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Abstract. If you use lfe for various tasks, you will notice that some estima-

tions converge fast, whereas others converge slowly. Convergence rate of the
methods used by lfe is not a walk in the park. Here are some examples.

1. Introduction

The method employed by lfe is the method of alternating projections ([6]). The
link to this method comes from viewing demeaning of a vector as a projection ([3]),
i.e. a linear operator P with the property P 2 = P = P t. Also, the Kaczmarz-
method used by lfe to solve the sparse resulting system is a variant of alternating
projections, though P is then an affine projection with P 2 = P , not a linear oper-
ator. That is, if the projection demeaning factor i is Pi, their intersection which
demeans all factors is limn→∞(P1P2 · · ·Pe)

n. We can therefore iterate the operator
T = P1P2 · · ·Pe on a vector x: Tnx, to demean x.

The convergence rate has been analysed in [2] and references cited therein; there
are also newer elaborations, e.g. in [1]. The convergence rate theory is in terms
of generalized angles between subspaces, i.e. the ranges of the projections. The
angle concept may not be immediately intuitive to practioners of linear regression
methods, so let’s have a look at some examples.

2. Examples

Our first example has two factors, they are independent of each other, and of
quite high cardinality

> library(lfe)

> set.seed(42)

> x <- rnorm(100000)

> f1 <- sample(10000,length(x),replace=TRUE)

> f2 <- sample(10000,length(x),replace=TRUE)

> y <- x + cos(f1) + log(f2+1) + rnorm(length(x), sd=0.5)

We time the first step:

> system.time(est <- felm(y ~ x + G(f1) + G(f2)))

user system elapsed

2.724 0.016 2.489

and the second step
1
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> system.time(alpha <- getfe(est))

user system elapsed

1.100 0.016 1.119

We see that there’s nothing to complain about in terms of speed. After all, there
are 20,000 dummies in this model.

Now we let f2 have fewer levels:

> f2 <- sample(300,length(x),replace=TRUE)

> y <- x + cos(f1) + log(f2+1) + rnorm(length(x), sd=0.5)

> system.time(est <- felm(y ~ x + G(f1) + G(f2)))

user system elapsed

3.112 0.004 2.871

> system.time(alpha <- getfe(est))

user system elapsed

0.276 0.008 0.286

Not much happens, the second step is apparently faster, whereas the first is about
the same. Note that much of the time in the first step is spent in mundane book-
keeping such as creating a model matrix, not in the demeaning as such.

Now we make the fixed effects dependent. We do this by ensuring that for each
value of f1 there are at most 20 different values of f2. We keep the number of levels
in f2 at 300, as in the previous example. The size of this problem is exactly the
same as in the previous example, but the factor structure is very different.

> f2 <- (f1 + sample(20,length(x),replace=TRUE)) %% 300

> y <- x + cos(f1) + log(f2+1) + rnorm(length(x), sd=0.5)

> system.time(est <- felm(y ~ x + G(f1) + G(f2)))

user system elapsed

5.896 0.000 4.319

> system.time(alpha <- getfe(est))

user system elapsed

0.493 0.000 0.493

Then we modify it more, now having only 5 different values of f2 for each f1.
This is below the average group size in f1, which is 10.

> f2 <- (f1 + sample(5,length(x),replace=TRUE)) %% 300

> y <- x + cos(f1) + log(f2+1) + rnorm(length(x), sd=0.5)

> system.time(est <- felm(y ~ x + G(f1) + G(f2)))

user system elapsed

63.772 0.008 33.355

> system.time(alpha <- getfe(est))

user system elapsed

4.824 0.000 4.830

> nlevels(est[['cfactor']]) # number of connected components

[1] 1

The estimation now takes an order of magnitude more time. Indeed, in this case, it
is worthwile to consider coding f2 as 300 dummies, i.e. as an ordinary factor, even
though there now are ≈ 300 vectors to centre, as opposed to two in the previous
examples.
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> system.time(est <- felm(y ~ x + G(f1) + factor(f2)))

user system elapsed

14.397 1.820 9.654

> system.time(alpha <- getfe(est))

user system elapsed

0.180 0.004 0.183

We could be tempted to believe that this is the whole story, but it’s not. We
may create another example, where each f1 only has 5 different f2’s as above, but
where the overlap is different. In the above example, an observation with f1=1

will have f2 drawn from {2,3,4,5,6}, whereas an observation with f1=2 will have
f2 in {3,4,5,6,7} and so on, i.e. a considerable overlap. We reduce this overlap by
creating f2 with a little twist, by introducing some unevenly sized “holes” by cubing
the samples of 1:5.

> f2 <- (f1 + sample(5,length(x),replace=TRUE)^3) %% 300

> y <- x + cos(f1) + log(f2+1) + rnorm(length(x), sd=0.5)

> system.time(est <- felm(y ~ x + G(f1) + G(f2)))

user system elapsed

2.808 0.000 2.578

> system.time(alpha <- getfe(est))

user system elapsed

0.244 0.004 0.249

> nlevels(est[['cfactor']])
[1] 1

We are now back at approximately the same fast convergence as before. That is,
convergence rate is not a simple function of data size, counts of levels and so on,
even when we have only two factors.

2.1. Why? In the examples above we have played with the structure of the
bipartite graph mentioned in [3], indicating that convergence rate is not a function
solely of the average degree and number of connected components of the graph.
Intuitively (to the author), the graph determines the convergence rate, at least
in the operator norm topology, but it is unclear to me whether the rate can be
described in simple graph theoretic terms, let alone in terms of some intuitive
relations between dummy variables.

One could speculate that convergence is related to how tightly connected the
graph is, one such measure is the diameter of the graph, or the set of lengths
of shortest paths. We don’t compute it exactly in this autogenerated document, it
takes too long time. Instead we get an indication by taking a sample of the shortest
paths. However, to avoid making this package dependent on the package igraph
(where the necessary tools are, but we only use it in this vignette), we just outline
the steps:

> mkgraph <- function(f1,f2)

+ graph.adjacency(tcrossprod(rBind(as(factor(f1),'sparseMatrix'),
+ as(factor(f2),'sparseMatrix')))>0,
+ 'undirected',diag=FALSE)
> f2 <- sample(10000,length(x),replace=TRUE)

> fivenum(shortest.paths(mkgraph(f1,f2),
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+ v=sample(20000,10),to=sample(20000,10)))

> f2 <- (f1 + sample(5,length(x),replace=TRUE)^3) %% 300

> fivenum(shortest.paths(mkgraph(f1,f2),

+ v=sample(10300,10), to=sample(10300,10)))

> f2 <- (f1 + sample(5,length(x),replace=TRUE)) %% 300

> fivenum(shortest.paths(mkgraph(f1,f2),

+ v=sample(10300,10), to=sample(10300,10)))

Loosely speaking, data with six degrees of separation(the two first; shortest path
median is around 5) seems to converge faster than less well connected networks(the
last; shortest path median is 43). However, the author has not had the time to
attempt to prove such an assertion.

Note that convergence rate in practice is also a function of the vector to be
centred, this can be seen from the trivial example when the vector is already centred
and convergence is attained after a single iteration.

It is a sad fact of life, shown in [2], that when there are more than two factors,
the convergence rate can not be determined solely by considering the angles of
pairs of subspaces. In [1] a generalized angle between a finite set of subspaces is
introduced for the purpose of analysis. It is left to the reader to imagine some
simple examples with more than two factors. A real example with three factors
can be found in [9], and real examples with up to five factors are treated in the
appendix of [3] as well as in [7].

3. Acceleration schemes

One point to note is that with more than two factors, even their order may be
important for the convergence rate, this has been utilized to speed up convergence in
some cases, picking a random order of the projections for each iteration, or sampling
randomly from the projections. One such scheme is used in [8], and randomization
is also treated in [1] and the papers they cite. Random shuffling of the equations
is now used in the Kaczmarz-step of lfe, i.e. in getfe, as suggested in [3].

Another acceleration scheme is found in [4], where a line search method is used
in each iteration. I.e. when a single iteration transforms our vector η 7→ η′, it is
fairly easy to find the exact point on the line {η + t(η′ − η) : t ∈ R} which is
closest to the solution. A future version of lfe will probably utilize a combination
of random ordering of factors and this line search method.

After publishing [3], the author was made aware that exactly the same method
of alternating projections was arrived at in [5, p. 637], though as a technical
simplification of the Gauss-Seidel method of iterated regressions. It is possible that
acceleration schemes for the Gauss-Seidel method may be applicable, though the
author has not yet looked into it.
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