
THE GENETICS PACKAGE

The genetics package
Utilities for handling genetic data

by Gregory R. Warnes

Purpose

The genetics package provides classes and methods
for handling genetic data. Friedrich (’Fritz’) Leisch
and I collaborated on the design of the package. I
was motivated by the desire to provide a natural
way to include single-locus genetic variables in sta-
tistical models. Fritz also wanted to support multi-
ple genetic changes spread across one or more genes.
While my goal has largely been realized, more work
is necessary to fully support Fritz’s goal.

Current Status

As of version 0.5.0 the library includes classes and
methods for creating, representing, and manipulat-
ing genotypes (unordered allele pairs) and haplo-
types (ordered allele pairs). Genotypes and hap-
lotypes can be annotated with chromosome, locus,
gene, and marker information. Utility functions
compute genotype and allele frequencies, flag ho-
mozygotes or heterozygotes, flag allele carriers of
certain alleles, count the number of a specific allele
carried by an individual, extract one or both alleles,
and test Hardy-Weinberg equilibrium. These func-
tions make it easy to create and use single-locus ge-
netic information.

Creating variables representing genotype in a sta-
tistical package often requires considerable string
manipulation. The code for the genotype function
has been designed to remove this requirement. It al-
lows alleles pairs to be specified in four ways:

• A single vector with a character separator:

g1 <- genotype(c(’A/A’,’A/C’,’C/C’,’C/A’,

NA,’A/A’,’A/C’,’A/C’))

g3 <- genotype(c(’A A’,’A C’,’C C’,’C A’,

’’,’A A’,’A C’,’A C’),

sep=’ ’, remove.spaces=F)

• A single vector with a positional separator

g2 <- genotype(c(’AA’,’AC’,’CC’,’CA’,’’,

’AA’,’AC’,’AC’), sep=1)

• Two separate vectors

g4 <- genotype(

c(’A’,’A’,’C’,’C’,’’,’A’,’A’,’A’),

c(’A’,’C’,’C’,’A’,’’,’A’,’C’,’C’)

)

• A dataframe or matrix with two columns

gm <- cbind(

c(’A’,’A’,’C’,’C’,’’,’A’,’A’,’A’),

c(’A’,’C’,’C’,’A’,’’,’A’,’C’,’C’))

g5 <- genotype(gm)

A second difficulty with variables representing
genotypes is the need to extract different informa-
tion at different times. Each of the three basic ways
of modeling the effect the allele combinations is sup-
ported by the genetics package:

categorical Each allele combination acts differently.

This situation is handled by entering the
genotype variable without modification into a
model. In this case, it will be treated as a factor:

lm(outcome ~ genotype.var + confounder)

additive The effect depends on the number of copies
of a specific allele (0, 1, or 2).

The function allele.count(gene, allele)
returns the number of copies of the specified
allele.

lm(outcome ~ allele.count(genotype.var,’A’)

+ confounder)

dominant/recessive The effect depends only on the
presence or absence of a specific allele.

The function carrier(gene, allele) re-
turns a boolean flag if the specified allele is
present:

lm(outcome ~ carrier(genotype.var,’A’)

+ confounder)

Implementation

The basic functionality of the genetics package is
provided by the genotype class and the haplotype
class, which is a simple extension of the former. In
designing the genotype class, we had several goals.
First, we wanted to be able to manipulate both alleles
as a single variable. Second, we needed a clean way
of accessing the individual alleles. Third, a genotype
variable should be able to be stored in dataframes as
they are currently implemented in R. Fourth, storage
should be space-efficient.

After considering several potential implemen-
tations, we chose to implement the genotype
class as an extension to the in-built factor vari-
able type with additional information stored in at-
tributes. Genotype objects are stored as factors

1

THE GENETICS PACKAGE EXAMPLE

and have the class list c("genotype","factor").
The names of the factor levels are constructed as
paste(allele1,"/",allele2,sep=""). Since most
genotyping methods do not indicate which allele
comes from which member of a chromosome pair,
the alleles for each individual are placed in a con-
sistent order controlled by the reorder argument.
In cases when the allele order is informative, the
haplotype class, which preserves the allele order,
should be used instead.

The set of allele names is stored in the attribute
allele.names. A translation table from the factor
levels to the names of each of the two alleles is stored
in the attribute allele.map. This map is a two col-
umn character matrix with one row per factor level.
The columns provide the individual alleles for each
factor level. Accesing the individual alleles, as per-
formed by the allele function, is accomplished by
simply indexing into this table,

allele.x <- attrib(x,"allele.map")
alleles.x[genotype.var,which]

where which is 1, 2, or c(1,2) as appropriate.
Finally, there is often additional meta-

information associated with a genotype. The func-
tions locus, gene, and marker create objects to store
information, respectively, about genetic loci, genes,
and markers. Any of these objects can be included as
part of a genotype object using the locus argument,
which creates a locus attribute in the genotype ob-
ject. The print and summary functions for genotype
objects properly display this information when it is
present.

This implementation of the genotype class met
our four design goals and offered an additional ben-
efit: the default behavior for factors is similar to the
desired behavior for genotypes. Consequently, rel-
atively few additional methods needed to written.
Further, in the absence of the genetics package, the
information stored in genotype objects is still acces-
sible in a reasonable way.

The genotype class is accompanied by a full com-
plement of helper methods for standard R opera-
tors ([], [<-, ==, etc.) and object methods (
summary, print, is.genotype, as.genotype, etc.).
The genetics package provides the additional func-
tions:

HWE.test Estimates disequilibrium parameter and
test the null hypothesis that Hardy-Weinberg
equilibrium holds.

allele Extracts individual alleles. matrix.

allele.names Extracts the set of allele names.

homozygote Creates a logical vector inidicating
whether both alleles of each observation are the
same.

heterozygote Creates a logical vector indicating
whether the alleles of each observation differ.

carrier Creates a logical vector indicating whether
the specified alleles are present.

allele.count Returns the number of copies of the
specified alleles carried by each observation.

getlocus Extracts locus, gene, or marker informa-
tion.

For complete details on the objects and func-
tions provided by the genetics package, please see
the help pages ?genotype, ?HWE.test, ?homozygote,
?locus, and ?HWE.test or the corresponding auto-
generated documentation.

Example

Here is a partial session using tools from the geno-
type package to examine the features of 3 simulated
markers and thier relationships with a continuous
outcome:

> library(genetics)

Attaching package ‘genetics’:

The following object(s) are masked from package:base :

as.factor

> ## Create a sample dataset with 3 SNP markers

>

> g1 <- sample(x=c(’C/C’, ’C/T’, ’T/T’),

+ prob=c(.6,.2,.2), 20, replace=T)

> g2 <- sample(x=c(’A/A’, ’A/G’, ’G/G’),

+ prob=c(.6,.1,.5), 20, replace=T)

> g3 <- sample(x=c(’C/C’, ’C/T’, ’T/T’),

+ prob=c(.2,.4, 4), 20, replace=T)

>

> y <- rnorm(20) + (g1==’C/C’) +

+ 0.25 * (g2==’A/A’ | g2==’A/G’)

>

> ## Form into a data frame

> data <- data.frame(y, g1, g2, g3)

>

> # Create marker labels for the data

[...]

> a1691g <- marker(name="A1691G",

+ type="SNP",

+ locus.name="MBP2",

+ chromosome=9,

+ arm="q",

+ index.start=35,

+ bp.start=1691,

+ relative.to="intron 1")

>

>

2

THE GENETICS PACKAGE CONCLUSION

[...]

>

> data$g1 <- genotype(data$g1, locus=c104t)

> data$g2 <- genotype(data$g2, locus=a1691g)

> data$g3 <- genotype(data$g3, locus=c2249t)

>

> data

y g1 g2 g3

1 -0.084796634 T/T G/G T/C

2 1.454537575 C/C G/G T/T

3 -0.899625344 T/T G/G T/T

4 -1.980679630 C/T A/A T/T

5 0.231087028 C/T A/A T/T

6 2.588083646 C/C A/A T/C

7 0.209338731 C/C A/A T/T

8 1.435823157 C/T G/G T/T

9 -0.078796949 C/C G/G T/T

10 -2.091110058 C/T A/A T/T

11 -0.842655686 C/T G/G T/T

12 1.316828279 C/C G/G T/T

13 0.470126626 C/T A/A T/T

14 -0.364828611 T/T G/A T/T

15 -0.002438264 C/T A/A T/C

16 0.949432430 C/C G/G T/T

17 -0.096626850 C/T G/A T/T

18 1.065637984 T/T A/A T/T

19 0.817213289 C/C A/A T/T

20 0.644714638 C/T G/G T/T

>

> summary(data$g2)

Marker: MBP2:A1691G (9q35:1691) Type: SNP

Allele Frequency:

Count Proportion

A 20 0.5

G 20 0.5

Genotype Frequency:

Count Proportion

A/A 9 0.45

G/A 2 0.10

G/G 9 0.45

> HWE.test(data$g2)

Test for Hardy-Wienburg-Equilibrium

Call:

HWE.test.genotype(x = data$g2)

Disequlibrium Estimate (D-hat):

Observed Expected Obs-Exp D-hat

G/G 9 5 4 0.2

G/A 2 10 -8 -0.2

A/A 9 5 4 0.2

Overall 20 NA NA 0.2

Significance Test:

Pearson’s Chi-squared test with simulated

p-value (based on 10000 replicates)

data: data$g2

X-squared = 12.8, df = NA, p-value = 0.0011

>

> summary(lm(y ~ homozygote(g1,’C’) +

allele.count(g2, ’G’) +

+ g3, data=data))

+

Call:

lm(formula = y ~ homozygote(g1, "C") + allele.count(g2, "G") +

g3, data = data)

Residuals:

Min 1Q Median 3Q Max

-1.6686 -0.6625 -0.0172 0.6973 1.6196

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3499 0.6229 0.562 0.5821

homozygote(g1, "C")TRUE 1.2124 0.4778 2.537 0.0220 *

allele.count(g2, "G") 0.1193 0.2429 0.491 0.6298

g3T/T -0.7724 0.6414 -1.204 0.2460

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.013 on 16 degrees of freedom

Multiple R-Squared: 0.3405, Adjusted R-squared: 0.2169

F-statistic: 2.754 on 3 and 16 DF, p-value: 0.07661

Conclusion

The genetics package has already proven useful in
my work here at Pfizer. I hope that it will also be of
user to others who need to analyze genetic data.

In the future I expect to add functions to compute
pairwise disequilibrium, perform haplotype imputa-
tion, and generate standard genetics plots. I welcome
comments and contributions.

Gregory R. Warnes
Pfizer Global Research and Development
gregory_r_warnes@groton.pfizer.com

3

	The genetics package
	Purpose
	Current Status
	Implementation
	Example
	Conclusion

