
Multicollinearity, identification, and estimable functions

Simen Gaure

Abstract. Since there is quite a lot of confusion here and there about what

happens when factors are collinear; here is a walkthrough of the identification
problems which may arise in models with many dummies, and how lfe handles

them. (Or, at the very least, attempts to handle them).

1. Context

The lfe package is used for ordinary least squares estimation, i.e. models which
conceptually may be estimated by lm as

> lm(y ~ x1 + x2 + ... + f1 + f2 + ... + fn)

where f1,f2,...,fn are factors. The standard method is to introduce a
dummy variable for each level of each factor. This is too much as it introduces
multicollinearities in the system. Conceptually, the system may still be solved,
but there are many different solutions. In all of them, the difference between the
coefficients for each factor will be the same.

The ambiguity is typically solved by removing a single dummy variable for each
factor, this is termed a reference. This is like forcing the coefficient for this dummy
variable to zero, and the other levels are then seen as relative to this zero. Other
ways to solve the problem is to force the sum of the coefficients to be zero, or one
may enforce some other constraint, typically via the contrasts argument to lm.
The default in lm is to have a reference level in each factor, and a common intercept
term.

In lfe the same estimation can be performed by

> felm(y ~ x1 + x2 + ... + G(f1) + G(f2) + ... + G(fn))

Since felm conceptually does exactly the same as lm, the contrasts approach
may work there too. Or rather, it is actually not necessary that felm handles it
at all, it is only necessary if one needs to fetch the coefficients for the factor levels
with getfe.

lfe is intended for very large datasets, with factors with many levels. Then the
approach with a single constraint for each factor may sometimes not be sufficient.
The standard example in the econometrics literature (see e.g. [2]) is the case with
two factors, one for individuals, and one for firms these individuals work for, chang-
ing jobs now and then. What happens in practice is that the labour market may
be disconnected, so that one set of individuals move between one set of firms, and
another (disjoint) set of individuals move between some other firms. This happens
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for no obvious reason, and is data dependent, not intrinsic to the model. There may
be several such components. I.e. there are more multicollinearities in the system
than the obvious ones. In such a case, there is no way to compare coefficients from
different connected components, it is not sufficient with a single individual refer-
ence. The problem may be phrased in graph theoretic terms (see e.g. [1, 3, 4]), and
it can be shown that it is sufficient with one reference level in each of the connected
components. This is what lfe does, in the case with two factors it identifies these
components, and force one level to zero in one of the factors.

In the examples below, rather small randomly generated datasets are used. lfe
is hardly the best solution for these problems, they are solely used to illustrate some
concepts. I can assure the reader that no CPUs, sleeping patterns, romantic rela-
tionships, trees or cats, nor animals in general, were harmed during data collection
and analysis.

2. Identification with two factors

In the case with two factors, i.e. two G() terms in the model, identification
is well-known. getfe will partition the dataset into connected components, and
introduce a reference level in each component:

> library(lfe)

> set.seed(42)

> x1 <- rnorm(20)

> f1 <- sample(8,length(x1),replace=TRUE)/10

> f2 <- sample(8,length(x1),replace=TRUE)/10

> e1 <- sin(f1) + 0.02*f2^2 + rnorm(length(x1))

> y <- 2.5*x1 + (e1-mean(e1))

> summary(est <- felm(y ~ x1 + G(f1) + G(f2)))

Call:

felm(formula = y ~ x1 + G(f1) + G(f2))

Residuals:

Min 1Q Median 3Q Max

-1.3993 -0.2794 0.0000 0.4362 0.9813

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 2.5305 0.3771 6.71 0.00111 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.126 on 5 degrees of freedom

Multiple R-squared: 0.9735 Adjusted R-squared: 0.8938

F-statistic: 13.1 on 14 and 5 DF, p-value: 0.005105

We examine the estimable function produced by efactory.

> ef <- efactory(est)

> is.estimable(ef,est$fe)

[1] TRUE

> getfe(est)
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effect obs comp fe idx

f1.0.1 0.376275185 2 1 f1 0.1

f1.0.2 -0.081099976 1 2 f1 0.2

f1.0.3 -0.686880302 3 1 f1 0.3

f1.0.4 0.573177494 4 1 f1 0.4

f1.0.5 0.479141883 2 1 f1 0.5

f1.0.6 1.413019541 3 1 f1 0.6

f1.0.7 0.844955931 1 2 f1 0.7

f1.0.8 0.926433817 4 1 f1 0.8

f2.0.1 -0.004011331 3 1 f2 0.1

f2.0.2 0.000000000 5 1 f2 0.2

f2.0.3 -1.518666585 1 1 f2 0.3

f2.0.4 0.000000000 2 2 f2 0.4

f2.0.5 -1.894523692 2 1 f2 0.5

f2.0.6 -0.884319224 3 1 f2 0.6

f2.0.7 -0.609110269 3 1 f2 0.7

f2.0.8 -0.968652465 1 1 f2 0.8

As we can see from the comp entry, there are two components, with f1=0.2,
f1=0.7 and f2=0.4. A reference is introduced in each of the components, i.e.
f2.0.2=0 and f2.0.4=0. If we look at the dataset, the component structure be-
comes clearer:

> data.frame(f1,f2,comp=est$cfactor)

f1 f2 comp

1 0.4 0.6 1

2 0.4 0.8 1

3 0.1 0.7 1

4 0.8 0.5 1

5 0.4 0.7 1

6 0.8 0.2 1

7 0.8 0.3 1

8 0.6 0.7 1

9 0.8 0.6 1

10 0.5 0.2 1

11 0.3 0.1 1

12 0.3 0.2 1

13 0.4 0.2 1

14 0.7 0.4 2

15 0.1 0.2 1

16 0.6 0.6 1

17 0.6 0.1 1

18 0.2 0.4 2

19 0.3 0.5 1

20 0.5 0.1 1

Observation 14 and 18 belong to component 2; no other observation has f1=0.7,
f1=0.2 or f2=0.4, thus it is clear that coefficients for these can not be compared
to other coefficients. lm is silent about this component structure, hence coefficients
are hard to interpret. Though, predictive properties and residuals are the same:
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> f1 <- factor(f1); f2 <- factor(f2)

> summary(lm(y ~ x1 + f1 + f2))

Call:

lm(formula = y ~ x1 + f1 + f2)

Residuals:

1 2 3 4 5 6 7

4.181e-01 4.718e-16 6.357e-01 4.906e-01 -1.399e+00 -2.261e-01 1.943e-16

8 9 10 11 12 13 14

7.637e-01 -2.645e-01 2.048e-01 8.148e-01 -3.243e-01 9.813e-01 1.527e-16

15 16 17 18 19 20

-6.357e-01 -1.536e-01 -6.101e-01 -1.249e-16 -4.906e-01 -2.048e-01

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.372264 1.212957 0.307 0.77129

x1 2.530517 0.377104 6.710 0.00111 **

f10.2 -0.453364 2.028662 -0.223 0.83201

f10.3 -1.063155 1.248670 -0.851 0.43340

f10.4 0.196902 1.074944 0.183 0.86186

f10.5 0.102867 1.270095 0.081 0.93859

f10.6 1.036744 1.153771 0.899 0.41006

f10.7 0.472692 1.670068 0.283 0.78849

f10.8 0.550159 1.259446 0.437 0.68046

f20.2 0.004011 0.969131 0.004 0.99686

f20.3 -1.514655 1.563449 -0.969 0.37714

f20.4 NA NA NA NA

f20.5 -1.890512 1.504645 -1.256 0.26446

f20.6 -0.880308 1.111697 -0.792 0.46434

f20.7 -0.605099 1.097276 -0.551 0.60506

f20.8 -0.964641 1.585714 -0.608 0.56954

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.126 on 5 degrees of freedom

Multiple R-squared: 0.9735, Adjusted R-squared: 0.8991

F-statistic: 13.1 on 14 and 5 DF, p-value: 0.005105

3. Identification with three or more factors

In the case with three or more factors, there is no general intuitive theory (yet)
for handling identification problems. lfe resorts to the simple-minded approach that
non-obvious multicollinearities arise among the first two factors, and assumes it is
sufficient with a single reference level for each of the remaining factors, i.e. that
they in principle could be specified as ordinary dummies. In other words, the order
of the factors in the model specification is important. A typical example would be
3 factors; individuals, firms and education:

> est <- felm(logwage ~ x1 + x2 + G(id) + G(firm) + G(edu))

> getfe(est)
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This will result in the same number of references as if using the model

> logwage ~ x1 + x2 + G(id) + G(firm) + edu

though it may run faster (or slower).
Alternatively, one could specify the model as

> logwage ~ x1 + x2 + G(firm) + G(edu) + G(id)

This would not account for a partioning of the labour market along individ-
ual/firm, but along firm/education, using a single reference level for the individuals.
In this example, there is some reason to suspect that it is not sufficient, depending
on how edu is specified. There exists no general scheme that sets up suitable refer-
ence groups when there are more than two factors. It may happen that the default
is sufficient. The function getfe will check whether this is so, and it will yield a
warning about ’non-estimable function’ if not. With some luck it may be possible
to rearrange the order of the factors to avoid this situation.

There is nothing special with lfe in this respect. You will meet the same problem
with lm, it will remove a reference level (or dummy-variable) in each factor, but
the system will still contain multicollinearities. You may remove reference levels
until all the multicollinearities are gone, but there is no obvious way to interpret
the resulting coefficients.

To illustrate, the classical example is when you include a factor for age (in
years), a factor for observation year, and a factor for year of birth. You pick
a reference individual, e.g. age=50, year=2013 and birth=1963, but this is not
sufficient to remove all the multicollinearities. If you analyze this problem (see e.g.
[6]) you will find that the coefficients are only identified up to linear trends. You may
force the linear trend between birth=1963 and birth=1990 to zero, by removing
the reference level birth=1990, and the system will be free of multicollinearities.
In this case the birth coefficients have the interpretation as being deviations from
a linear trend between 1963 and 1990, though you do not know which linear trend.
The age and year coefficients are also relative to this same unknown trend.

In the above case, the multicollinearity is obviously built into the model, and
it is possible to remove it and find some intuitive interpretation of the coefficients.
In the general case, when either lm or getfe reports a handful of non-obvious
spurious multicollinearites between factors with many levels, you probably will not
be able to find any reasonable way to interpret coefficients. Of course, certain linear
combinations of coefficients will be unique, i.e. estimable, and these may be found
by e.g. the procedures in [5, 8], but the general picture is muddy.

lfe does not provide a solution to this problem, however, getfe will still provide
a vector of coefficients which results from finding a non-unique solution to a certain
set of equations. To get any sense from this, an estimable function must be applied.
The simplest one is to pick a reference for each factor and subtract this coefficient
from each of the other coefficients in the same factor, and add it to a common
intercept, however in the case this does not result in an estimable function, you
are out of luck. If you for some reason believe that you know of an estimable
function, you may provide this to getfe via the ef-argument. There is an example
in the getfe documentation. You may also test it for estimability with the function
is.estimable, this is a probabilistic test which almost never fails (see [4, Remark
6.2]).
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4. Specifying an estimable function

A model of the type

> y ~ x1 + x2 + f1 + f2 + f3

may be written in matrix notation as

(1) y = Xβ +Dα+ ε,

where X is a matrix with columns x1 and x2 and D is matrix of dummies con-
structed from the levels of the factors f1,f2,f3. Formally, an estimable function
in our context is a matrix operator whose row space is contained in the row space of
D. That is, an estimable function may be written as a matrix. Like the contrasts

argument to lm. However, the lfe package uses an R-function instead. That is,
felm is called first, it uses the Frisch-Waugh-Lovell theorem to project out the Dα
term from (1) (see [4, Remark 3.2]):

> est <- felm(y ~ x1 + x2 + G(f1)+G(f2)+G(f3))

This yields the parameters for x1 and x2, i.e. β̂. To find α̂, the parameters for
the levels of f1,f2,f3, getfe solves a certain linear system (see [4, eq. (14)]):

(2) Dγ = ρ

where the vector ρ can be computed when we have β̂. This does not identify γ
uniquely, we have to apply an estimable function to γ. The estimable function F
is characterized by the property that Fγ1 = Fγ2 whenever γ1 and γ2 are solutions
to equation (2). Rather than coding F as a matrix, lfe codes it as a function. It
is of course possible to let the function apply a matrix, so this is not a material
distinction. So, let’s look at an example of how an estimable function may be made:

> library(lfe)

> x1 <- rnorm(100)

> f1 <- sample(7,100,replace=TRUE)

> f2 <- sample(8,100,replace=TRUE)/8

> f3 <- sample(10,100,replace=TRUE)/10

> e1 <- sin(f1) + 0.02*f2^2 + 0.17*f3^3 + rnorm(100)

> y <- 2.5*x1 + (e1-mean(e1))

> summary(est <- felm(y ~ x1 + G(f1) + G(f2) + G(f3)))

Call:

felm(formula = y ~ x1 + G(f1) + G(f2) + G(f3))

Residuals:

Min 1Q Median 3Q Max

-1.88686 -0.72519 -0.07878 0.75584 2.30499

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 2.354 0.112 21.03 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.076 on 76 degrees of freedom

Multiple R-squared: 0.9005 Adjusted R-squared: 0.8691
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F-statistic: 29.91 on 23 and 76 DF, p-value: < 2.2e-16

*** Standard errors may be too high due to more than 2 groups and exactDOF=FALSE

In this case, with 3 factors we can not be certain that it is sufficient with a
single reference in two of the factors, but we try it as an exercise. (lfe does not
include an intercept, it is subsumed in one of the factors, so it should tentatively
be sufficient with a reference for the two others).

The input to our estimable function is a solution γ of equation (2). The ar-
gument addnames is a logical, set to TRUE when the function should add names to
the resulting vector. The coefficients is ordered the same way as the levels in the
factors. We should pick a single reference in factors f2,f3, subtract these, and add
the sum to the first factor:

> ef <- function(gamma,addnames) {

+ ref2 <- gamma[[8]]

+ ref3 <- gamma[[16]]

+ gamma[1:7] <- gamma[1:7]+ref2+ref3

+ gamma[8:15] <- gamma[8:15]-ref2

+ gamma[16:25] <- gamma[16:25]-ref3

+ if(addnames) {

+ names(gamma) <- c(paste('f1',1:7,sep='.'),
+ paste('f2',1:8,sep='.'),
+ paste('f3',1:10,sep='.'))
+ }

+ gamma

+ }

> is.estimable(ef,fe=est$fe)

[1] TRUE

> getfe(est,ef=ef)

effect

f1.1 0.855295895

f1.2 0.323043910

f1.3 -0.146408669

f1.4 -1.304526972

f1.5 -1.210151012

f1.6 -0.852878418

f1.7 -0.646232831

f2.1 0.000000000

f2.2 0.002497546

f2.3 -0.602876990

f2.4 1.133586033

f2.5 0.346222171

f2.6 -0.043523593

f2.7 0.425860658

f2.8 0.445270489

f3.1 0.000000000

f3.2 0.068917817

f3.3 0.587689891

f3.4 0.295036592
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f3.5 -0.052249653

f3.6 0.618678759

f3.7 -0.212497627

f3.8 -0.017318264

f3.9 -0.571389626

f3.10 0.782763900

We may compare this to the default estimable function, which picks a reference
in each connected component as defined by the two first factors.

> getfe(est)

effect obs comp fe idx

f1.1 0.53225199 16 1 f1 1

f1.2 0.00000000 17 1 f1 2

f1.3 -0.46945258 15 1 f1 3

f1.4 -1.62757088 12 1 f1 4

f1.5 -1.53319492 12 1 f1 5

f1.6 -1.17592233 15 1 f1 6

f1.7 -0.96927674 13 1 f1 7

f2.0.125 0.61808050 10 1 f2 0.125

f2.0.25 0.62057805 16 1 f2 0.25

f2.0.375 0.01520351 15 1 f2 0.375

f2.0.5 1.75166654 13 1 f2 0.5

f2.0.625 0.96430267 12 1 f2 0.625

f2.0.75 0.57455691 14 1 f2 0.75

f2.0.875 1.04394116 10 1 f2 0.875

f2.1 1.06335099 10 1 f2 1

f3.0.1 -0.29503660 5 2 f3 0.1

f3.0.2 -0.22611878 9 2 f3 0.2

f3.0.3 0.29265330 10 2 f3 0.3

f3.0.4 0.00000000 13 2 f3 0.4

f3.0.5 -0.34728625 11 2 f3 0.5

f3.0.6 0.32364216 8 2 f3 0.6

f3.0.7 -0.50753422 8 2 f3 0.7

f3.0.8 -0.31235486 13 2 f3 0.8

f3.0.9 -0.86642622 12 2 f3 0.9

f3.1 0.48772731 11 2 f3 1

We see that the default has some more information. It uses the level names, and
some more information, added like this:

> efactory(est)

function (v, addnames)

{

esum <- sum(v[extrarefs])

df <- v[refsubs]

sub <- ifelse(is.na(df), 0, df)

df <- v[refsuba]

add <- ifelse(is.na(df), 0, df + esum)

v <- v - sub + add

if (addnames) {
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names(v) <- nm

attr(v, "extra") <- list(obs = obs, comp = comp, fe = fef,

idx = idx)

}

v

}

<bytecode: 0x7a6efd8>

<environment: 0x7e463b0>

I.e. when asked to provide level names, it is also possible to add additional
information as a list (or data.frame) as an attribute ’extra’. The vectors
extrarefs,refsubs,refsuba etc. are precomputed by efactory for speed effi-
ciency.

Here is the above example, but we create an intercept instead, and don’t report
the zero-coefficients, so that it closely resembles the output from lm

> f1 <- factor(f1); f2 <- factor(f2); f3 <- factor(f3)

> ef <- function(gamma,addnames) {

+ ref1 <- gamma[[1]]

+ ref2 <- gamma[[8]]

+ ref3 <- gamma[[16]]

+ # put the intercept in the first coordinate

+ gamma[[1]] <- ref1+ref2+ref3

+ gamma[2:7] <- gamma[2:7]-ref1

+ gamma[8:14] <- gamma[9:15]-ref2

+ gamma[15:23] <- gamma[17:25]-ref3

+ length(gamma) <- 23

+ if(addnames) {

+ names(gamma) <- c('(Intercept)',paste('f1',levels(f1)[2:7],sep=''),
+ paste('f2',levels(f2)[2:8],sep=''),
+ paste('f3',levels(f3)[2:10],sep=''))
+ }

+ gamma

+ }

> getfe(est,ef=ef,bN=1000,se=TRUE)

effect se

(Intercept) 0.855295903 0.6580799

f12 -0.532251987 0.3754300

f13 -1.001704566 0.3997481

f14 -2.159822874 0.4704065

f15 -2.065446909 0.4173907

f16 -1.708174311 0.3850300

f17 -1.501528728 0.4339135

f20.25 0.002497546 0.4267723

f20.375 -0.602876990 0.4465194

f20.5 1.133586032 0.4565473

f20.625 0.346222166 0.4795252

f20.75 -0.043523593 0.4328772

f20.875 0.425860660 0.5289203

f21 0.445270485 0.4800787
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f30.2 0.068917811 0.6143404

f30.3 0.587689886 0.6300515

f30.4 0.295036587 0.6098390

f30.5 -0.052249658 0.5947964

f30.6 0.618678755 0.6528433

f30.7 -0.212497630 0.6462748

f30.8 -0.017318268 0.5840338

f30.9 -0.571389632 0.5805968

f31 0.782763894 0.6231075

> #compare with lm

> summary(lm(y ~ x1 + f1 + f2 + f3))

Call:

lm(formula = y ~ x1 + f1 + f2 + f3)

Residuals:

Min 1Q Median 3Q Max

-1.88686 -0.72519 -0.07878 0.75584 2.30499

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.855296 0.714043 1.198 0.234709

x1 2.354480 0.111959 21.030 < 2e-16 ***

f12 -0.532252 0.401350 -1.326 0.188760

f13 -1.001705 0.424620 -2.359 0.020891 *

f14 -2.159823 0.506491 -4.264 5.70e-05 ***

f15 -2.065447 0.458213 -4.508 2.34e-05 ***

f16 -1.708174 0.417543 -4.091 0.000106 ***

f17 -1.501529 0.452579 -3.318 0.001395 **

f20.25 0.002498 0.469734 0.005 0.995772

f20.375 -0.602877 0.483709 -1.246 0.216459

f20.5 1.133586 0.502050 2.258 0.026821 *

f20.625 0.346222 0.503912 0.687 0.494131

f20.75 -0.043524 0.480941 -0.090 0.928131

f20.875 0.425861 0.558136 0.763 0.447823

f21 0.445270 0.535713 0.831 0.408479

f30.2 0.068918 0.641433 0.107 0.914720

f30.3 0.587690 0.633119 0.928 0.356219

f30.4 0.295037 0.636733 0.463 0.644430

f30.5 -0.052250 0.624295 -0.084 0.933520

f30.6 0.618679 0.666068 0.929 0.355907

f30.7 -0.212498 0.643462 -0.330 0.742126

f30.8 -0.017318 0.600979 -0.029 0.977086

f30.9 -0.571390 0.617176 -0.926 0.357474

f31 0.782764 0.639550 1.224 0.224759

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.076 on 76 degrees of freedom
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Multiple R-squared: 0.9005, Adjusted R-squared: 0.8704

F-statistic: 29.91 on 23 and 76 DF, p-value: < 2.2e-16

5. Non-estimability

We consider another example. To ensure spurious relations there are almost
as many factor levels as there are observations, and it will be hard to find enough
estimable function to interpret all the coefficients. The coefficient for x1 is still
estimated, but with a large standard error. Note that this is an illustration of non-
obvious non-estimability which may occur in much larger datasets, the author does
not endorse using this kind of model for the kind of data you find below.

> set.seed(128)

> x1 <- rnorm(25)

> f1 <- sample(9,length(x1),replace=TRUE)

> f2 <- sample(8,length(x1),replace=TRUE)

> f3 <- sample(8,length(x1),replace=TRUE)

> e1 <- sin(f1) + 0.02*f2^2 + 0.17*f3^3 + rnorm(length(x1))

> y <- 2.5*x1 + (e1-mean(e1))

> summary(est <- felm(y ~ x1 + G(f1) + G(f2) + G(f3)))

Call:

felm(formula = y ~ x1 + G(f1) + G(f2) + G(f3))

Residuals:

Min 1Q Median 3Q Max

-8.703e-01 -3.681e-01 -4.261e-13 1.484e-01 1.884e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 1.4080 0.4698 2.997 0.0302 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.303 on 5 degrees of freedom

Multiple R-squared: 0.9997 Adjusted R-squared: 0.9986

F-statistic: 932.5 on 19 and 5 DF, p-value: 1.344e-07

*** Standard errors may be too high due to more than 2 groups and exactDOF=FALSE

The default estimable function fails, and the coefficients from getfe are not
useable. getfe yields a warning in this case.

> ef <- efactory(est)

> is.estimable(ef,est$fe)

[1] FALSE

Indeed, the rank-deficiency is larger than expected. There are more spurious
relations between the factors than what can be accounted for by looking at com-
ponents in the two first factors. In this low-dimensional example we may find the
matrix D of equation (2), and its (column) rank deficiency is larger than 2.

> f1 <- factor(f1); f2 <- factor(f2); f3 <- factor(f3)

> D <- t(do.call('rBind',
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+ lapply(list(f1,f2,f3),as,Class='sparseMatrix')))
> dim(D)

[1] 25 21

> as.integer(rankMatrix(D))

[1] 18

Alternatively we can use an internal function in lfe for finding the rank deficiency
directly.

> lfe:::rankDefic(list(f1,f2,f3))

[1] 3

This rank-deficiency also has an impact on the standard errors computed by
felm. If the rank-deficiency is small relative to the degrees of freedom the standard
errors are scaled slightly upwards if we ignore the rank deficiency, but if it is large,
the impact on the standard errors can be substantial. The above mentioned rank-
computation procedure can be activated by specifying exactDOF=TRUE in the call
to felm, but it may be time-consuming if the factors have many levels. Computing
the rank does not in itself help us find estimable functions for getfe.

> summary(est <- felm(y ~ x1 + G(f1) + G(f2) + G(f3), exactDOF=TRUE))

Call:

felm(formula = y ~ x1 + G(f1) + G(f2) + G(f3), exactDOF = TRUE)

Residuals:

Min 1Q Median 3Q Max

-8.703e-01 -3.681e-01 -4.261e-13 1.484e-01 1.884e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 1.4080 0.4289 3.283 0.0168 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.189 on 6 degrees of freedom

Multiple R-squared: 0.9997 Adjusted R-squared: 0.9988

F-statistic: 1181 on 18 and 6 DF, p-value: 3.699e-09

We can get an idea what happens if we keep the dummies for f3. In this case,
with 2 factors, lfe will partition the dataset into connected components and account
for all the multicollinearities among the factors f1 and f2 just as above, but this is
not sufficient. The interpretation of the resulting coefficients is not straightforward.

> summary(est <- felm(y ~ x1 + G(f1) + G(f2) + f3, exactDOF=TRUE))

Call:

felm(formula = y ~ x1 + G(f1) + G(f2) + f3, exactDOF = TRUE)

Residuals:

Min 1Q Median 3Q Max

-8.703e-01 -3.681e-01 -1.010e-15 1.484e-01 1.884e+00

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

x1 1.4080 0.4289 3.283 0.0168 *

f32 0.6968 1.0579 0.659 0.5346

f33 4.2314 1.5438 2.741 0.0337 *

f34 NA NA NA NA

f35 19.4888 1.1596 16.807 2.83e-06 ***

f36 35.6836 2.2637 15.764 4.13e-06 ***

f37 57.7721 1.1852 48.745 5.00e-09 ***

f38 86.4976 1.2263 70.535 5.46e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.189 on 6 degrees of freedom

Multiple R-squared: 0.9997 Adjusted R-squared: 0.9988

F-statistic: 1181 on 18 and 6 DF, p-value: 3.699e-09

> getfe(est)

effect obs comp fe idx

f1.1 -34.5246100 4 1 f1 1

f1.2 -33.3981895 5 1 f1 2

f1.3 -34.6697810 6 1 f1 3

f1.5 -27.3871015 1 1 f1 5

f1.6 -35.7423130 5 1 f1 6

f1.7 -36.4467839 1 1 f1 7

f1.9 -32.2794852 3 1 f1 9

f2.2 -0.4036936 3 1 f2 2

f2.3 1.8848221 3 1 f2 3

f2.5 -2.6807139 2 1 f2 5

f2.6 0.0000000 8 1 f2 6

f2.7 0.8925205 4 1 f2 7

f2.8 0.9552711 5 1 f2 8

In this particular example, we may use a different order of the factors, and we
see that by partitioning the dataset on the factors f1,f3 instead of f1,f2, there
are 2 connected components (the factor f2 gets its own comp-code, but this is not
a graph theoretic component number, it merely indicates that there is a separate
reference among these).

> summary(est <- felm(y ~ x1 + G(f1) + G(f3) + G(f2), exactDOF=TRUE))

Call:

felm(formula = y ~ x1 + G(f1) + G(f3) + G(f2), exactDOF = TRUE)

Residuals:

Min 1Q Median 3Q Max

-8.703e-01 -3.681e-01 -7.006e-13 1.484e-01 1.884e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 1.4080 0.4289 3.283 0.0168 *

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.189 on 6 degrees of freedom

Multiple R-squared: 0.9997 Adjusted R-squared: 0.9988

F-statistic: 1181 on 18 and 6 DF, p-value: 3.699e-09

> is.estimable(efactory(est),est$fe)

[1] TRUE

> getfe(est)

effect obs comp fe idx

f1.1 0.1451709 4 1 f1 1

f1.2 1.2715915 5 1 f1 2

f1.3 0.0000000 6 1 f1 3

f1.5 0.0000000 1 2 f1 5

f1.6 -1.0725321 5 1 f1 6

f1.7 -1.7770027 1 1 f1 7

f1.9 2.3902960 3 1 f1 9

f3.1 -34.6697808 4 1 f3 1

f3.2 -33.9730301 4 1 f3 2

f3.3 -30.4384044 1 1 f3 3

f3.4 -27.3871016 1 2 f3 4

f3.5 -15.1809403 4 1 f3 5

f3.6 1.0137745 2 1 f3 6

f3.7 23.1023365 3 1 f3 7

f3.8 51.8278127 6 1 f3 8

f2.2 -0.4036936 3 3 f2 2

f2.3 1.8848219 3 3 f2 3

f2.5 -2.6807138 2 3 f2 5

f2.6 0.0000000 8 3 f2 6

f2.7 0.8925205 4 3 f2 7

f2.8 0.9552711 5 3 f2 8

>

Below is the same estimation in lm. We see that the coefficient for x1 is identical
to the one from felm, but there is no obvious relation between e.g. the coefficients
for f1; the difference f15-f16 is not the same for lm and felm. Since these are in
different components, they are not comparable. But of course, if we compare in the
same component, e.g. f16-f17 or take a combination which actually occurs in the
dataset, it is unique (estimable):

> data.frame(f1,f2,f3)[1,]

f1 f2 f3

1 1 6 7

I.e. if we add the coefficients f1.1 + f2.6 + f3.7 and include the intercept for
lm, we will get the same number for both lm and felm.

> summary(est <- lm(y ~ x1 + f1 + f2 + f3))

Call:

lm(formula = y ~ x1 + f1 + f2 + f3)
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Residuals:

Min 1Q Median 3Q Max

-0.8703 -0.3681 0.0000 0.1484 1.8842

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -34.9283 0.9814 -35.590 3.28e-08 ***

x1 1.4080 0.4289 3.283 0.01677 *

f12 1.1264 1.3539 0.832 0.43726

f13 -0.1452 1.1624 -0.125 0.90469

f15 7.1375 1.8223 3.917 0.00783 **

f16 -1.2177 1.4116 -0.863 0.42147

f17 -1.9222 2.2396 -0.858 0.42369

f19 2.2451 1.9249 1.166 0.28772

f23 2.2885 1.5620 1.465 0.19325

f25 -2.2770 1.4553 -1.565 0.16871

f26 0.4037 1.1870 0.340 0.74538

f27 1.2962 1.5285 0.848 0.42894

f28 1.3590 1.4770 0.920 0.39302

f32 0.6968 1.0579 0.659 0.53457

f33 4.2314 1.5438 2.741 0.03370 *

f34 NA NA NA NA

f35 19.4888 1.1596 16.807 2.83e-06 ***

f36 35.6836 2.2637 15.764 4.13e-06 ***

f37 57.7721 1.1852 48.745 5.00e-09 ***

f38 86.4976 1.2263 70.535 5.46e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.189 on 6 degrees of freedom

Multiple R-squared: 0.9997, Adjusted R-squared: 0.9989

F-statistic: 1181 on 18 and 6 DF, p-value: 3.699e-09

6. Weeks-Williams partitions

There is a partial solution to the non-estimability problem in [8]. Their idea
is to partition the dataset into components in which all differences between factor
levels are estimable. The components are connected components of a subgraph of
an e-dimensional grid graph where e is the number of factors. That is, a graph is
constructed with the observations as vertices, two observations are adjacent (in a
graph theoretic sense) if they differ in at most one of the factors. The dataset is then
partitioned into (graph theoretic) connected components. It’s a finer partitioning
than the above, and consequently introduces more reference levels than is necessary
for identification. I.e. it does not find all estimable functions, but in some cases
(e.g. in [7]) the largest component will be sufficiently large for proper analysis. It is
of course always a question whether such an endogeneous selection of observations
will yield a dataset which results in unbiased coefficients. This partitioning can be
done by the compfactor function with argument WW=TRUE:
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> fe <- list(f1,f2,f3)

> wwcomp <- compfactor(fe, WW=TRUE)

It has more levels than the rank deficiency

> lfe:::rankDefic(fe)

[1] 3

> nlevels(wwcomp)

[1] 10

and each of its components are contained in a component of the previously con-
sidered components, no matter which two factors we consider. For the case of two
factors, the concepts coincide.

> nlevels(interaction(compfactor(fe),wwcomp))

[1] 10

> # pick the largest component:

> wwdata <- data.frame(y, x1, f1, f2, f3)[wwcomp==1, ]

> print(wwdata)

y x1 f1 f2 f3

2 52.90863 0.482611999 2 6 8

8 54.99005 0.004552681 2 6 8

11 -13.28338 0.322709391 2 8 5

15 54.61962 0.684795317 2 7 8

16 -35.09158 -0.883670355 3 6 2

17 56.12736 0.722126561 9 7 8

19 -14.59621 -0.563255192 2 6 5

20 -18.93693 -1.644454913 6 6 5

21 -34.36695 0.359965899 3 2 2

25 52.12814 0.589059932 3 6 8

Though, in this particular example, there are more parameters than there are ob-
servations, so an estimation would not be feasible.

efactory cannot easily be modified to produce an estimable function corre-
sponding to WW components. The reason is that efactory, and the logic in
getfe, work on partitions of factor levels, not on partitions of the dataset, these
are the same for the two-factor case.

WW partitions have the property that if you pick any two of the factors and
partition a WW-component into the previously mentioned non-WW partitions,
there will be only one component, hence you may use any of the estimable functions
from efactory on each partition. That is, a way to use WW partitions with lfe is
to do the whole analysis on the largest WW-component. felm may still be used on
the whole dataset, and it may yield different results than what you get by analysing
the largest WW-component.

Here is a larger example:

> set.seed(135)

> x <- rnorm(10000)

> f1 <- sample(1000,length(x),replace=TRUE)

> f2 <- (f1 + sample(18,length(x), replace=TRUE)) %% 500

> f3 <- (f2 + sample(9,length(x),replace=TRUE)) %% 500

> y <- x + 1e-4*f1 + sin(f2^2) +
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+ cos(f3)^3 + 0.5*rnorm(length(x))

> dataset <- data.frame(y,x,f1,f2,f3)

> summary(est <- felm(y ~ x + G(f1) + G(f2) + G(f3),

+ data=dataset, exactDOF=TRUE))

Call:

felm(formula = y ~ x + G(f1) + G(f2) + G(f3), data = dataset, exactDOF = TRUE)

Residuals:

Min 1Q Median 3Q Max

-1.929087 -0.305385 0.000243 0.305398 1.921153

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 0.999908 0.005646 177.1 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5053 on 8001 degrees of freedom

Multiple R-squared: 0.9035 Adjusted R-squared: 0.8794

F-statistic: 37.48 on 1998 and 8001 DF, p-value: < 2.2e-16

We count the number of connected components in f1,f2, and see that this is
sufficient to ensure estimability

> nlevels(est$cfactor)

[1] 1

> is.estimable(efactory(est), est$fe)

[1] TRUE

> nrow(alpha <- getfe(est))

[1] 2000

It has rank deficiency one less than the number of factors :

> lfe:::rankDefic(est$fe)

[1] 2

Then we analyse the largest WW-component

> wwcomp <- compfactor(est$fe,WW=TRUE)

> nlevels(wwcomp)

[1] 958

> wwset <- dataset[wwcomp == 1, ]

> nrow(wwset)

[1] 2394

> summary(wwest <- felm(y ~ x + G(f1) + G(f2) + G(f3),

+ data=wwset, exactDOF=TRUE))

Call:

felm(formula = y ~ x + G(f1) + G(f2) + G(f3), data = wwset, exactDOF = TRUE)

Residuals:

Min 1Q Median 3Q Max
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-1.8828643 -0.2949762 0.0001938 0.2943913 2.0374621

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 1.00290 0.01201 83.51 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5138 on 1788 degrees of freedom

Multiple R-squared: 0.9111 Adjusted R-squared: 0.8809

F-statistic: 30.28 on 605 and 1788 DF, p-value: < 2.2e-16

We see that we get the same coefficient for x in this case. This is not surprising,
there is no obvious reason to believe that our selection of observations is skewed in
this randomly created dataset.

This one has the same rank deficiency:

> lfe:::rankDefic(wwest$fe)

[1] 2

but a smaller number of identifiable coefficients.

> nrow(wwalpha <- getfe(wwest))

[1] 607

We may compare effects which are common to the two methods:

> head(alpha)

effect obs comp fe idx

f1.1 -0.5541796 6 1 f1 1

f1.2 -0.2755604 13 1 f1 2

f1.3 -0.5763353 6 1 f1 3

f1.4 -0.5413368 8 1 f1 4

f1.5 -0.5696979 13 1 f1 5

f1.6 -0.4250255 9 1 f1 6

> head(wwalpha)

effect obs comp fe idx

f1.1 -1.27887479 3 1 f1 1

f1.2 -0.34865371 7 1 f1 2

f1.3 -0.95120588 4 1 f1 3

f1.4 -1.04718930 1 1 f1 4

f1.6 -0.89773364 4 1 f1 6

f1.7 0.04965163 1 1 f1 7

but there is no obvious relation between e.g. f1.1 - f1.2, they are very different
in the two estimations. The coefficients are from different datasets, and the stan-
dard errors are large (≈ 0.7) with this few observations for each factor level. The
number of identified coefficients for each factor varies (these figures contain the two
references):

> table(wwalpha[,'fe'])

f1 f2 f3

310 148 149
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