. The estimator we obtain is stored in an object called ”out”. We observe the
result has a path length of 14. The roc curve and the solution path is shown in Figure 1 and
Figure 2, respectively. The true sparsity level is 0.06, and we observe at path[[3]], we obtained
the true graph in ”hub” mode. Path[[1]] does nothing and path[[2]] simply recovers the relation
of each variable with itself, so actually one further step recovers all the true correlation between
the variables. The user has to be aware that as the path number increases, it is likely to get
additional undirected graph edge, as shown in Figure 3(c).

The second example is based on some stock market data which is contained in the package. The
data contains stock price from S&P 500 during the period between Jan 1st, 2003 and Jan 1st,
2008 It gives 1258 samples from 452 stocks which remained in the stock during the entire time
period. After loading the data, we need to transform the data by calculating the log-ratio of the
price at time t to price at time t-1, then we subtract the mean and adjust the variance to be
one. We give a approximate sparsity ratio to be 0.05. The program automatically calculate the
solution path up to a path of length 50. We reached the sparsity level 0.05 in the 30th path. The
solution path for the first column is shown in Figure 4, and a few example of estimated graphs
with corresponding sparsity level labeled are shown in Figure 5.

5

0.000 0.010 0.020 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

Tr
ue

 P
os

tiv
e

R
at

e

Figure 2: The ROC curve

(a) Truth (b) Graph obtained in path3

(c) Graph obtained in path4

Figure 3: Graphs estimated by fastclime

> data(stockdata) #Load the stock data

> Y = log(stockdata$data[2:1258,]/stockdata$data[1:1257,]) #Preprocessing

> out = fastclime(Y,0.06) #Estimate the graph

> plot(out)

> fastclime.plot(out$path[[7]])

6

0.05 0.10 0.20 0.50 1.00

0.
00

0.
02

0.
04

0.
06

Sparsity vs. Regularization

Regularization Parameter

S
pa

rs
ity

 L
ev

el

Figure 4: The solution path of the stock data

(a) sparsity=0.0031 (b) sparsity=0.0045

(c) sparsity=0.0058

Figure 5: Graphs estimated by fastclime based on the stock data

7

5 Performance Benchmark

We evaluate the timing performance of our package with comparison to the packages flare and
clime. flare [Li et al., 2012] uses ADMM as the method to evaluate CLIME. We simulate the
data from several multivariate normal distributions. We fix the sample size n = 200 and vary
the data dimension p from 50 to 800. We generate our data by fastclime.generator, without
any particular data structure. As can be seen from Table 1, fastclime performance significantly
faster than clime when p is 50 or 100. When p is large, we are not able to obtain results directly
from clime in one hour. We also notice that fastclime performances consistently better than
flare, and it has a smaller deviation compared with flare. All experiments are carried on a PC
with Intel Core i5-3320 2.6GHz processor.

Table 1: Average Timing Performance of Three Solvers

solve p=50 p=100 p=200 p=400 p=800
clime 103.52(9.11) 937.37(6.77) N/A N/A N/A
flare 0.632(0.335) 1.886(0.755) 10.770(0.184) 74.106(33.940) 763.632(135.724)

fastclime 0.248(0.0148) 0.928(0.0268) 9.928(3.702) 53.038(1.488) 386.880(58.210)

6 Conclusions

We developed a new package named fastclime, for conditional independence graph estimation
and precision matrix recovery. The package is based on the CLIME and parametric simplex
method. Compared with the existing package clime, it has many additional features: It is much
faster and it can recover the full solution path column by column. We plan to maintain and
support this package in the future.

References

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation. Journal of Machine Learning Research, 9:485–516, 2008.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statitical
learning via the alternating direction method of multipliers. FTML, pages 1–122, 2010.

T. Cai, W. Liu, and X. Luo. A constrained l1 minimization approach to sparse precision matrix
estimation. Technical report, University of Pennsylvania, 2010.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. Applications of the lasso and grouped lasso to the
estimation of sparse graphical models. Technical report, Stanford University, 2010.

X. Li, T. Zhao, X. Yuan, and H. Liu. An r package flare for high dimensional linear regression
and precision matrix estimator. 2012.

R. Vanderbei. Linear Programming, Fundations and Extensions. Springer, 2008.

8

