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1 Illustrations

This document reproduces the data analyses presented in Bühlmann and Hothorn
(2006). For a description of the theory behind applications shown here we re-
fer to the original manuscript. Note: The Breast Cancer Subtypes example is
missing from this document because we cannot assume package Biobase to be
installed.

Illustration: Prediction of total body fat Garcia et al. (2005) report
on the development of predictive regression equations for body fat content by
means of p = 9 common anthropometric measurements which were obtained for
n = 71 healthy German women. In addition, the women’s body composition
was measured by Dual Energy X-Ray Absorptiometry (DXA). This reference
method is very accurate in measuring body fat but finds little applicability
in practical environments, mainly because of high costs and the methodologi-
cal efforts needed. Therefore, a simple regression equation for predicting DXA
measurements of body fat is of special interest for the practitioner. Backward-
elimination was applied to select important variables from the available anthro-
pometrical measurements and Garcia et al. (2005) report a final linear model
utilizing hip circumference, knee breadth and a compound covariate which is
defined as the sum of log chin skinfold, log triceps skinfold and log subscapular
skinfold:

R> bf_lm <- lm(DEXfat ~ hipcirc + kneebreadth + anthro3a,
data = bodyfat)

R> coef(bf_lm)
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(Intercept) hipcirc kneebreadth anthro3a
-75.23478 0.51153 1.90199 8.90964

A simple and easy to communicate regression formula, such as a linear com-
bination of only a few covariates, is of special interest in this application: we
employ the glmboost function from package mboost to fit a linear regression
model by means of L2Boosting with componentwise linear least squares. By
default, the function glmboost fits a linear model (with initial mstop = 100 and
shrinkage parameter ν = 0.1) by minimizing squared error (argument family
= GaussReg() is the default):

R> bf_glm <- glmboost(DEXfat ~ ., data = bodyfat,
control = boost_control(center = TRUE))

Note that, by default, the mean of the response variable is used as an offset
in the first step of the boosting algorithm. We center the covariates prior to
model fitting in addition. As mentioned above, the special form of the base
learner, i.e., componentwise linear least squares, allows for a reformulation of
the boosting fit in terms of a linear combination of the covariates which can be
assessed via

R> coef(bf_glm)

(Intercept) age waistcirc hipcirc
0.000000 0.013602 0.189716 0.351626

elbowbreadth kneebreadth anthro3a anthro3b
-0.384140 1.736589 3.326860 3.656524
anthro3c anthro4
0.595363 0.000000

attr(,"offset")
[1] 30.783

We notice that most covariates have been used for fitting and thus no ex-
tensive variable selection was performed in the above model. Thus, we need to
investigate how many boosting iterations are appropriate. Resampling methods
such as cross-validation or the bootstrap can be used to estimate the out-of-
sample error for a varying number of boosting iterations. The out-of-bootstrap
mean squared error for 100 bootstrap samples is depicted in the upper part
of Figure 1. The plot leads to the impression that approximately mstop = 44
would be a sufficient number of boosting iterations. In Section ??, a corrected
version of the Akaike information criterion (AIC) is proposed for determining
the optimal number of boosting iterations. This criterion attains its minimum
for

R> mstop(aic <- AIC(bf_glm))

[1] 45

boosting iterations, see the bottom part of Figure 1 in addition. The coefficients
of the boosted linear model with mstop = 45 boosting iterations are

2



Number of boosting iterations

O
ut

−
of

−
bo

ot
st

ra
p 

sq
ua

re
d 

er
ro

r

2 8 16 24 32 40 48 56 64 72 80 88 96

0
20

40
60

80
10

0
12

0
14

0

●

0 20 40 60 80 100

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Number of boosting iterations

C
or

re
ct

ed
 A

IC

●

Figure 1: bodyfat data: Out-of-bootstrap squared error for varying number of
boosting iterations mstop (top). The dashed horizontal line depicts the average
out-of-bootstrap error of the linear model for the pre-selected variables hipcirc,
kneebreadth and anthro3a fitted via ordinary least squares. The lower part
show the corrected AIC criterion.
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R> coef(bf_glm[mstop(aic)])

(Intercept) age waistcirc hipcirc
0.0000000 0.0023271 0.1893046 0.3488781

elbowbreadth kneebreadth anthro3a anthro3b
0.0000000 1.5217686 3.3268603 3.6051548
anthro3c anthro4

0.5043133 0.0000000
attr(,"offset")
[1] 30.783

and thus 7 covariates have been selected for the final model (intercept equal to
zero occurs here for mean centered response and predictors and hence, n−1

∑n
i=1 Yi =

30.783 is the intercept in the uncentered model). Note that the variables hip-
circ, kneebreadth and anthro3a, which we have used for fitting a linear model
at the beginning of this paragraph, have been selected by the boosting algorithm
as well.

Illustration: Prediction of total body fat (cont.) Being more flexible
than the linear model which we fitted to the bodyfat data in Section ??, we
estimate an additive model using the gamboost function from mboost (first with
pre-specified mstop = 100 boosting iterations, ν = 0.1 and squared error loss):

R> bf_gam <- gamboost(DEXfat ~ ., data = bodyfat)

The degrees of freedom for the smoothing splines, which are utilized as base
learners here, can be defined by the dfbase argument, defaulting to 4.

We can estimate the number of boosting iterations mstop using the corrected
AIC criterion described in Section ?? via

R> mstop(aic <- AIC(bf_gam))

[1] 46

Similar to the linear regression model, the partial contributions of the covariates
can be extracted from the boosting fit. For the most important variables, the
partial fits are given in Figure 2 showing some slight non-linearity, mainly for
kneebreadth.

Illustration: Prediction of total body fat (cont.) Such transformations
and estimation of a corresponding linear model can be done with the glmboost
function, where the model formula performs the computations of all transforma-
tions by means of the bs (B-spline basis) function from package splines. First,
we set up a formula transforming each covariate

R> bsfm

DEXfat ~ bs(age) + bs(waistcirc) + bs(hipcirc) + bs(elbowbreadth) +
bs(kneebreadth) + bs(anthro3a) + bs(anthro3b) + bs(anthro3c) +
bs(anthro4)
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Figure 2: bodyfat data: Partial contributions of four covariates in an additive
model (without centering of estimated functions to mean zero).

and then fit the complex linear model by using the glmboost function with
initial mstop = 5000 boosting iterations:

R> ctrl <- boost_control(mstop = 5000)
R> bf_bs <- glmboost(bsfm, data = bodyfat, control = ctrl)
R> mstop(aic <- AIC(bf_bs))

[1] 2891

The corrected AIC criterion (see Section ??) suggests to stop after mstop =
2891 boosting iterations and the final model selects 21 (transformed) predictor
variables. Again, the partial contributions of each of the 9 original covariates
can be computed easily and are shown in Figure 3 (for the same variables as
in Figure 2). Note that the depicted functional relationship derived from the
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model fitted above (Figure 3) is qualitatively the same as the one derived from
the additive model (Figure 2).

Illustration: Wisconsin prognostic breast cancer Prediction models for
recurrence events in breast cancer patients based on covariates which have been
computed from a digitized image of a fine needle aspirate of breast tissue (those
measurements describe characteristics of the cell nuclei present in the image)
have been studied by Street et al. (1995) (the data is part of the UCI repository
Blake and Merz, 1998).

We first analyze this data as a binary prediction problem (recurrence vs. non-
recurrence) and later in Section ?? by means of survival models. We are faced
with many covariates (p = 32) for a limited number of observations without
missing values (n = 194), and variable selection is an issue. We can choose a
classical logistic regression model via AIC in a stepwise algorithm as follows

R> cc <- complete.cases(wpbc)
R> wpbc2 <- wpbc[cc, colnames(wpbc) != "time"]
R> wpbc_step <- step(glm(status ~ ., data = wpbc2,

family = binomial()), trace = 0)

The final model consists of 16 parameters with

R> logLik(wpbc_step)

'log Lik.' -80.13 (df=16)

R> AIC(wpbc_step)

[1] 192.26

and we want to compare this model to a logistic regression model fitted via
gradient boosting. We simply select the Binomial family (with default offset of
1/2 log(p̂/(1 − p̂)), where p̂ is the empirical proportion of recurrences) and we
initially use mstop = 500 boosting iterations

R> ctrl <- boost_control(mstop = 500, center = TRUE)
R> wpbc_glm <- glmboost(status ~ ., data = wpbc2,

family = Binomial(), control = ctrl)

The classical AIC criterion (-2 log-likelihood + 2 df) suggests to stop after

R> aic <- AIC(wpbc_glm, "classical")
R> aic

[1] 187.08
Optimal number of boosting iterations: 500
Degrees of freedom (for mstop = 500): 3.1846

boosting iterations. We now restrict the number of boosting iterations to
mstop = 500 and then obtain the estimated coefficients via
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R> wpbc_glm <- wpbc_glm[mstop(aic)]
R> coef(wpbc_glm)[abs(coef(wpbc_glm)) > 0]

(Intercept) mean_radius mean_texture
-1.2987e-01 -6.6111e-03 -2.4505e-02

mean_smoothness mean_symmetry mean_fractaldim
3.0448e+00 -4.1060e+00 -2.8918e+01
SE_texture SE_perimeter SE_smoothness

-9.6873e-02 5.7153e-02 -1.6226e+00
SE_compactness SE_concavity SE_concavepoints

1.2158e+01 -7.1606e+00 -2.1342e+01
SE_symmetry SE_fractaldim worst_radius
5.7127e+00 7.6984e+00 1.3468e-02

worst_perimeter worst_area worst_smoothness
1.2108e-03 1.8646e-04 1.0283e+01

worst_compactness tsize pnodes
-2.5370e-01 4.1561e-02 2.4838e-02

(because of using the offset-value f̂ [0], we have to add the value f̂ [0] to the
reported intercept estimate above for the logistic regression model).

A generalized additive model adds more flexibility to the regression function
but is still interpretable. We fit a logistic additive model to the wpbc data as
follows:

R> wpbc_gam <- gamboost(status ~ ., data = wpbc2,
family = Binomial())

R> mopt <- mstop(aic <- AIC(wpbc_gam, "classical"))
R> aic

[1] 199.76
Optimal number of boosting iterations: 99
Degrees of freedom (for mstop = 99): 14.583

This model selected 16 out of 32 covariates. The partial contributions of the
four most important variables are depicted in Figure 4 indicating a remarkable
degree of non-linearity.

Illustration: Wisconsin prognostic breast cancer (cont.) Instead of
the binary response variable describing the recurrence status, we make use of
the additionally available time information for modeling the time to recurrence,
i.e., all observations with non-recurrence are censored. First, we calculate IPC
weights

R> zensored <- wpbc$status == "R"
R> iw <- IPCweights(Surv(wpbc$time, zensored))
R> wpbc3 <- wpbc[, names(wpbc) != "status"]

and fit a weighted linear model by boosting with componentwise linear weighted
least squares as base procedure:
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R> ctrl <- boost_control(mstop = 500, center = TRUE)
R> wpbc_surv <- glmboost(log(time) ~ ., data = wpbc3,

control = ctrl, weights = iw)
R> mstop(aic <- AIC(wpbc_surv))

[1] 264

R> wpbc_surv <- wpbc_surv[mstop(aic)]

The following variables have been selected for fitting

R> names(coef(wpbc_surv)[abs(coef(wpbc_surv)) > 0])

[1] "mean_radius" "mean_texture"
[3] "mean_perimeter" "mean_smoothness"
[5] "mean_compactness" "mean_symmetry"
[7] "SE_texture" "SE_perimeter"
[9] "SE_smoothness" "SE_concavepoints"

[11] "SE_symmetry" "worst_concavity"
[13] "worst_concavepoints" "worst_symmetry"
[15] "tsize"

and the fitted values are depicted in Figure 5, showing a reasonable model fit.
Alternatively, a Cox model with linear predictor can be fitted using L2Boosting

by implementing the negative gradient of the partial likelihood (see Ridgeway
(1999)) via

R> ctrl <- boost_control(center = TRUE)
R> glmboost(Surv(wpbc$time, wpbc$status == "N") ~

., data = wpbc, family = CoxPH(), control = ctrl)

For more examples, such as fitting an additive Cox model using mboost, see
(Hothorn and Bühlmann, 2006).
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Figure 3: bodyfat data: Partial fits for a linear model fitted to transformed
covariates using B-splines (without centering of estimated functions to mean
zero).
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Figure 4: wpbc data: Partial contributions of four selected covariates in an
additive logistic model (without centering of estimated functions to mean zero).
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Figure 5: wpbc data: Fitted values of an IPC-weighted linear model, taking
both time to recurrence and censoring information into account. The radius of
the circles is proportional to the IPC weight of the corresponding observation,
censored observations with IPC weight zero are not plotted.
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