Getting Started with GLinvCI

Hao Chi Kiang <hello @hckiang.com>
September, 2021

1 Introduction

GLInvCI is a package that provides a framework for computing the maximum-likelihood es-
timates and asymptotic confidence intervals of a class of continuous-time Gaussian branching
processes, including the Ornstein-Uhlenbeck branching process, which is commonly used in phy-
logenetic comparative methods. The framework is designed to be flexible enough that the user
can easily specify their own parameterisation and obtain the maximum-likelihood estimates and
confidence intervals of their own parameters.

The model in concern is GLInv family, in which each species’ traits evolve independently of
each others after branching off from their common ancestor and for every non-root node. Let
k be a child node of ¢, and zx, 2; denotes the corresponding multivariate traits. We assume
that zx|z; is a Gaussian distribution with expected value wy + ®pz; and variance Vi, where
the matrices (P, wy, Vi) are parameters independent of z; but can depend other parameters
including t;. The traits z; and z; can have different number of dimension.

2 Installation

Beside installing from CRAN, you can use alternatively use the following command to install the
latest release of the package:
install.packages('devtools')

devtools::install_url(
'"https://git.sr.ht/~hckiang/glinveci/blob/latest—tarballs/glinveci_latest_main.tar.gz')

3 Example #1: Ornstein-Uhlenbeck models

To fit a model using this package, generally you will need two main pieces of input data: arooted
phylogenetic tree and a matrix of trait values. The phylogenetic tree can be non-ultrametric and
can potentially contain multifurcation. The matrix of trait values should have the same number
of columns as the number of tips.

library(glinvei)

set.seed(1)

ntips = 200

k 2 # No. of trait dimensions

tr ape::rtree(ntips)

X
x0

matrix(rnorm(k*ntips), k, ntips) # Trait matrix
rnorm (k) # Root value

With the above material, we are ready to make a model object. Here we restrict our drift
matrix H to be a positively definite matrix, while leaving the optimum vector and Brownian
motion covariance matrix unrestricted.

repar = get_restricted_ou(H='logspd', theta=NULL, Sig=NULL, lossmiss=NULL)
mod = glinv(tr, x0, X,

pardims = repar$nparams (k),

parfns = repar$par,

parjacs = repar$jac,

parhess = repar$hess)
print(mod)

A GLInv model with 1 regimes and 8 parameters in total, all of which are
associated to the only one existing regime, which starts from the root.
The phylogeny has 200 tips and 199 internal nodes.

Let’s take an arbitrary parameters as an example: The following code demostrates how to
computing the model’s likelihood, gradient, and Hessian at an arbitrarily specified pararmenter:

H = matrix(c(1,0,0,1), k)
theta = ¢(0,0)

sig = matrix(c(0.5,0,0,0.5), k)
sig_x = t(chol(sig))

diag(sig_x) = log(diag(sig_x)) # Pass the diagonal to log
sig_x = sig_x[lower.tri(sig_x,diag=T)] # Trim out upper—tri. part and flatten.

In the above, the first three lines defines the actual parameters that we want, but notice
that we performed a Cholesky decomposition on sig_x and took the logarithm of the diagonal.
GLInv always accept the variance-covariance matrix of the Brownian motion term in this form.
The Cholesky decomposition ensures that, during numerical optimisation in the model fitting,
the diagonals remain positively definite; and logarithm further constrain the diagonal of the
Cholesky factor to be positive, hence eliminating multiple optima.

Because we have also constrained H to be positively definite (by passing H='logspd' to
get_restricted_ou), we need to transform H in the same manner:

H_input = t(chol(H))
diag(H_input) = log(diag(H_input))
H_input = H_input[lower.tri(H_input,diag=T)]

This transformation depends on how you restrict your H matrix. For example, if you do not
put any constrains on H, by passing H=NULL to get_restricted_ou, the above transformation is
not needed. We will discuss this later in this document.

Nonetheless, let’s compute the likelihood, gradient, and Hessian of this model.

par_init = c(H=H_input,theta=theta,sig_x=sig_x)
cat('Initial parameters:\n')

print(par_init)

cat('Likelihood:\n')

print(lik(mod) (par_init))

cat('Gradient:\n')

print(grad(mod)(par_init))

cat('Hessian:\n')

print(hess(mod) (par_init))

Initial parameters:

H1 H2 H3 thetal theta?2 sig_x1 sig_x2
sig x3
0.000000 0.000000 0.000000 0.000000 0.000000 —0.346574 0.000000
-0.346574
Likelihood:
[1] -1451.43
Gradient:
[1] -519.02035 45.62066 —-500.23748 -7.64877 -b58.73828 1294.12584
158.72065
[8] 1078.79563
Hessian:
a2 [,3] [,4] [,5] [,6]
[1,] -1787.1716 62.9472 0.0000 -25.5207 0.0000 1342.9275
-88.6955
[2,] 62.9472 -877.1531 17.3265 -63.7235 -12.7604 -28.5241
936.3116
[3,] 0.0000 17.3265 -1759.0064 0.0000 -127.4470 0.0000
-40.3392
[4,] -25.5207 -63.7235 0.0000 -367.6268 0.0000 15.2975
83.0685
[5,] 0.0000 -12.7604 —-127.4470 0.0000 -367.6268 0.0000
10.8170
[6,] 1342.9275 -28.5241 0.0000 15.2975 0.0000 -2988.2517
-158.7206
[7,] —-88.6955 936.3116 -40.3392 83.0685 10.8170 —-158.7206
-2988.2517
[8,] 0.0000 -62.7172 1305.3618 0.0000 117.4766 0.0000
-317.4413
[,8]
[1,] 0.0000
[2,] -62.7172
[3,] 1305.3618
[4,] 0.0000
[5,] 117.4766
[6,] 0.0000
[7,] -317.4413
[8,] —-2557.5913

The maximum likelihood estimates can be obtained by calling the fit.glinv method. We
use the parinit which we have constructed before as the optimisation routine’s initialisation:

fitted = fit(mod, par_init)
print(fitted)

$mlepar
H1 H2 H3 thetal thetal sig x1 sig x2
1.7473088 3.0687662 0.9462338 -0.0417478 -0.0967537 2.1723982 4.3828934
sig_x3
1.3741767

$loglik
[1] 599.386

$counts
[1] 852 345

$convergence
(1] ©

$message
[1] "Regmin seems to have converged"

$score
[1] 0.0010458539 0.0012164202 0.0019767975 0.0000223676 0.0001637558
[6] —0.0000594491 0.0027448292 0.0013087048

Once the model is fitted, one can estimate the variance-covariance matrix of the maximum-
likelihood estimator using varest.

v_estimate = varest(mod, fitted)

The marginal confidence interval can be obtained by calling marginal_ci on the object re-
turned by varest.

print(marginal_ci(v_estimate, 1v1=0.95))

Lower Upper
H1 -0.986260 4.4808777
H2 -8.798587 14.9361198
H3 0.122600 1.7698674
thetal -0.194455 0.1109592
theta2 -0.247122 0.0536148
sig x1 -0.546810 4.8916064
sig_x2 -13.162203 21.9279898
sig x3 0.549033 2.1993203

Notice that some of the parameters have fairly large confidence intervals. This suggests that
perhaps we do not have enough data to precisely estimate all the parameters.

4 Example #2: Brownian Motion

Let’s assume we have the same data k, tr, X, x0 as generated before. To fit a standard Brownian
motion model, we can call the following:

repar_brn = get_restricted_ou(H='zero', theta='zero', Sig=NULL, lossmiss=NULL)

mod_brn glinv(tr, x0, X,
pardims = repar_brn$nparams(k),
parfns = repar_brn$par,
parjacs = repar_brn$jac,
parhess = repar_brn$hess)

print(mod_brn)

A GLInv model with 1 regimes and 3 parameters in total, all of which are
associated to the only one existing regime, which starts from the root.
The phylogeny has 200 tips and 199 internal nodes.

As you may might have already guessed, H='zero' above means that we restrict the drift
matrix term of the OU to be a zero matrix. In this case, theta, the evolutionary optimum, is
meaningless. In this case, the package will throw an error if theta is not zero. In other words,
for Brownian motion we always have H='zero', theta='zero'.

The following calls demonstrates how to compute the likelihood:

par_init_brn = c(sig_x=sig_x)
cat('Likelihood:\n')
print(lik(mod_brn) (par_init_brn))

Likelihood:
[1] -1158.31

The user can obtain the an MLE fit by calling fit(mod_brn, par_init_brn). The marginal
CI and the estimator’s variance can be obtained in exactly the same way as in the OU example.

5 Example #3: Multiple regimes, missing data, and lost traits.

Out of box, the package allows missing data in the tip trait matrix, as well as allowing multiple
revolutionary regimes.

A 'missing’ trait refers to a trait value whose data is missing due to data collection problems.
Fundamentally, they evolves in the same manner as other traits. An NA entry in the trait matrix
X is deemed ‘missing’. A lost trait is a trait dimension which had ceased to exists during the
evolutionary process. An NaN entry in the data indicates a ‘lost’ trait. The package provides two
different ways of handling lost traits. For more details about how missingness is handled, the
users should read ?ou_haltlost.

In this example, we demonstrate how to fit a model with two regimes, and some missing data
and lost traits. Assume the phylogeny is the same as before but some entries of X is NA or NaN.
First, let’s arbitrarily set some entries of X to missingness, just for the purpose of demonstration.

X[2,c(1,2,80,95,130)] = NA
X[1,c(180:200)] = NaN

The following call constructs a model object in which two evolutionary regimes are present:
one starts at the root with Brownian motion, and another one starts at internal node number
290 with an OU process in which the drift matrix is restricted to positively definite diagonal
matrices. In a binary tree with N tips, the node number of the root is always N + 1; in other
words, in our case, the root node number is 200 + 1.
repar_a = get_restricted_ou(H='logdiag', theta=NULL, Sig=NULL, lossmiss='halt')
repar_b = get_restricted_ou(H='zero', theta='zero', Sig=NULL, lossmiss='halt')
mod_tworeg = glinv(tr, x0, X,

pardims = list(repar_a$nparams(k), repar_b$nparams(k)),

parfns = list(repar_a$par, repar_b$par),
parjacs = list(repar_a$jac, repar_b$jac),
parhess = list(repar_a$hess, repar_b$hess),
regimes = list(c(start=201, fn=2),

c(start=290, fn=1)))
print(mod_tworeg)

A GLInv model with 2 regimes and 10 parameters in total, among which;
the 1~7-th parameters are asociated with regime no. {2};
the 8~10-th parameters are asociated with regime no. {1},
where
regime #1 starts from node #201, which is the root;
regime #2 starts from node #290.
The phylogeny has 200 tips and 199 internal nodes.

In the above, we have defined two regimes and two stochastic processes. The pardims,
parfns, parjacs, and parhess specifies the two stochastic processes and the regime parameter
can be thought of as ’drawing the lines’ to match each regime to a seperately defined stochastic
processes. The start element in the list specifies the node number at which a regime starts,
and the fn element is an index to the list passed to pardims, parfns, parjacs, and parhess. In
this example, the first regime starts at the root and uses repar_b. If multiple regimes share the
same fn index then it means that they shares both the underlying stochastic process and the
parameters. lossmiss="'halt' specifies how the lost traits (the NaN) are handled.

To compute the likelihood and initialize for optimisation, one need to take note of the input
parameters’ format. When parfns etc. have more than one elements, the parameter vector
that 1ik and fit etc. accept is simply assumed to be the concatenation of all of its elements’
parameters. The following example should illustrate this.

logdiagH = c¢(0,0) # Meaning H is the identity matrix
theta = ¢(1,0)

Sig_x_ou c(0,0,0) # Meaning Sigma is the identity matrix
Sig_x_brn c(0,0,0)

print(lik(mod_tworeg)(c(logdiagH, theta, Sig_x_ou, Sig_x_brn)))

[1] -760.301

6 Example #4: Custom model with measurement error

To write custom models, it is important to note that that the parfns, parjacs, and parhess argu-
ments to glinv() are simply R functions, which the user can either create themselves or obtain
from calling get_restricted_ou(), which is simply a convenient helper function for making the
likelihood, Jacobian, Hessian functions. Rather than writing all these from scratch by yourself, a
much easier way to customize a model is to take the functions returned by get_restricted_ou()
and extending them. In this example, we familiarize ourselves with these functions’s input and
output format and write a custom OU model with diagonal drift matrix and a diagonal additive
measurement error on each tips. First, as before, we generate some random data:

library(glinvei)

set.seed(1)

ntips = 200

k =2 # No. of trait dimensions
tr = ape::rtree(ntips)

X = matrix(rnorm(k*ntips), k, ntips) # Trait matrix

x0 = rnorm(k) # Root value

Then we obtain the likelihood, Jacobian, Hessian, and number of parameter functions using
get_restricted_ou():

repar = get_restricted_ou(H='diag', theta=NULL, Sig=NULL, lossmiss='halt')
print(sapply(repar, class))

par jac hess nparams
"function" "function" "function" "function"

We will deal with nparams later and let’s look at the other three first. Mathematically, parfns,
parjacs, and parhess maps the OU process parameters to the (®y, wy, V). All of the three
accepts the same format of four parameters. As an example:

| print(repar$par(c(1,1,0,0,0,0,0), 0.1, c('OK','0K'), c('OK','0K")))

[1]
[9]

0.904837 0.000000 0.000000 0.904837 0.000000 0.000000 0.090635 0.000000
0.090635

In the call above:

1.

The first argument passed to repar$par is the parameters of the OU model, with H be-
ing the identity matrix, represented by (1, 1), the optimum € being the 2D zero vector,
represented by (0,0), and ¥ being the identity matrix, represented by (0, 0,0). Therefore
concatenated together we have ¢(1,1,0,0,0,0,0).

The second argument is the branch length leading the a node.

The third argument is a vector of factors or string with three levels OK, LOST, and MISS,
indicating which dimensions are missing or lost in the mother of this node. In our case,
the length of this vector is two because the we have two trait dimensions; two OK means
that both the traits are “normal”, neither missing nor lost.

The fourth argument is a vector of factors or string with the same three levels indicating
the missingness of the this node. The format should be the same as the third argument.

. The return value is a concatenation of (®,w, V'), flattened in column-major order, which

is the R default. This means that ® is the 2-by-2 square matrix 0.9048374 x I where [is
the identity matrix; w is the 2D zero vector and V' is 0.090635 * I. There are only three
numbers representing V because only the lower-triangular part is needed.

The repar$jac function simply returns the Jacobian matrix of repar$par.
| print(repar$jac(c(1,1,0,0,0,0,0), 0.1, c('OK','0OK'), c('OK','0K")))

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

] —0.0904837 0.0000000 0.000000 0.000000 0.00000 0.000000 0.00000
] 0.0000000 0.0000000 0.000000 0.000000 0.00000 0.000000 0.00000
] 0.0000000 0.0000000 0.000000 0.000000 0.00000 0.000000 0.00000
] 0.0000000 -0.0904837 0.000000 0.000000 0.00000 0.000000 0.00000
] 0.0000000 0.0000000 0.095163 0.000000 0.00000 0.000000 0.00000
] 0.0000000 0.0000000 0.000000 0.095163 0.00000 0.000000 0.00000
] -0.0087615 0.0000000 0.000000 0.000000 0.18127 0.000000 0.00000
] 0.0000000 0.0000000 0.000000 0.000000 0.00000 0.090635 0.00000
] 0.0000000 -0.0087615 0.000000 0.000000 0.00000 0.000000 0.18127

The repar$hess function stiill accepts the same argument but its return values have a slightly
different format:

tmp
print(names(tmp))

= repar$hess(c(1,1,0,0,0,0,0), 0.1, c('OK','0OK'), c('OK','0K"))

‘ [1] uvlv ”W” IvPhivl

| print(sapply (tmp, dim))

Notice that repar$hess returns a list containing three elements, V, w, and Phi, each being a
three-dimensional array. They contains all the second-order partial derivatives of the repar$par
function, with tmp$V[m,1,j] containing OV, /0n;0n;, tmp$w[m,i,j] contains dw,,/In;0n; and
tmp$Phi[m,i,j] contains O®,,/dn;0n;, where n denotes parameter vector that repar$par ac-
cepts and m means the index of the matrices but not the node numbers. For example, in our
situation, tmp$w[2,3,4] contains Qws /361005 and tmp$Phi[3,2,3] is Do /O H2200;.

Having understood their input and output, we are now ready to make a custom model. In
this custom model, we assume that all species evolve exactly the same as specified in repar,
but we cannot measure the traits at the tip accurately. To take into account this measurement
error, we add an uncorrelated Gaussian error at each tip. First, we extend repar$par to accept
our additional parameters:
my_par = function (par, ...) {

phiwV = repar$par(par[1:7], ...
if (INFO__$node_id > 200) # If not tip just return the original

return(phiwV)
Sig_e = diag(par[8:9]) # Our measurement error matrix
phiwV[7:9] = phiwV[7:9] + Sig_e[lower.tri(Sig_e, diag=T)]
phiwV

Note that we have accessed the node ID using INFO__$node_id. In our package, “node IDs”
means the same thing as the node numbers in the ape package, hence the nodes with ID 1-200
are the tips and the rest are the internal nodes. The INFO__ object is neither a global variable
nor an argument but a variable that lives in function’s enclosing environment—users who don’t
understand this can pretty much assume that it is magically there. Now let’s define the Jacobian
function:

my_jac = function (par, ...) {
new_jac = matrix(0.0, 9, 9)
new_jac[,1:7] = repar$jac(par[1:7], ...)

if (INFO__$node_id <= 200)
new_jac[7,8] = new_jac[9,9] = 1.0
new_jac

The Hessian matrix of our modified model is actually unchanged except that there are more
zero entries, because the new parameters are simply a linear sum.
my_hess = function (par, ...)
lapply (repar$hess(par[1:7], ...), function (H) {
newl = array(0.0, dim=c(dim(H)[1], 9, 9))
newH[,1:7,1:7] = H[,,] # Copy the original part
newH # Other entries are Jjust zero

})

Finally, we actually do not need to write our own repar$nparams, which accepts the number
of trait dimensions and returns the number of parameters, beacuase we know exactly we have
9 parameters in our example. Now we can construct our custom model:

mod = glinv(tr, x0, X,

pardims = 9,
parfns = my_par,
parjacs = my_jac,
parhess = my_hess)

print(mod)

A GLInv model with 1 regimes and 9 parameters in total, all of which are
associated to the only one existing regime, which starts from the root.
The phylogeny has 200 tips and 199 internal nodes.

Now the user can fit the model as usual.

fitted fit(mod, par_init=c¢(1,1,0,0,0,0,0,0.5,0.5))
confint marginal _ci(varest(mod, fitted$mlepar), 1v1l=0.95)

