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Abstract

We evaluate MCMC sampling schemes for a variety of link functions in generalized linear

models with Dirichlet random effects. We find that models using Dirichlet process priors

for the random effects tend to capture information in the data in a nonparametric fashion.

In fitting the the Dirichlet process, dealing with the precision parameter has troubled model

specifications in the past. Here we find that incorporating this parameter into the MCMC

sampling scheme is not only computationally feasible, but also results in a more robust set

of estimates, in that they are marginalized-over rather than conditioned-upon. Applications

are provided with social science problems in areas where the data can be difficult to model.

In all, we find that these models provide superior Bayesian posterior results in theory,

simulation, and application.
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1 Introduction

Generalized linear models (GLMs) have enjoyed considerable attention over the years, providing

a flexible framework for modeling discrete responses using a variety of error structures. If we have

observations that are discrete or categorical, y = (y1, . . . ,yn), such data can often be assumed to

be independent and from a distribution in the exponential family, where the likelihood function

has components of the model such as the form of the link function and the type of error structures

that result. The classic book by McCullagh and Nelder (1989) describes these models in detail;

see also the more recent developments in Dey, Ghosh, and Mallick (2000) or Fahrmeir and Tutz

(2001).

A generalized linear mixed model (GLMM) is an extension of a GLM that allows random

effects, and can give us flexibility in developing a more suitable model when the observations are

correlated, or where there may be other underlying phenomena that contribute to the resulting

variability. Thus, the GLMM can be specified to accommodate outcome variables conditional on

mixtures of possibly correlated random and fixed effects (Breslow and Clayton 1993, Buonaccorsi

1996, Wang, et al. 1998, Wolfinger and O’Connell, 1993). Details of such models, covering both

statistical inferences and computational methods, can be found in the recent texts by McCulloch

and Searle (2001) and Jiang (2007).

1.1 Sampling Schemes for GLMMs

There have been Markov chain Monte Carlo (MCMC) methods for the analysis of the GLMMs

with random effects modeled with a normal distribution. Although the posteriors of parameters

and the random effects are typically numerically intractable, especially when the dimension of the

random effects is greater than one, there has been much progress in the development of sampling

schemes. To handle the numerically intractable computation of the posteriors, Zeger and Karim

(1991) proposed a Gibbs sampler, and considered rejection sampling with a Gaussian candidate

for model parameters and the random effects. Improper priors were used, and it is possible

that some choices of the hyperparameters could lead to an improper posterior distribution.

Damien et al. (1999) proposed a Gibbs sampler using auxiliary variables for sampling non-

conjugate and hierarchical models. Their methods are slice sampling methods derived from the

full conditional posterior distribution. They mention that the assessment of convergence remains

a major problem with the algorithm. However, Neal (2003) provided convergence properties

of the posterior for slice sampling. Another sampling scheme was used by Chib et al. (1998)

and Chib and Winkelmann (2001), who provided the Metropolis-Hastings (M-H) algorithms for

various kinds of GLMMS. They proposed a multivariate-t distribution as a candidate density in

an M-H implementation, taking the mean equal to the posterior mode, and variance equal to the
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inverse of the Hessian evaluated at the posterior mode.

1.2 Sampling Schemes for GLMDMs

Another variation of a GLMM was used by Dorazio, et al. (2007) and Gill and Casella (2008),

where the random effects are modeled with a Dirichlet process, resulting in a generalized linear

mixed Dirchlet model (GLMDM). Dorazio, et al. (2007) used a GLMDM with a log link for

spatial heterogeneity in animal abundance. They proposed an empirical Bayesian approach

with the Dirichlet process, instead of the regular assumption of normally distributed random

effects, because they argued that for some species, the sources of heterogeneity in abundance

is poorly understood or unobservable. They noted that the Dirichlet process prior is robust to

errors in model specification and allows spatial heterogeneity in abundance to be specified in a

data-adaptive way.

Gill and Casella (2008) suggested a GLMDM with an ordered probit link to model political

science data, specifically modeling the stress, from public service, of Senate-confirmed political

appointees as a reason for their short tenure. For the analysis, a semi-parametric Bayesian

approach was adopted, using the Dirichlet process for the random effect. They noted that the

use of a Dirichlet process mixture represents a new and useful paradigm for semi-informed prior

information that reflects both information from observations and researcher intuition, where

neither dominates.

Dirichlet process mixture models were introduced by Ferguson (1973) and Antoniak (1974).

Blackwell and MacQueen (1973) showed that the marginal distribution of the Dirichlet process is

equal to the distribution of the nth step of a Polya urn process, and Korwar and Hollander (1973)

characterized the joint distribution and looked at nonparametric empirical Bayes estimation of

the distribution function based on Dirichlet process priors. Sethuraman (1994) showed that the

Dirichlet measure is a distribution on the space of all probability measures, giving probability

one to the subset of discrete probability measures. Turning to estimation, Lo (1984) derived the

analytic form of a Bayesian density estimation that is generated by convoluting a known density

kernel with a Dirichlet process, and Liu (1996) derived an identity for the profile likelihood

estimator of m. However, Kyung, et al. (2008) looked at the properties of the MLE of m, and

found that the likelihood function can be ill-behaved. They noted that incorporating a gamma

prior, and using posterior mode estimation, results in a more stable solution. McAuliffe, Blei

and Jordan (2006) used a similar strategy, using a posterior mean for the estimation of m.

Models with Dirichlet process priors are treated as hierarchical models in a Bayesian frame-

work, and the implementation of these models through Bayesian computation and efficient algo-

rithms has had much attention. Escobar and West (1995) provided a Gibbs sampling algorithm
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for the estimation of posterior distribution for all model parameters and the direct evaluation

of predictive distributions, and also discussed inference about the precision parameter m using

a gamma prior. MacEachern and Muller (1998) presented a Gibbs sampler with non-conjugate

priors by using auxiliary parameters, and Neal (2000) provided an extended and more efficient

Gibbs sampler to handle general Dirichlet process mixture models with non-conjugate priors

by using a set of auxiliary parameters. Teh et al. (2006) also extended the auxiliary variable

method of Escobar and West (1995) for posterior sampling of the precision parameter with a

gamma prior. They developed hierarchical Dirichlet processes, with a Dirichlet prior for the base

measure.

Kyung, et al. (2008) developed algorithms for estimation of the precision parameter and new

MCMC algorithms for a linear mixed Dirichlet random effects models. Also, they showed how

to extend the results to a generalized Dirichlet process mixed model with a probit link function.

They derived a Gibbs sampler for the model parameters and the subclusters of the Dirichlet

process, and used new parameterization of the hierarchical model to derive a Gibbs sampler

that more fully exploits the structure of the model and mixes very well. They were also able to

establish that the proposed sampler is an improvement, in terms of operator norm and efficiency,

over other commonly used algorithms.

1.3 Summary

In this paper we develop MCMC sampling schemes for the generalized Dirichlet process mixture

models by considering a GLMM with a general link function. For these models, we examine

a Gibbs sampling method using auxiliary parameters, based on Damien et al. (1999), and a

Metropolis-Hastings sampler with a Gaussian candidate from a log-linear model. We incorporate

the precision parameter m into the Gibbs sampler, through the use of a gamma candidate

distribution using a Laplace approximation for the calculation of the mean and variance of m,

and use that in the gamma candidate. Comparatively, we find that the alternative slice sampler

typically has higher autocorrelation in logistic regression and loglinear models than the proposed

M-H algorithm.

Using the GLMDM with a general link function, Section 2 considers the generalized Dirichlet

mixture model with Dirichlet process prior for the random effects instead of a normal assumption.

In Section 3, we then estimate model parameters as well as the Dirichlet parameters using

MCMC algorithms. This is used in Section 5 for simulation studies and data analysis. Section 7

summarizes these contributions and adds some perspective.
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2 A Generalized Linear Mixed Dirichlet Model

Let Xi be covariates associated with the ith observation, β be the coefficient vector, and ψi be a

random effect accounting for subject-specific deviation from the underlying model. Assume that

the Yi|ψ are conditionally independent, each with a density from the exponential family, where

ψ = (ψ1, . . . , ψn). Then, based on the notation on McCulloch and Searle (2001), the Generalized

Linear Mixed Dirichlet Model (GLMDM) can be expressed as follows. First,

Yi|ψ
ind
∼ fYi|ψ(yi|ψ), i = 1, . . . , n

fYi|ψ(yi|ψ) = exp
[

{yiγi − b(γi)} /ξ
2 − c(yi, ξ)

]

. (1)

where yi is discrete valued. Here, we know that E[Yi|ψ] = µi = ∂b(γi)/∂γi. Moreover, using a

link function g(·), we can express the transformed mean of Yi, E[Yi|ψ], as a linear function,

g(µi) = Xiβ + ψi. (2)

Here, for the Dirichlet process mixture models, we assume that

ψi ∼ G

G ∼ DP(mG0), (3)

where DP is the Dirichlet Process with base measure G0 and precision parameter m. Blackwell

and MacQueen (1973) proved that for ψ1, . . . , ψn iid from G ∼ DP, the joint distribution of ψ

is a product of successive conditional distributions of the form:

ψi|ψ1, . . . , ψi−1, m ∼
m

i− 1 +m
g0(ψi) +

1

i− 1 +m

i−1
∑

l=1

δ(ψl = ψi) (4)

where δ() denotes the Dirac delta function and g0() is the density function of base measure.

We define a subcluster C to be a partition of the sample of size n into k groups, k = 1, . . . , n,

and we call these subclusters since the grouping is done nonparametrically rather than on sub-

stantive criteria. That is, the subclustering assigns different normal parameters across groups

and the same parameters within groups: cases are iid only if they are assigned to the same

subcluster.

Applying Lo (1984) Lemma 2 and Liu (1996) Theorem 1 to equation (4), we can calculate

the likelihood function, which by definition is integrated over the random effects, as

L(θ | y) =
Γ(m)

Γ(m+ n)

n
∑

k=1

mk
∑

C:|C|=k

k
∏

j=1

Γ(nj)

∫

f(y(j) |θ, ψj)ddG0(ψj),
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where C defines the subclusters, y(j) is the vector of yis that are in subcluster j, and ψj is

the common parameter for that subcluster. There are Sn,k different subclusters C, the Stirling

Number of the Second Kind (Abramowitz and Stegun 1972, 824-825).

Here, we consider an n× k matrix A defined by

A =













a1

a2

...

an













where ai is a 1 × k vector of all zeros except for a 1 in one position that indicates which group

the observation is from. In other words, each column of matrix A represents a partition of the

sample of size n into k groups. If the subcluster C is partitioned into groups {S1, . . . , Sk}, then

if i ∈ Sj , ψi = ηj and the random effect can be rewritten as

ψ = Aη, (5)

where η = (η1, . . . , ηk) and ηj
iid
∼ G0 for j = 1, . . . , k. Details of the Dirichlet process mixture

models with the indicator matrix A are discussed in Kyung et al. (2008).

In this paper, we consider the models for the binary responses with probit and logit link

function, and for count data with a log link function. First, for the binary responses,

Yi ∼ Bernoulli(pi), i = 1, . . . , n

where yi is 1 or 0, thus pi = E(Yi) is the probability of a success for the ith observation. Using a

general link function (2) leads to a sampling distribution

f(y|A) =

∫ n
∏

i=1

[

g−1(Xiβ + (Aη)i)
]yi
[

1 − g−1(Xiβ + (Aη)i)
]1−yi dG0(η),

which typically can only be evaluated numerically. Examples of general link functions for binary

outcomes are

pi = g−1
1 (Xiβ + (Aη)i) = Φ(Xiβ + (Aη)i) Probit

pi = g−1
2 (Xiβ + (Aη)i) = (1 + exp(−Xiβ − (Aη)i))

−1 Logistic

pi = g−1
3 (Xiβ + (Aη)i) = 1 − exp (− exp(Xiβ + (Aη)i)) Cloglog

where Φ() is the cumulative distribution function of standard normal distribution.

For counting process data,

Yi ∼ Poisson(λi), i = 1, . . . , n
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where yi is 0, 1, . . . , λi = E(Yi) is the expected number of events for the ith observation. Here,

using a log link function

λi = g−1
3 (Xiβ + (Aη)i) = exp(Xiβ + (Aη)i),

a sampling distribution is

f(y|A) =

n
∏

i=1

1

yi!

∫ n
∏

i=1

exp {− exp(Xiβ + (Aη)i)} [exp(Xiβ + (Aη)i)]
yi G0(η) dη.

3 Sampling Schemes for the Model Parameters

An overview of the general sampling scheme is as follows. We have three groups of parameters:

(i) m, the precision parameter of the Dirichlet process,

(ii) A, the indicator matrix of the partition defining the subclusters, and

(iii) (η,β, τ 2), the model parameters.

We iterate between these three groups until convergence:

1. Conditional on m and A, generate (η,β, τ 2)|A, m;

2. Conditional on (η,β, τ 2) and m, generate A, a new subcluster matrix;

3. Conditional on (η,β, τ 2) and A, generate m, the new precision parameter.

For the model parameters we add the priors

β|σ2 ∼ N(0, d∗σ2I)

τ 2 ∼ Inverse Gamma(a, b), (6)

where d∗ > 1 and (a, b) are fixed such that the inverse gamma is diffuse (a = 1, b very small). We

can either fix σ2 or put a prior on it and estimate it in the hierarchical model with priors, and

here we will a value for σ2. For the base measure of the Dirichlet process, we assume a normal

distribution with mean 0 and variance τ 2, N(0, τ 2).

In the following sections we consider a number of sampling schemes go the estimation of the

model parameters of a GLMDM. We will then turn to generation of the subclusters and the

precision parameter.
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3.1 Probit Models

Albert and Chib (1993) showed how truncated Normal sampling could be used to implement the

Gibbs sampler for a probit model for binary responses. They use a latent variable Ui such that

Ui = Xiβ + ψi + ηi, ηi ∼ N(0, σ2), (7)

and

yi = 1 if Ui > 0 and yi = 0 if Ui ≤ 0

for i = 1, . . . , n. It can be shown that Yi are independent Bernoulli random variables with the

probability of success, pi = Φ((Xiβ − ψi)/σ), and without loss of generality, we fix σ = 1.

For given A and U = (U1, . . . , Un), the likelihood function of model parameters and the latent

variable is given by

Lk(β, τ
2, η,U|A,y, σ2) =

n
∏

i=1

{I(Ui > 0)I(yi = 1) + I(Ui ≤ 0)I(yi = 0)}

×

(

1

2πσ2

)n/2

e−
1

2σ2 |U−Xβ−Aη|2
(

1

2πτ 2

)k/2

e−
1

2τ2 |η|
2

.

Let m and A be considered fixed for the moment. With priors given in (6) , the joint posterior

distribution of (β, τ 2, η,U) given the data y is

πk(β, τ
2, η,U|A,y, σ2) ∝

n
∏

i=1

{I(Ui > 0)I(yi = 1) + I(Ui ≤ 0)I(yi = 0)}

× e−
1

2σ2 |U−Xβ−Aη|2
(

1

τ 2

)k/2

e−
1

2τ2 |η|
2

e−
1

2d∗σ2 |β|
2

(

1

τ 2

)a+1

e−
b

τ2 .

Then for fixed m and A, it is straightforward to implement a Gibbs sampler using the full

conditionals. Details are discussed in Appendix A.1

3.2 Logistic Models

We look at two samplers for the logistic model. The first is based on the slice sampler of Damien

et al. (1999), while the second exploits a mixture representation of the logistic distribution; see

Andrews and Mallows (1974) or West (1987).

3.2.1 Slice Sampling

The idea behind the slice sampler is the following. Suppose that the density f(θ) ∝ l(θ)π(θ),

where l(θ) is the likelihood and π(θ) is the prior, and it is not possible to sample directly from
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f(θ). Using a latent variable U , define the joint density of θ and U by

f(θ, u) ∝ I {u < l(θ)}π(θ).

Then, U |θ is uniform U {0, l(θ)}, and θ|U = u is π restricted to the set Au = {θ : l(θ) > u}.

The likelihood function of binary responses with logit link function can be written as

Lk(β, τ
2,η|A,y) =

n
∏

i=1

[

1

1 + exp(−Xiβ − (Aη)i)

]yi
[

1

1 + exp(Xiβ + (Aη)i)

]1−yi

×

k
∏

j=1

(

1

2πτ 2

)1/2

exp

(

−
1

2τ 2
η2

j

)

, (8)

and if we introduce latent variables U = (U1, . . . , Un) and V = (V1, . . . , Vn), we have the likeli-

hood of the model parameters and the latent variables to be

Lk(β, τ
2,η,U,V|A,y) (9)

=

n
∏

i=1

I

[

ui <

{

1

1 + exp(−Xiβ − (Aη)i)

}yi

, vi <

{

1

1 + exp(Xiβ + (Aη)i)

}1−yi

]

×

k
∏

j=1

(

1

2πτ 2

)1/2

exp

(

−
1

2τ 2
η2

j

)

Thus, with priors that are given above, the joint posterior distribution of (β, τ 2,η,U,V) can be

expressed as

πk(β, τ
2,η,U,V|A,y) ∝ Lk(β, τ

2,η,U,V|A,y) (10)

×
k
∏

j=1

exp

(

−
η2

j

2τ 2

)(

1

τ 2

)
k
2
+a+1

exp

(

−
b

τ 2

)

exp

(

−
|β|2

2d∗σ2

)

.

Then for fixed m and A, we can implement a Gibbs sampler using the full conditionals.

Details are discussed in Appendix A.2.

3.2.2 A Mixture Representation

Next we consider a Gibbs sampler by using truncated normal variables in a manner that is

similar to the Gibbs sampler of the probit models, which arise from a mixture representation

of the logistic distribution. Andrews and Mallows (1974) discussed necessary and sufficient

conditions under which a random variable Y may be generated as the ratio Z/V where Z and

V are independent and Z has a standard normal distribution, and establish that when V/2 has

the asymptotic distribution of the Kolmogorov distance statistic, Y is logistic. West (1987)
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generalized this result to the the exponential power family of distributions, showing them to be

a subset of the class of scale mixtures of normals. The corresponding mixing distribution are

explicitly obtained, identifying a close relationship between the exponential power family and a

further class of normal scale mixtures, the stable distributions.

Based on Andrews and Mallows (1974), and West (1987), the logistic distribution is a scale

mixture of a normal distribution with Kolmogorov-Smirnov distribution. From Devroye (1986),

the Kolmogorov-Smirnov (K-S) density function is given by

fX(x) = 8
∞
∑

α=1

(−1)α+1α2xe−2α2x2

x ≥ 0, (11)

and we define the joint distribution

fY,X(y, x) = (2π)−1 exp

{

−
1

2

( y

2x

)2
}

fX(x)
1

2x
. (12)

From the identities in Andrews and Mallows (1974) (see also Theorem 10.2.1 in Balakrishnan

1992), the marginal distribution of Y is then given by

fY (y) =

∫ ∞

0

fY,X(y, x)dx =

∞
∑

α=1

(−1)α+1α exp (−α|y|) =
e−y

(1 + e−y)2 , (13)

the density function of logistic distribution with mean 0 and variance π2

3
. Therefore, Y ∼

L
(

0, π2

3

)

, where L() is the logistic distribution.

Now, using the likelihood function of binary responses with logit link function (8), consider

the latent variable Wi such that

Wi = Xiβ + ψi + ηi, ηi ∼ L

(

0,
π2

3
σ2

)

, (14)

with yi = 1 if Wi > 0 and yi = 0 if Wi ≤ 0, for i = 1, . . . , n. It can be shown that Yi are

independent Bernoulli random variables with pi = [1 + exp(−Xiβ− (Aη)i)]
−1 the probability of

success , and without loss of generality we fix σ = 1.

For given A, the likelihood function of model parameters and the latent variable is given by

Lk(β, τ
2, η,U|A,y, σ2) =

n
∏

i=1

{I(Ui > 0)I(yi = 1) + I(Ui ≤ 0)I(yi = 0)}

×

∫ ∞

0

(

1

2πσ2(2ξ)2

)n/2

e
− 1

2σ2(2ξ)2
|U−Xβ−Aη|2

× 8
∞
∑

α=1

(−1)α+1α2ξe−2α2ξ2

dξ

(

1

2πτ 2

)k/2

e−
1

2τ2 |η|
2

,
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where U = (U1, . . . , Un), Ui is the truncated normal variable which is described in (7).

Let m and A be considered fixed for the moment. Thus, with priors given in (6) , the joint

posterior distribution of (β, τ 2, η,U) given the data y is

πL
k ∝

∫ ∞

0

Lk(β, τ
2, η,U|A,y, σ2)e−

1
2d∗σ2 |β|

2

(

1

τ 2

)a+1

e−
b

τ2 dξ.

This representation avoids the problem of generating samples from the truncated logistic distri-

bution, which is not easy to implement. As we now have the logistic distribution expressed as

a normal mixture with the K-S distribution, we now only need to generate samples from the

truncated normal distribution and the K-S distribution, and we can get a Gibbs sampler for the

model parameters, The details are left to Appendix A.2.2.

3.3 Log Linear Models

Similar to Section 3.2, we look at two samplers for the loglinear model. The first is again based

on the slice sampler of Damien et al. (1999), while the second is an M-H algorithm based on

using a Gaussian density from log-transformed data as a candidate.

3.3.1 Slice Sampling

The likelihood function of the counting process data with log link function can be written as

Lk(β, τ
2,η|A,y) =

n
∏

i=1

1

yi!
e− exp(Xiβ+(Aη)i) [exp(Xiβ + (Aη)i)]

yi (15)

×
k
∏

j=1

(

1

2πτ 2

)1/2

exp

(

−
1

2τ 2
η2

j

)

,

and the joint posterior distribution of (β, τ 2,η) can be obtained by appending the priors for τ 2

and β. As in Section 3.2.1 we introduce latent variables U = (U1, . . . , Un) and V = (V1, . . . , Vn),

yielding a likelihood of the model parameters and the latent variables, Lk(β, τ
2,η,U,V|A,y),

similar to (9). Setting up the Gibbs sampler is now straightforward, with details in Appendix

A.3.1.

3.3.2 Metropolis-Hastings

Starting with the likelihood and priors described at (15), for the candidate distribution of β and

η, we consider the model

log(Yi) = Xiβ + (Aη)i + ǫi

ǫi ∼ N(0, σ2).
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which is a linear mixed Dirichlet model (LMDM). Sampling these model parameters is straight-

forward (Kyung et al. 2008), and the M-H algorithm is then easy to set up. Details are in

Appendix A.3.2.

4 Sampling Schemes for the Dirichlet Parameters

4.1 Generating the Subclusters

We use a Metropolis-Hastings algorithm with a candidate taken from a multinomial/Dirichlet.

This produces a Gibbs sampler that converges faster than the popular “stickbreaking” algorithm

(Kyung et al. 2008).

For t = 1, . . . T , at iteration t

1. Starting from (θ(t), A(t)),

θ(t+1) ∼ π(θ | A(t),y),

where θ = (β, τ 2, η) and the updating methods are discussed above.

2. Given θ(t+1),

q(t+1) = (q
(t+1)
1 , . . . q(t+1)

n ) ∼ Dirichlet(n
(t)
1 + β1, . . . , n

(t)
k + βk, βk+1, . . . , βn)

A(t+1) ∼ P (A′)f(y|θ(t+1), A′)

(

n

n1 · · · nk′

) k′

∏

j=1

[q
(t+1)
j ]n

′

j (16)

where nj > 0, n1 + · · ·+ nk′ = n.

Based on the value of the qj in (16) we generate a candidate A that is an n×n matrix where

each row is a multinomial, and the effective dimension of the matrix, the size of the subclusters, k,

are the non-zero column sums. Deleting the columns with column sum zero is a marginalization

of the multinomial distribution. The probability of the candidate follows

P
(

A(t+1)
)

=
Γ(
∑n

j=1 βj)
∏n

j=1 Γ(βj)

∏n
j=k(t) Γ(βj)

Γ(
∑n

j=k(t) βj)

∫ k(t)−1
∏

j=1

q
n

(t)
j +βj−1

j



1 −

n−1
∑

j=k(t)

qj





n
(t)
k

+
Pn

j=k(t) βj−1

d qj

=
Γ(
∑n

j=1 βj)
∏k(t)−1

j=1 Γ(βj)Γ(
∑n

j=k(t) βj)

∏k(t)−1
j=1 Γ(n

(t)
j + βj)Γ(n

(t)
k +

∑n
j=k(t) βj)

Γ(n +
∑n

j=1 βj)

and the Metropolis-Hastings step is then done.
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4.2 Gibbs Sampling the Precision Parameter

To estimate the precision parameter of the Dirichlet process, m, we start with the profile likeli-

hood,

L(m | θ, A,y) =
Γ(m)

Γ(m+ n)
mk

k
∏

j=1

Γ(nj)f(y|θ, A). (17)

Rather than estimate m, the better strategy is to include m in the Gibbs sampler, as the the

maximum likelihood estimate from (17) can be very unstable (Kyung, et al. 2008). Using the

prior g(m) we get the posterior density

π(m | θ, A,y) =

Γ(m)
Γ(m+n)

g(m)mk

∫∞

0
Γ(m)

Γ(m+n)
g(m)mkdm

, (18)

where
∫

π(m | θ, A,y) dm < ∞ as long as the exponent of m is positive. Note also how far

removed m is from the data, as the posterior only depends on the number of groups k. We

consider a gamma distribution as a prior, g(m) = ma−1e−m/b/Γ(a)ba, and generate m using an

M-H algorithm with another gamma density as a candidate.

We choose the gamma candidate by using a approximate mean and variance of π(m) to set

the parameters of the candidate. To get the approximate mean and variance, we will use the

Laplace approximation of Tierney and Kadane (1986). Applying their results, we have

∫

mν Γ(m)
Γ(m+n)

g(m)mkdm
∫ Γ(m)

Γ(m+n)
g(m)mkdm

≈

√

ℓ′′ν(m̂ν)

ℓ′′(m̂)
exp {ℓν(m̂ν) − ℓ(m̂)} , (19)

where

ℓ = log
Γ(m)

Γ(m+ n)
+ log

ma−1e−m/b

Γ(a)ba
+ k logm

ℓν = ℓ+ ν logm

ℓ′ =
∂

∂m
ℓ =

1

bm

[

b(k + a− 1) −m− bm
n
∑

i=1

1

m+ i− 1

]

ℓν
′ =

∂

∂m
ℓν =

1

bm

[

b(ν + k + a− 1) −m− bm

n
∑

i=1

1

m+ i− 1

]

ℓ′′(m̂) =
∂2

∂m2
ℓ

∣

∣

∣

∣

m=m̂

=
1

bm̂

[

−1 − b
n
∑

i=1

1

m̂+ i− 1
+ bm̂

n
∑

i=1

1

(m̂+ i− 1)2

]

ℓν
′′(m̂ν) =

∂2

∂m2
ℓν

∣

∣

∣

∣

m=m̂ν

= ℓ′′(m̂ν),
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where we get a simplification because the second derivative is evaluated at the zero of the first

derivative. We use these approximations as the first and second moments of the candidate gamma

distribution. Note that if m̂ ≈ m̂ν , then a crude approximation, which should be enough for

Metropolis, is

Emν ≈ (m̂)ν .

5 Simulation Study

We evaluate our sampler through a number of simulation studies. We need to generate outcomes

from Bernoulli or Poisson distributions with random effects that follow the Dirichlet process. To

do this we fix K, then we set the parameter m according to the relation

K =
n
∑

i=1

m

m+ i− 1
, (20)

where we note that even if m̂ is quite variable, there is less variability in K̂ =
∑n

i=1
m̂

m̂+i−1
.

5.1 Logistic Models

Using the GLMDM with the logistic link function of Section 3.2, we set the parameters: n = 100,

K = 40, τ 2 = 1, and β = (1, 2, 3). Our Dirichlet process for the random effect has precision

parameter m and base distribution G0 = N(0, τ 2). Setting K = 40, yields m = 24.21 . We then

Figure 1: ACF Plots of β for the GLMDM with logistic link. The left panel are the plots for (β0, β1, β2)

from the slice sampler, and the right panel are the plots for (β0, β1, β2) from the K-S/normal mixture

sampler.
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Table 1: Estimation of the coefficients of the GLMDM with logistic link function and the estimate of

K, with true values K = 40 and β = (1, 2, 3). Standard errors are in parentheses.

Estimation Method β0 β1 β2 K

Slice 1.4870(0.3139) 1.1512(0.3919) 2.6212(0.4632) 43. 4722(4.0477)

K-S Mixture 0.5444(0.1647) 0.7150(0.1874) 1.7462(0.2622) 43.1441(4.1668)

generated X1 and X2 independently from N(0, 1), and used the fixed design matrix to generate

the binary outcome Y . Then the Gibbs sampler was iterated 200 times to get values of m, A,

β, τ 2, η. This procedure was repeated 1000 times saving the last 500 draws as simulations from

the posterior.

We compare the slice Gibbs sampler (Slice) to the Gibbs sampler with the K-S distribution

normal scale mixture (K-S Mixture). For the estimation of K, we use the posterior mean of m,

m̂ and calculate K̂ by using the equation (20). The starting points of β come from the maximum

likelihood (ML) estimates using iteratively reweighted least squares: (1.4623, 1.1263, 2.5547) and

(0.7705, 1.01509, 2.5134) for Slice and K-S Mixture, respectively. The numerical summary of

this process is given in Table 1 and the ACF plots of β are given in Figure 2. The estimates of

K were 43.4722 with standard error 4.0477 from Slice and 43.1441 with standard error 4.1668

from K-S Mixture. Obviously these turned out to be good estimates of the true K = 40. The

estimate of β with Slice is closer to the true value than those with K-S Mixture. To evaluate

the the convergence of β, we consider the autocorrelation function (ACF) plots that are given in

Figure 1. The Gibbs sampler of β from Slice is exhibits strong autocorrelation, implying poor

mixing. Thus, if the Markov chain starts far from target distribution, we are not assured of

reaching the stationary distribution in fixed time. Note, however, that the Gibbs sampler with

normal scale mixture of K-S distribution mixes much better than that of Slice.

5.2 Log Linear Models

We now look at the GLMDM with the log link function of Section 3.3. The setting for the data

generation is the same as the procedure that we discussed in the previous section except that we

take β = (3, 0.5, 1). With K = 40, the solution of m from equation (20) is 24.21. As before, we

generated X1 and X2 independently from N(0, 1), and used the fixed design matrix to generate

count data Y . The Gibbs sampler was iterated 200 times to produce draws of m, A, β, τ 2, η.

This procedure was repeated 1000 times, saving the last 500 values as draws from the posterior.

In this section, we compare the Gibbs sampler with the auxiliary variables (Slice) and the
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Table 2: Estimation of the coefficients of the GLMDM with log link function and the estimate of K,

with true values K = 40 and β = (3, 0.5, 1). Standard errors are in parentheses.

Estimation Method β0 β1 β2 K

Slice 2.5344( 0.0048) 0.1249 (0.0573) 0.9141 (0.0105) 43.2432 (4.0129)

M-H Sampler 2.5848(0.1732) 0.3201(0.9680) 0.3685(0.9876) 43.4693(4.1617)

M-H sampler with a candidate density from the log-linear model (M-H Sampler). We use the

posterior mean of m, m̂, and calculate K̂ by using (20) for the estimation of K. The starting

points of β are set to the maximum likelihood (ML) estimates by using the iterative reweighted

least squares. These were (2.8321,−0.2541, 0.9402) and (2.8675,−0.0058,−0.0788) for the Gibbs

and the M-H sampler, respectively. The numerical summary is given in Table 2 and the ACF

plots of β are given in Figure 2. The resulting estimates for K are 43.2432(4.0129) from Slice

and 43.4693(4.1617) from M-H Sampler, which are fairly close to the true K = 40. The

estimated β1 from the M-H Sampler is near the true β1 = 0.5, but the associated standard

error is large. Conversely, the estimated β2 from Slice is also near the true β2 = 1 but has a

smaller standard error. Once again, the consecutive draws of β of Slice from the Gibbs sampler

are strongly autocorrelated. The convergence of β of Slice and M-H Sampler can be assessed

by viewing the ACF plots in Figure 2. The M-H chain with candidate densities from log-linear

models mixes better, giving additional confidence about convergence.

Figure 2: ACF Plots of β for the GLMDM with log link. The left panel are the plots for (β0, β1, β2)

from the slice sampler, and the right panel are the plots for (β0, β1, β2) from the M-H sampler.
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Figure 3: ACF Plots for (β0, β1, β2) for the GLMDM with probit link.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of beta0 of Probit Model from Gibbs Sampler

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of beta1 of Probit Model from Gibbs Sampler

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of beta2 of Probit Model from Gibbs Sampler

5.3 Probit Models

For completeness, we also generated data, similar to that described in Section 3.2, for a probit

link. Here we only show the ACF plot from a latent variable Gibbs sampler as described in

Section 3.1. where we see that the autocorrelations are not as good as the M-H algorithm, but

better than those of the slice sampler.

6 Data Analysis

Save for the results in Figure 3, we have neglected empirical attention to the probit model. In

this section we provide two real data examples that highlight the workings of generalized linear

Dirichlet random effects models with a probit link function. Both examples are drawn from

important questions in social science research: voting behavior and terrorism studies.

6.1 Social Attitudes in Scotland

The data for this example come from the Scottish Social Attitudes Survey, 2006 (UK Data

Archive Study Number 5840). This study is based on face-to-face interviews conducted using

computer assisted personal interviewing and a paper-based self-completion questionnaire, pro-

viding 1594 data points and 669 covariates. The focus was on attitudes towards government at

the UK and national level, feelings about racial groups including discrimination, views on youth

and youth crime, as well as exploring the Scottish sense of national identity.

Respondents were asked whether they favored full independence for Scotland with or without

membership in the European Union versus remaining in the UK under different circumstances.

This was used as a dichotomous outcome variable to explore the factors that contribute to ad-
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vocating secession for Scotland. The explanatory variables used are: househld measuring the

number of people living in the respondent’s household, rsex for the respondent’s sex (0=female,

1=male), rage giving the respondent’s age, relgsums indicating identification with the Church

of Scotland versus another or no religion, ptyallgs measuring party allegiance with the ordering

of parties given from more conservative to more liberal, idlosem a dichotomous variable equal to

one if the respondent agreed with the statement that increased numbers of Muslims in Scotland

would erode the national identity, marrmus, another dichotomous variable equal to one if the

respondent would be unhappy or very unhappy if a family member married a Muslim, ukintnat

for agreement that the UK government works in Scotland’s long-term interests, voiceuk3 indi-

cating that the respondent believes that the Scottish Parliament gives Scotland a greater voice

in the UK, nhssat indicating satisfaction (1) or dissatisfaction (0) with the National Health Ser-

vice, hincdif2 a seven-point Likert scale showing the degree to which the respondent is living

comfortably on current income or not (better in the positive direction), unionsa indicating union

membership at work, whrbrn a dichotomous variable indicating birth in Scotland or not, and

hedqual2 the respondent’s education level. We retain the variable names from the original study

for ease of replication by others. All coding decisions are documented on a dedicated webpage.

We ran the Markov chain for 10,000 iterations saving the last 5,000 for analysis. All indi-

cations point towards convergence using empirical diagnostics (Geweke, Heidelberger & Welsh,

graphics, etc.). The results in Table 3 are interesting in a surprising way. Notice that there are

very similar results for the standard Bayesian probit model with flat priors (estimated in JAGS)

and the GLMDM probit model, save for one coefficient (discussed below), which is attributable

to the large sample size. This is a reassuring observation since it indicates that we are still

operating in the general Bayesian construct.

Several of the coefficients point towards interesting findings from these results. Generally

males, younger respondents, non-Church of Scotland adherents, union members, the better off

financially, and so on, are more supportive of secession. The two variables regarding Muslims

in Scotland turn out as expected: less tolerance of Muslims is positively associated with a

desire to take Scotland out of the UK. The most interesting part of these results is the clear

difference between the two modeling results for whrbrn. The regular probit model provides

a statistically reliable result which indicates that native born Scots are less likely to support

secession, which runs counter to research and generally accepted wisdom about nationalism

and national identification. However, the GLMDM result has a statistically defensible result

showing the opposite effect. Clearly there exists additional information in the data that are

being captured in the second model. So with large datasets the results may not differ much,

except for circumstances where the data have strong nonparametric contributions.

18



Table 3: Probit Models for Attitudes in Scotland

Standard Probit GLMDM Probit

Coefficient COEF SE 95% CI COEF SE 95% CI

Intercept -0.369 0.225 -0.241 -0.497 -0.482 0.218 -0.908 -0.055

househld -0.065 0.032 0.063 -0.193 -0.076 0.030 -0.135 -0.017

rsex 0.180 0.070 0.308 0.052 0.165 0.068 0.031 0.299

rage -0.008 0.003 0.120 -0.135 -0.009 0.002 -0.014 -0.004

relgsums -0.213 0.085 -0.085 -0.341 -0.210 0.085 -0.378 -0.042

ptyallgs 0.043 0.009 0.171 -0.085 0.042 0.009 0.025 0.059

idlosem 0.216 0.100 0.344 0.088 0.201 0.098 0.009 0.393

marrmus 0.210 0.088 0.338 0.082 0.204 0.086 0.035 0.373

ukintnat -0.328 0.057 -0.200 -0.456 -0.324 0.057 -0.436 -0.213

natinnat 0.182 0.052 0.310 0.054 0.173 0.052 0.070 0.275

voiceuk3 0.096 0.039 0.224 -0.032 0.097 0.039 0.022 0.173

nhssat 0.197 0.074 0.325 0.069 0.183 0.074 0.039 0.327

hincdif2 -0.095 0.041 0.033 -0.223 -0.092 0.041 -0.172 -0.011

unionsa 0.181 0.069 0.309 0.053 0.238 0.080 0.080 0.395

whrbrn -0.411 0.124 -0.283 -0.539 0.250 0.088 0.077 0.423

hedqual2 -0.059 0.018 0.068 -0.187 -0.064 0.018 -0.100 -0.028

6.2 Terrorism Targeting

In this example we look at terrorist activity in 22 Asian democracies over 8 years (1990-1997)

with data subsetted from Koch and Cranmer (2007). Data problems (a recurrent problem in the

empirical study of terrorism) reduce the number of cases to 162 and make fitting any standard

model difficult due to the generally poor level of measurement. The outcome of interest is di-

chotomous, indicating whether not there was at least one violent terrorist act in a country/year

pair. In order to control for the level of democracy (DEM) in these countries we use the Polity IV

21-point democracy scale ranging from -10 indicating a hereditary monarchy to +10 indicating a

fully consolidated democracy (Gurr, Marshall, and Jaggers 2003). The variable FED is assigned

zero if sub-national governments do not have substantial taxing, spending, and regulatory au-

thority, and one otherwise. We look at three rough classes of government structure with the

variable SYS coded as: (0) for direct presidential elections, (1) for strong president elected by

assembly, and (2) dominant parliamentary government. Finally, AUT is a dichotomous variable
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Table 4: Probit Models for Terrorism Incidents

Standard Probit GLMDM Probit

Coefficient COEF SE 95% CI COEF SE 95% CI

Intercept 0.249 0.337 0.035 0.463 0.127 0.188 -0.241 0.495

DEM 0.109 0.035 -0.105 0.323 0.058 0.019 0.020 0.095

FED 0.649 0.469 0.435 0.863 0.258 0.254 -0.241 0.756

SYS -0.817 0.252 -1.031 -0.603 -0.420 0.137 -0.690 -0.151

AUT 1.619 0.871 1.406 1.833 0.450 0.371 -0.277 1.176

indicating whether or not there are autonomous regions not directly controlled by central govern-

ment. The key substantive question evaluated here is whether specific structures of government

and sub-governments lead to more or less terrorism.

We ran the Markov chain for 50,000 iterations disposing of the first half. There is no evidence

of non-convergence in these runs using standard diagnostic tools. Table 4 again provides results

from two approaches: a standard Bayesian probit model with flat priors, and a Dirichlet random

effects model. Notice first that while there are no changes in sign or statistical reliability for

the estimated coefficients, the magnitudes of the effects are uniformly smaller with the enhanced

model: four of the estimates are roughly twice as large and the last one is about three times

as large as in the standard model. This indicates that there is extra information in the data

detected by the Dirichlet random effect that tends to dampen the size of the effect of these

explanatory variables on explaining incidences of terrorist attacks. Specifically, running the

standard probit model would find an exaggerated relationship between these explanatory variables

and the outcome.

The results are also interesting substantively. The more democratic a country is, the more

terrorist attacks they can expect. This is consistent with the literature in that autocratic nations

tend to have more security resources per capita and fewer civil rights to worry about. Secondly,

the more the legislature holds central power, the fewer expected terrorist attacks. This also

makes sense, given what is known; disparate groups in society tend to have a greater voice in

government when the legislature dominates the executive. Two results are puzzling and are

therefore worth further investigation. Strong sub-governments and the presence of autonomous

regions both lead to more expected terrorism.
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7 Discussion

In this paper we demonstrate how to set up and run sampling schemes for the generalized linear

mixed Dirichlet model with a variety of link functions. We focus on the mixed effects model with

a Dirichlet process prior for the random effects instead of the normal assumption, as in standard

approaches. We are able to estimate model parameters as well as the Dirichlet parameters using

convenient MCMC algorithms, and to draw latent information from the data. Simulation studies

and empirical studies demonstrate the effectiveness of this approach.

The major methodological contributions here are the derivation and evaluation of strategies

of estimation for model parameters in Section 3 and the inclusion of the precision parameter

directly into the Gibbs sampler for estimation in Section 4.2. In the latter case, including the

precision parameter in the Gibbs sampler means that we are marginalizing over the parameter

rather than conditioning on it leading to a more robust set of estimates. Moreover, we have seen

a large amount of variability in the performance of MCMC algorithms, with the slice sampler

typically being less optimal than either a K-S mixture representation or a Metropolis-Hastings

algorithm.

Finally, we observed that the additional effort needed to include a Dirichlet process prior for

the random effects in two empirical examples with social science data, which tends to be more

messy and interrelated than that in other fields, added significant value to the data analysis.

We found that the GLMDM model can find additional information in the data which affects

parameter estimates. In particular, in the case of social attitudes in Scotland the GLMDM model

corrected a clearly illogical finding in the usual probit analysis. For the second example, we found

that the GLMDM specification dampened-down over enthusiastic findings from a conventional

model. In both cases either non-Bayesian or Bayesian models with flat priors would have reported

results that had substantively misleading findings.
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A Generating the Model Parameters

A.1 A Probit Model

The Gibbs sampler of (β, τ 2, η,U) is obtained by iterating through:

η|β, τ 2,U, A,y ∼ Nk

(

1

σ2

(

1

τ 2
I +

1

σ2
A′A

)−1

A′(U −Xβ),

(

1

τ 2
I +

1

σ2
A′A

)−1
)

β|τ 2, η,U, A,y ∼ Np

(

(

1

d∗
I +X ′X

)−1

X ′(U −Aη), σ2

(

1

d∗
I +X ′X

)−1
)

τ 2|β, η,U, A,y ∼ Inverse Gamma

(

k

2
+ a,

1

2
|η|2 + b

)

Ui|β, τ
2, η, A,y ∼







N (Xiβ + (Aη)i, σ
2) I(Ui > 0) if yi = 1

N (Xiβ + (Aη)i, σ
2) I(Ui ≤ 0) if yi = 0
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Note that we can marginalize out η yielding

Lk(β, σ
2, τ 2,U|A,y) =

∫

Lk(β, σ
2, τ 2, η,U|A,y)dη

=

n
∏

i=1

{I(Ui > 0)I(yi = 1) + I(Ui ≤ 0)I(yi = 0)}

×
|A∗|−1/2

(2πσ2)n/2(τ 2)k/2
e−

1
2σ2 (U−Xβ)′[I− 1

σ2 A(A∗)−1A′](U−Xβ),

where A∗ = 1
τ2 I + 1

σ2A
′A. Note that |A∗|−1/2 = |I − 1

σ2A(A∗)−1A′|−1/2.

A.2 A Logistic Model

A.2.1 Slice Sampling

For fixed m and A, a Gibbs sampler of (β, τ 2, η,U,V) is

• for d = 1, . . . , p,

βd|β−d, τ
2,η,U,V, A,y ∼


















N (0, d∗σ2) if βd ∈

[{

max
(

maxXid>0

(

αid

Xid

))

,
(

maxXid≤0

(

γid

Xid

))}

,
{

min
(

minXid≤0

(

αid

Xid

))

,
(

minXid>0

(

γid

Xid

))}]

0 otherwise

where

αid = − log

(

u
− 1

yi

i − 1

)

−
∑

l 6=d

Xilβl − (Aη)i for i ∈ S

γid = log

(

v
1

yi−1

i − 1

)

−
∑

l 6=d

Xilβl − (Aη)i for i ∈ F.

Here, S = {i : yi = 1} and F = {i : yi = 0}.

• τ 2|β,η,U,V, A,y ∼ Inverse Gamma
(

k
2

+ a, 1
2
|η|2 + b

)

• for j = 1, . . . , k,

ηj|β, τ
2,U,V, A,y ∼

{

N (0, τ 2) if ηj ∈
(

maxi∈Sj
{α∗

i } ,mini∈Sj
{γ∗i }

)

0 otherwise
,

where

α∗
i = − log

(

u−1
i − 1

)

− Xiβ for i ∈ S

γ∗i = log
(

v−1
i − 1

)

−Xiβ for i ∈ F
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• for i = 1, . . . , n,

πk(Ui|β, τ
2,η,V, A,y) ∝ I

[

ui <

{

1

1 + exp(−Xiβ − ηj)

}yi
]

for i ∈ S

πk(Vi|β, τ
2,η,U, A,y) ∝ I

[

vi <

{

1

1 + exp(Xiβ + ηj)

}1−yi

]

for i ∈ F.

A.2.2 K-S Mixture

Given ξ, for fixed m and A, a Gibbs sampler of (β, τ 2, η,U) is

η|β, τ 2,U, A,y, σ2 ∼ Nk

(

1

σ2(2ξ)2

(

1

τ 2
I +

1

σ2(2ξ)2
A′A

)−1

A′(U −Xβ),

×

(

1

τ 2
I +

1

σ2(2ξ)2
A′A

)−1
)

β|τ 2, η,U, A,y, σ2 ∼ Np

(

(

1

d∗
I +

1

(2ξ)2
X ′X

)−1
1

(2ξ)2
X ′(U − Aη),

×σ2

(

1

d∗
I +

1

(2ξ)2
X ′X

)−1
)

τ 2|β, η,U, A,y, σ2 ∼ Inverse Gamma

(

k

2
+ a,

1

2
|η|2 + b

)

Ui|β, τ
2, η, A, yi, σ

2 ∼

{

N (Xiβ + (Aη)i, σ
2(2ξ)2) I(Ui > 0) if yi = 1

N (Xiβ + (Aη)i, σ
2(2ξ)2) I(Ui ≤ 0) if yi = 0

Then we update ξ from

ξ|β, τ 2, η,U, A,y ∼

(

1

(2ξ)2

)n/2

e
− 1

2σ2(2ξ)2
|U−Xβ−Aη|2

8
∞
∑

α=1

(−1)α+1α2ξe−2α2ξ2

.

The conditional posterior density of ξ is the product of a inverse Gamma with parameters
α
2
− 1 and − 1

8σ2 |U − Xβ − Aη|2, and the infinite sum of the sequence (−1)α+1α2ξe−2α2ξ2
. To

generate samples from this target density, we consider the alternating series method that is

proposed by Devroye (1986). Based on his notation, we take

ch(ξ) = 8

(

1

ξ2

)n/2

e
− 1

8σ2ξ2
|U−Xβ−Aη|2

ξe−2ξ2

an(ξ) = (α+ 1)2e−2ξ2{(α+1)2−1}

Here, we need to generate sample from h(ξ), and we use accept-reject sampling with candidate

g(ξ∗) = 2e−2ξ∗ , the exponential distribution with λ = 2, where ξ∗ = ξ2. Then we follow Devroye’s

method.
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A.3 A Log Link Model

A.3.1 Slice Sampling

Starting from the likelihood L(β, τ 2,η,U,V), and the priors on (β, τ 2), we have the following

Gibbs sampler of the model parameters.

• The conditional posterior distribution of β:

πK(β|τ 2,η, A,y,U,V) ∝ e−
1

2d∗σ2 |β|
2

×

n
∏

i=1

I [ui < exp {yi(Xiβ + (Aη)i)} , vi > exp(Xiβ + (Aη)i)] .

For d = 1, . . . , p,

πK(βd|β−dτ
2,η,U,V, A,y) ∝ e−

1
2d∗σ2 β2

d

×

n
∏

i=1

I [ui < exp {yi(Xiβ + (Aη)i)} , vi > exp(Xiβ + (Aη)i)] ,

which can be expressed as:

πK(βd|β−dτ
2,η,U,V, A,y) ∝ e−

1
2d∗σ2 β2

d

×

n
∏

i=1

I

[

Xidβd <
1

yi
log(ui) −

∑

l 6=j

Xilβl − (Aη)i, Xidβd < log(vi) −
∑

l 6=j

Xilβl − (Aη)i

]

,

where β−d = (β1, . . . , βd−1, βd+1, . . . , βp). The full conditional posterior of βd for d =

1, . . . , p is

πk(βd|β−jτ
2,η,U,V, A,y) ∝ e−

1
2d∗σ2 β2

dβd ∈

[{

max

(

max
Xid>0

(

α∗
id

Xid

))

,

(

max
Xid≤0

(

γ∗id
Xid

))}

,

{

min

(

min
Xid≤0

(

α∗
id

Xid

))

,

(

min
Xid>0

(

γ∗id
Xid

))}]

,

where

α∗
id =

1

yi
log(ui) −

∑

l 6=d

Xilβl − (Aη)i for i ∈ S

γ∗id = log(vi) −
∑

l 6=d

Xilβl − (Aη)i for i ∈ F
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Thus, for d = 1, . . . , p,

βd|β−d, τ
2,η,U,V, A,y ∼


















N (0, d∗σ2) if βd ∈

[{

max
(

maxXid>0

(

α∗

id

Xid

))

,
(

maxXid≤0

(

γ∗

id

Xid

))}

,
{

min
(

minXid≤0

(

α∗

id

Xid

))

,
(

minXid>0

(

γ∗

id

Xid

))}]

0 otherwise

• The conditional posterior distribution of τ 2:

πk(τ
2|β,η,U,V, A,y) ∝

(

1

τ 2

)k/2+a+1

e−
1

τ2 ( 1
2
|η|2+b).

Thus,

τ 2|β,η,U,V, A,y ∼ Inverse Gamma

(

k

2
+ a,

1

2
|η|2 + b

)

.

• The conditional posterior distribution of η:

πk(η|β, τ
2,U,V, A,y) ∝

k
∏

j=1

e−
1

2τ2 η2
j

∏

i∈Sj

I [ui < exp {yi(Xiβ + ηj)} , vi > exp(Xiβ + ηj)] .

For j = 1, . . . , k,

πk(ηj |β, τ
2,U,V, A,y) ∝ e−

1
2τ2 η2

j

∏

i∈Sk

I [ui < exp {yi(Xiβ + ηj)} , vi > exp(Xiβ + ηj)]

∝ e−
1

2τ2 η2
j I

[

ηj ∈

(

max
i∈Sk

{γ∗i } ,min
i∈Sk

{α∗
i }

)]

,

where

α∗
i =

1

yi
log(ui) − Xiβ

γ∗i = log(vi) −Xiβ

Thus, for j = 1, . . . , k,

ηj|β, τ
2,U,V, A,y ∼

{

N (0, τ 2) if ηj ∈ (maxi∈Sk
{γ∗i } ,mini∈Sk

{α∗
i })

0 otherwise

• The conditional posterior distribution of U and V:

πk(Ui|β, τ
2,η,V, A,y) ∝ I [ui < exp {yi(Xiβ + (Aη)i)}]

πk(Vi|β, τ
2,η,U, A,y) ∝ e−viI [vi > exp(Xiβ + (Aη)i)]
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A.3.2 Metropolis-Hastings

Let Zi ≡ log(Yi), then Zi is a linear mixed Dirichlet model (LMDM). Details about the behavior

and MCMC methods for LMDM are discussed in Kyung et al. (2008). For this model,

• the conditional posterior distribution of β:

β|σ2, τ 2, η, A,y ∼ Np

(

(

1

d∗
I +X ′X

)−1

X ′(Z − Aη), σ2

(

1

d∗
I +X ′X

)−1
)

. (21)

• the conditional posterior distribution of η:

η|β, σ2, τ 2,U, A,y ∼ Nk

(

1

σ2

(

1

τ 2
I +

1

σ2
A′A

)−1

A′(U −Xβ),

(

1

τ 2
I +

1

σ2
A′A

)−1
)

.

(22)

Therefore, (21) is considered as a candidate density of β and (22) for η.

The Metropolis-Hastings sampler of (β, τ 2,η) follows.

• The conditional posterior distribution of β:

πk(β|τ
2,η, A,y) ∝ e−

1
2d∗σ2 |β|

2
n
∏

i=1

e− exp(Xiβ+(Aη)i) [exp(Xiβ + (Aη)i)]
yi .

Let

π+
k (β) ≡ e−

1
2d∗σ2 |β|

2
n
∏

i=1

e− exp(Xiβ+(Aη)i) [exp(Xiβ + (Aη)i)]
yi .

For given β(t),

1. Generate β∗ ∼ Np

(

(

1
d∗
I +X ′X

)−1
X ′(Z −Aη), σ2

(

1
d∗
I +X ′X

)−1
)

.

2. Take

β(t+1) =







β∗ with probability min
{(

π+(β∗)

π+
k

(β(t))

q(β(t))
q(β∗)

)

, 1
}

β(t) otherwise
,

where q(·) is a density of Np distribution in (21), and recall that π+(θ) = l(θ)π(θ).

• The conditional posterior distribution of τ 2:

πk(τ
2|β,η,U,V, A,y) ∝

(

1

τ 2

)k/2+a+1

e−
1

τ2 ( 1
2
|η|2+b).

Thus,

τ 2|β,η,U,V, A,y ∼ Inverse Gamma

(

k

2
+ a,

1

2
|η|2 + b

)

.
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• The conditional posterior distribution of η:

πk(η|β, τ
2, A,y) ∝

K
∏

k=1

e−
1

2τ2 η2
k

∏

i∈Sk

e− exp(Xiβ+(Aη)i) [exp(Xiβ + (Aη)i)]
yi .

For j = 1, . . . , k, let

π+
k (ηj) ≡ e−

1
2τ2 η2

j

∏

i∈Sj

e− exp(Xiβ+(Aη)i) [exp(Xiβ + (Aη)i)]
yi

= e−
1

2τ2 η2
j exp



ηj

∑

i∈Sj

yi − eηj

∑

i∈Sj

eXiβ



 .

For given η(t),

1. Generate η∗ ∼ Nk

(

1
σ2

(

1
τ2 I + 1

σ2A
′A
)−1

A′(U −Xβ),
(

1
τ2 I + 1

σ2A
′A
)−1
)

.

2. Take

η(t+1) =







η∗ with probability min
{(

π+
k

(η∗)

π+
k

(η(t))

q∗(η(t))
q∗(η∗)

)

, 1
}

η(t) otherwise
,

where q∗(·) is a density of Nk distribution in (22).
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