First, we load the package phylosignal
and the dataset carnivora
from adephylo
.
Here is a phylogenetic tree of 19 carnivora species.
And we create a dataframe of 3 traits for the 19 carnivora species.
dat <- list()
dat$mass <- carni19$bm
dat$random <- rnorm(19, sd = 10)
dat$bm <- rTraitCont(tre)
dat <- as.data.frame(dat)
We can combine phylogeny and traits into a phylo4d
object.
## $stat
## Cmean I K K.star Lambda
## mass 0.54938871 0.3921068 0.7127747 0.7154914 9.640762e-01
## random 0.03980667 0.0112831 0.1643306 0.1645244 6.846792e-05
## bm 0.59359636 0.5354850 1.5325422 1.5570226 1.009707e+00
##
## $pvalue
## Cmean I K K.star Lambda
## mass 0.001 0.001 0.001 0.001 0.001
## random 0.262 0.248 0.209 0.192 1.000
## bm 0.001 0.001 0.001 0.001 0.001
mass.crlg <- phyloCorrelogram(p4d, trait = "mass")
random.crlg <- phyloCorrelogram(p4d, trait = "random")
bm.crlg <- phyloCorrelogram(p4d, trait = "bm")
plot(mass.crlg)