Lucid printing
Kevin Wright
April 13, 2015

1 Abstract

The lucid package provides a function for printing vectors of floating point numbers in a human-friendly
format. An application is presented for printing of variance components from mixed models.

2 Intro

Numerical output from R is often in scientific notation, which can make it difficult to quickly glance at
numbers and understand the relative sizes of the numbers. This not a new phenomenon. Before R had been
created, (Finney, 1988, 351-352) had this to say about numerical output:

Certainly, in initiating analyses by standard software or in writing one's own software, the aim
should be to have output that is easy to read and easily intelligible to others. ... Especially
undesirable is the so-called 'scientific notation’ for numbers in which every number is shown as a
value between 0.0 and 1.0 with a power of 10 by which it must be multiplied. For example:

0.1234E00 is 0.1234
0.1234E02 is 12.34
0.1234E-1 is 0.01234

This is an abomination which obscures the comparison of related quantities; tables of means or of
analyses of variance become very difficult to read. It is acceptable as a default when a value is
unexpectedly very much larger or smaller than its companions, but its appearance as standard
output denotes either lazy programming or failure to use good software properly. Like avoidance of
'E’, neat arrangement of output values in columns, with decimal points on a vertical line, requires
extra effort by a programmer but should be almost mandatory for any software that is to be used
often.

One recommendation for improving the display of tables of numbers is to round numbers to 2 (Wainer, 1997)
or 3 (Feinberg and Wainer, 2011) digits. Feinberg and Wainer (2011) give the following justification for
aggresive rounding:

1. Humans cannot comprehend more than three digits very easily.
2. We almost never care about accuracy of more than three digits.
3. We can only rarely justify more than three digits of accuracy statistically.

In R, using the round and signif functions can be used to round to 3 digits of accuracy, but those functions
can still print results in scientific notation and leave much to be desired. The lucid package provides
functions to improve the presentation of floating point numbers in a clear (or lucid) way that makes
interpretation of the numbers immediately apparent.

Consider the following vector of coefficients from a fitted model:

#H effect
A -1.350000e+01
B 4.500000e+00
C 2.450000e+01
C1 6.927792e-14
C2 -1.750000e+00
D 1.650000e+01

(Intercept) 1.135000e+02

Which coeficient is basically zero? How large is the intercept?

Both questions can be answered using the output shown above, but it takes too much effort to answer the
questions. Now examine the same vector of coefficients with prettier formatting:

require("lucid")

options(digits=7)

lucid(df1)

it effect
A -13.5
B 4.5
C 24.5
C1 0

C2 =1, /5
D 16.5

(Intercept) 114

Which coeficient is basically zero? How large is the intercept?
Printing the numbers with the lucid function has made the questions much easier to answer.
The sequence of steps used by lucid to format and print the output is.

1. Zap small numbers to zero

2. Round using 3 significant digits (user controllable option)
3. Drop trailing zeros

4. Align numbers at the decimal point

The lucid package contains a generic function lucid with specific methods for numeric vectors, data frames,
and lists. The method for data frames applies formatting to each numeric column and leaves other columns
unchanged. The lucid function is primarily a formatting function, the results of which are passed to the
regular print functions.

3 Example: Antibiotic effectiveness

Wainer and Larsen (2009) present data published by Will Burtin in 1951 on the effectiveness of antibiotics
against 16 types of bacteria. The data is included in the lucid package as a dataframe called antibiotic.
The default view of this data is:

print(antibiotic)

#i#t bacteria penicillin streptomycin neomycin gramstain
1 Aerobacter aerogenes 870.000 1.00 1.600 neg
2 Brucella abortus 1.000 2.00 0.020 neg
3 Brucella antracis 0.001 0.01 0.007 pos
4 Diplococcus pneumoniae 0.005 11.00 10.000 pos
5 Escherichia coli 100.000 0.40 0.100 neg
6 Klebsiella pneumoniae 850.000 1.20 1.000 neg
#it 7 Mycobacterium tuberculosis 800.000 5.00 2.000 neg
8 Proteus vulgaris 3.000 0.10 0.100 neg
9 Pseudomonas aeruginosa 850.000 2.00 0.400 neg
10 Salmonella (Eberthella) typhosa 1.000 0.40 0.008 neg
11 Salmonella schottmuelleri 10.000 0.80 0.090 neg
12 Staphylococcus albus 0.007 0.10 0.001 pos
13 Staphylococcus aureus 0.030 0.03 0.001 pos
14 Streptococcus fecalis 1.000 1.00 0.100 pos
15 Streptococcus hemolyticus 0.001 14.00 10.000 pos
16 Streptococcus viridans 0.005 10.00 40.000 pos

Due to the wide range in magnitude of the values, nearly half of the floating-point numbers in the default view
contain trailing zeros after the decimal, which adds significant clutter and impedes interpretation. The lucid
display of the data is:

lucid(antibiotic)

#t bacteria penicillin streptomycin neomycin gramstain
#H# 1 Aerobacter aerogenes 870 1 1.6 neg
2 Brucella abortus 1 2 0.02 neg
3 Brucella antracis 0.001 0.01 0.007 pos
##t 4 Diplococcus pneumoniae 0.005 11 10 pos
5 Escherichia coli 100 0.4 0.1 neg
6 Klebsiella pneumoniae 850 1.2 1 neg
7 Mycobacterium tuberculosis 800 5 2 neg
8 Proteus vulgaris 3 0.1 0.1 neg
9 Pseudomonas aeruginosa 850 2 0.4 neg
10 Salmonella (Eberthella) typhosa 1 0.4 0.008 neg
11 Salmonella schottmuelleri 10 0.8 0.09 neg
12 Staphylococcus albus 0.007 0.1 0.001 pos
13 Staphylococcus aureus 0.03 0.03 0.001 pos
14 Streptococcus fecalis 1 1 0.1 pos
15 Streptococcus hemolyticus 0.001 14 10 pos
16 Streptococcus viridans 0.005 10 40 pos

The lucid display is dramatically simplified, providing a clear picture of the effectiveness of the antibiotics
against bacteria. This view of the data matches exactly the appearance of Table 1 in Wainer and Larsen
(2009).

A stem-and-leaf plot is a semi-graphical display of data, in that the positions of the numbers create a display
similar to a histogram. In a similar manner, the lucid output is a semi-graphical view of the data. The figure
below shows a dotplot of the penicillin values on a reverse logl0 scale. The values are also shown along the
right axis in lucid format. Note the similarity in the overall shape of the dots and the positions of the
left-most significant digit in the numerical value.

Warning: package ’lattice’ was built under R version 3.1.3

Aerobacter aerogenes o 870
Brucella abortus ° 1
Brucella antracis ° 0.001
Diplococcus pneumoniae o 0.005
Escherichia coli o 100
Klebsiella pneumoniae o 850
Mycobacterium tuberculosis o 800
Proteus vulgaris o 3
Pseudomonas aeruginosa o 850
Salmonella (Eberthella) typhosa ° 1
Salmonella schottmuelleri o 10
Staphylococcus albus o 0.007
Staphylococcus aureus o 0.03
Streptococcus fecalis ° 1
Streptococcus hemolyticus ° 0.001
Streptococcus viridans o 0.005
| | |
100 1 01

—log10(penicillin)

4 Application to mixed models

During the process of iterative fitting of mixed models, it is often useful to compare fits of different models to
data, for example using loglikelihood or AIC values, or with the help of resiudal plots. It can also be very
informative to inspect the estimated values of variance components.

To that end, the generic VarCorr function found in the nlme (Pinheiro et al., 2014) and 1me4 (Bates et al.,
2014) packages can be used to print variance estimates from fitted models. The VarCorr function is not
available for models obtained using the asreml (Butler, 2009) package.

The lucid package provides a generic function called vc that provides a unified interface for extracting the
variance components from fitted models obtained from the nlme, 1me4, and asreml packages. The vc
function has methods specific to each package that make it easy to extract the estimated variances and
correlations from fitted models and formats the results using the lucid function.

Pearce et al. (1988) suggest showing four significant digits for the error mean square and two decimal places
digits for F" values. The lucid function uses a similar philosophy, presenting the variances with four significant
digits and asreml Z statistics with two significant digits.

4.1 Example 1 - Rail data

The following simple example illustrates use of the vc function for identical models in the nlme, 1me4, and
asreml packages. The travel times of ultrasonic waves in six steel rails was modeled as an overall mean, a
random effect for each rail, and a random residual. The package rjags is used to fit a similar Bayesian model
inspired by Wilkinson (2014).

require(”"nlme")

data(Rail)

mn <- Ime(travel™1, random="1|Rail, data=Rail)
ve(mn)

#it effect variance stddev

(Intercept) 615.3 24.81

Residual 16.17 4.021

require("1me4")
Warning: package ’Rcpp’ was built under R version 3.1.3

m4 <- Imer(travel™1 + (1]|Rail), data=Rail)

vc(m4)

grp varl var2 vcov sdcor
#it Rail (Intercept) <NA> 615.3 24.81
Residual <NA> <NA> 16.17 4.021

In a Bayesian model all effects can be considered as random.

require("nlme")
data(Rail)
require("rjags")
m5 <-
"model {
for(i in 1:nobs){
travel[i] © dnorm(mu + thetal[Rail[i]], tau)
¥
for(j in 1:6) {
thetal[j]l = dnorm(0, tau.theta)

}

mu = dnorm(50, 0.0001) # Overall mean. dgamma()

tau ~ dgamma(1, .001)

tau.theta ~ dgamma(1l, .001)

residual <- 1/sqgrt(tau)

sigma.rail <- 1/sqrt(tau.theta)

}n

jdat <- list(nobs=nrow(Rail), travel=Rail$travel, Rail=Rail$Rail)

jinit <- list(mu=50, tau=1, tau.theta=1)

j5 <- jags.model(textConnection(m5), data=jdat, inits=jinit, n.chains=2, quiet=TRUE)

c5 <- coda.samples(j5, c("mu”,"theta”, "residual”, "sigma.rail"),
n.iter=100000, thin=5)

vc(ch)
#it Mean SD 2.5% Median 97.5%
mu 66.4 55 47 .1 66.21 86.55

9.6
residual 3.941 0.8206 2.721 3.814 5.93
sigma.rail 23.35 7.387 13.6 21.82 41.88
theta[1] -34.29 9.849 -54.83 -34.04 -14.83
thetal[2] -16.18 9.839 -36.63 -15.96 3.343
thetal[3] -12.25 9.845 -32.54 -12.07 7.256
thetal[4] 16.06 9.834 -4.342 16.23 35.74
thetal5] 18.02 9.842 -2.204 18.19 37.79

9

thetal6] 29.24 9.851 9.037 29.34 48.94

Compare these JAGS point estimates and quantiles with the results from 1me4.

m4

Linear mixed model fit by REML [1lmerMod]
Formula: travel ™ 1 + (1 | Rail)

#it Data: Rail

REML criterion at convergence: 122.177
Random effects:

Groups Name Std.Dev.
Rail (Intercept) 24.805
Residual 4.021

Number of obs: 18, groups: Rail, 6
Fixed Effects:

(Intercept)

#i# 66.5

ranef(m4)

$Rail

(Intercept)
2 -34.53091
5 -16.35675
1 -12.39148

6 16.02631
3 18.00894
4 29.24388

While the lucid function is primarily a formatting function and uses the standard print functions in R, the vc
function defines an additional class for the value of the function and has dedicated print methods for the
class. This was done to allow additional formatting of the results.

4.2 Example 2 - federer.diagcheck data

The second, more complex example is based on a model in Federer and Wolfinger (2003) in which orthogonal
polynomials are used to model trends along the rows and columns of a field experiment. The data are available
in the agridat package Wright (2014) as the federer.diagcheck data frame. The help page for the data
shows how to reproduce the analysis of Federer and Wolfinger (2003). When using the 1me4 package to
reproduce the analysis, two different optimizers are available. Do the two different optimizers lead to similar
estimated variances?

In the output below, the first column identifies terms in the model, the next two columns are the variance and
standard deviation from the bobyqga optimizer, while the final two columns are from the NelderMead optimizer.

The default output printing is shown first.

print(out)

term vcov-bo sdcor-bo sep vcov-ne sdcor-ne
1 (Intercept) 2869.4469 53.56722 | 3.228419e+03 56.81917727
2 ri:c3 5531.5724 74.37454 | 7.688139e+03 87.68203447
3 ri:c2 58225.7678 241.30016 | 6.974755e+04 264.09761622
#it 4 ri:cl1 128004.1561 357.77668 | 1.074270e+05 327.76064925
5 c8 6455.7495 80.34768 | 6.787004e+03 82.38327224
6 c6 1399.7294 37.41296 | 1.636128e+03 40.44907560
7 c4 1791.6507 42.32790 | 1.226846e+04 110.76308194
8 c3 2548.8847 50.48648 | 2.686302e+03 51.82954364
9 c2 5941.7908 77.08301 | 7.644730e+03 87.43414634
10 cT 0.0000 0.00000 | 1.225143e-03 0.03500204
11 ri0 1132.9501 33.65932 | 1.975505e+03 44.44665149
12 ré8 1355.2291 36.81344 | 1.241429e+03 35.23391157
13 r4 2268.7296 47.63118 | 2.811241e+03 53.02113582
14 r2 241.7894 15.54958 | 9.282275e+02 30.46682578
15 ri 9199.9022 95.91612 | 1.036358e+04 101.80169429
16 <NA> 4412.1096 66.42371 | 4.126832e+03 64.24042100

How similar are the variance estimates obtained from the two optimization methods? It is difficult to compare
the results due to the clutter of extra digits, and because of some quirks in the way R formats the output. The
variances in column 2 are shown in non-scientific format, while the variances in column 5 are shown in
scientific format. The standard deviations are shown with 5 decimal places in column 3 and 8 decimal places in
column 6. (All numbers were stored with 15 digits of precision.)

The lucid function is now used to show the results in the manner of the vc function.
lucid(out, dig=4)

it term vcov-bo sdcor-bo sep vcov-ne sdcor-ne
1 (Intercept) 2869 53.57 | 3228 56.82
2 ri:c3 5532 74.37 | 7688 87.68
3 ri:c2 58230 241.3 | 69750 264 .1
4 ri:c1 128000 357.8 | 107400 327.8
5 c8 6456 80.35 | 6787 82.38
6 c6 1400 37.41 | 1636 40.45
#t 7 c4 1792 42 .33 | 12270 110.8
8 c3 2549 50.49 | 2686 51.83
9 c2 5942 77.08 | 7645 87.43
10 cl 0 0 | 0 0.035
11 r10 1133 33.66 | 1976 44.45
12 ré§ 1355 36.81 | 1241 35.23
13 r4 2269 47.63 [2811 53.02
14 r2 241.8 15.55 | 928.2 30.47
15 ri 9200 95.92 | 10360 101.8
16 <NA> 4412 66.42 | 4127 64.24

The formatting of the variance columns is consistent as is the formatting of the standard deviation columns.
Fewer digits are shown. It is easy to compare the columns and see that the two optimizers are giving quite
different answers.

Note. Numeric matrices are printed with quotes. Use noquote() to print without quotes.

5 Summary

6 Acknowledgements

Thanks to Deanne Wright for a helpful review of this paper.

7 Appendix

Session information:

e R version 3.1.2 (2014-10-31), x86_64-w64-mingw32

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: Matrix 1.1-5, Rcpp 0.11.5, coda 0.17-1, knitr 1.9, lattice 0.20-31, Ime4 1.1-7, lucid 1.2,
nlme 3.1-120, rjags 3-14

e Loaded via a namespace (and not attached): MASS 7.3-40, evaluate 0.5.5, formatR 1.1, grid 3.1.2,
highr 0.4.1, minga 1.2.4, nloptr 1.0.4, splines 3.1.2, stringr 0.6.2, tools 3.1.2

References

D. Bates, M. Maechler, B. Bolker, and S. Walker. Ime4: Linear mixed-effects models using Eigen and 54,
2014. URL http://CRAN.R-project.org/package=1me4. R package version 1.1-7.

David Butler. asreml: asreml() fits the linear mixed model, 2009. URL www.vsni.co.uk. R package version
3.0.

Walter T Federer and Russell D Wolfinger. Handbook of Formulas and Software for Plant Geneticists and
Breeders, chapter PROC GLM and PROC MIXED Codes for Trend Analyses for Row-Column Designed
Experiments. Haworth Press, 2003.

Richard A Feinberg and Howard Wainer. Extracting sunbeams from cucumbers. Journal of Computational and
Graphical Statistics, 20(4):793-810, 2011.

D. J. Finney. Was this in your statistics textbook? Il. Data handling. Experimental agriculture, 24:343-353,
1988.

S. C. Pearce, G. M. Clarke, G. V. Dyke, and R. E. Kempson. A Manual of Crop Experimentation. Charles
Griffin and Company, 1988.

http://CRAN.R-project.org/package=lme4
www.vsni.co.uk

Jose Pinheiro, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. nlme: Linear and Nonlinear
Mixed Effects Models, 2014. URL http://CRAN.R-project.org/package=nlme. R package version
3.1-118.

Howard Wainer. Improving tabular displays, with NAEP tables as examples and inspirations. Journal of
Educational and Behavioral Statistics, 22(1):1-30, 1997. doi: 10.3102/10769986022001001.

Howard Wainer and Mike Larsen. Pictures at an exhibition. Chance, 22(2):46-54, 2009. doi:
10.1080,/09332480.2009.10722958. URL http://chance.amstat.org/2009/04/visrev222/.

Darren Wilkinson. One-way anova with fixed and random effects from a bayesian perspective, 2014. URL
https://darrenjw.wordpress.com/2014/12/22/
one-way-anova-with-fixed-and-random-effects-from-a-bayesian-perspective/.

Kevin Wright. agridat: Agricultural datasets, 2014. URL http://CRAN.R-project.org/package=agridat.
R package version 1.10.

10

http://CRAN.R-project.org/package=nlme
http://chance.amstat.org/2009/04/visrev222/
https://darrenjw.wordpress.com/2014/12/22/one-way-anova-with-fixed-and-random-effects-from-a-bayesian-perspective/
https://darrenjw.wordpress.com/2014/12/22/one-way-anova-with-fixed-and-random-effects-from-a-bayesian-perspective/
http://CRAN.R-project.org/package=agridat

	Abstract
	Intro
	Example: Antibiotic effectiveness
	Application to mixed models
	Example 1 - Rail data
	Example 2 - federer.diagcheck data

	Summary
	Acknowledgements
	Appendix

