ADVANCED TOPICS IN POMP

AARON A. KING

CONTENTS
1. Accelerating your codes: vectorizing rprocess and using native codes 1
2. Accumulator variables 5
3. Incorporating native codes using pompBuilder 6
4. The low-level interface 11
5. Other examples 12

This document discusses accelerating pomp by vectorizing your codes and/or using native (C or FOR-
TRAN) codes. Tt also introduces pomp’s low-level interface for code developers.

1. ACCELERATING YOUR CODES: VECTORIZING RPROCESS AND USING NATIVE CODES

In the “Introduction to pomp” vignette, we used plug-ins provided by the package to specify the rprocess
component of partially-observed Markov process models. The rprocess plug-ins require you to write a
simulator for a single realization of the process, for a single set of parameters, from one time to another.
pomp then calls this code many times—using potentially many different parameter values, states, and
times—whenever it simulates the process, computes likelihood via Monte Carlo integration, etc. The
inference methods implemented in pomp are quite computationally intensive, which puts a premium on
the speed of your codes. Sometimes, you can realize substantial speed-up of your code by vectorizing
it. This necessitates foregoing the relative simplicity of the plug-in-based implementation and writing
rprocess “from scratch”. Here, we’ll develop a vectorized version of rprocess in R code, then we’ll see
what the same thing looks like coded in C. We’ll compare these different versions in terms of their speed
at simulation.

We'll use a discrete-time bivariate AR(1) process with normal measurement error as our example. In
this model, the state process X; € R? satisfies
Xi=aXi1+oey. (1)
The measurement process is
Yi=B8X: +7&. (2)
In these equations, o and and [are 2 x 2 constant matrices. & and e; are mutually-independent
families of i.i.d. bivariate standard normal random variables. ¢ is a lower-triangular matrix such that
ooT is the variance-covariance matrix of Xiy1|X:. We'll assume that each component of X is measured

independently and with the same error, 7, so that the variance-covariance matrix of Y;|X; has 72 on the
diagonal and zeros elsewhere.

Date: March 20, 2014, pomp version 0.49-1.

2 A. A. KING

An implementation of this model is included in the package as a pomp object; load it by executing
pompExample (ou2).

An unvectorized implementation using R code only. Before we set about vectorizing the codes,
let’s have a look at what a plug-in based implementation written entirely in R might look like.

pompExample (ou2)

newly created pomp object(s):
ou2

ou2.dat <- as.data.frame (ou2)

pomp (
data=ou2.dat[c("time","y1","y2")],
times="time",

t0=0,
rprocess=discrete.time.sim(
step.fun=function (x, t, params, ...) {

eps <- rnorm(n=2,mean=0,sd=1) # noise terms
xnew <- c(
x1=params["alpha.1"]*x["x1"]+params["alpha.3"]*x["x2"]+
params|["sigma.1"]*eps[1],
x2=params["alpha.2"]*x["x1"]+params["alpha.4"]*x["x2"]+
params["sigma.2"]*eps[1]+params["sigma.3"]*eps[2]
)
names (xnew) <- c("x1","x2")
xnew
}
)
) —-> ou2.Rplug

simdat.Rplug <- simulate(ou2.Rplug,params=coef (ou2),nsim=5000,states=T)

Notice how we specify the process model simulator using the rprocess plug-in discrete.time.sim.
The latter function’s step.fun argument is itself a function that simulates one realization of the process
for one timestep and one set of parameters. When we vectorize the code, we’ll do many realizations at
once.

Vectorizing the process simulator using R code only. Now, to write a vectorized rprocess in
R, we must write a function that simulates nrep realizations of the unobserved process. Each of these
realizations may start at a different point in state space and each may have a different set of parameters.
Moreover, this function must be capable of simulating the process over an arbitrary time interval and
must be capable of reporting the unobserved states at arbitrary times in that interval. We’ll accomplish
this by writing an R function with arguments xstart, params, and times. About these inputs, we must
assume:

(1) xstart will be a matrix, each column of which is a vector of initial values of the state process.
Each state variable (matrix row) will be named.

(2) params will be a matrix, the columns of which are parameter vectors. The parameter names will
be in the matrix column-names.

(3) times will be a vector of times at which realizations of the state process are required. We will
have times[k] < times[k+1] for all indices k, but we cannot assume that the entries of times
will be unique.

ADVANCED TOPICS IN POMP 3
(4) The initial states xstart are assumed to obtain at time times[1].

This function must return a rank-3 array, which has the realized values of the state process at the
requested times. This array must have rownames. Here is one implementation of such a simulator.

ou2.Rvect.rprocess <- function (xstart, times, params, ...) {
nrep <- ncol(xstart) # number of realizations
ntimes <- length(times) # number of timepoints

unpack the parameters (for legibility only)
alpha.1 <- params["alpha.1",]

alpha.2 <- params["alpha.2",]
alpha.3 <- params["alpha.3",]
alpha.4 <- params["alpha.4",]
sigma.l <- params["sigma.1",]
sigma.2 <- params["sigma.2",]
sigma.3 <- params["sigma.3",]

x is the array of states to be returned: it must have rownames
x <- array(0,dim=c(2,nrep,ntimes))
rownames (x) <- rownames (xstart)
xnow holds the current state values
x[,,1] <- xnow <- xstart
tnow <- times[1]
for (k in seq.int(from=2,to=ntimes,by=1)) {
tgoal <- times[k]
while (tnow < tgoal) { # take one step at a time
eps <- array(rnorm(n=2*nrep,mean=0,sd=1),dim=c(2,nrep))
tmp <- alpha.l*xnow['x1',]+alpha.3*xnow['x2"',]+
sigma.l*eps[1,]
xnow['x2',] <- alpha.2*xnow['x1',]+alpha.4*xnow['x2',]+
sigma.2+*eps[1,]+sigma.3*eps[2,]
xnow['x1',] <- tmp
tnow <- tnow+l
}
x[,,k] <- xnow
}
x

}

We can put this into a pomp object that is the same as ou2.Rplug in every way except in its rprocess
slot by doing

ou2.Rvect <- pomp(ou2.Rplug,rprocess=ou2.Rvect.rprocess)
Let’s pick some parameters and simulate some data to see how long it takes this code to run.

theta <- c(
x1.0=-3, x2.0=4,
tau=1,
alpha.1=0.8, alpha.2=-0.5, alpha.3=0.3, alpha.4=0.9,
sigma.1=3, sigma.2=-0.5, sigma.3=2
)

simdat.Rvect <- simulate(ou2.Rvect,params=theta,states=T,nsim=100000)

4 A. A. KING

Doing 100000 simulations of ou2.Rvect took 3.57 secs. Compared to the 11.64 secs it took to run 5000
simulations of ou2.Rplug, this is a 65-fold speed-up.

Accelerating the code using C: a plug-in based implementation. As we’ve seen, we can usually
acheive big accelerations using compiled native code. A one-step simulator written in C for use with the
discrete.time.sim plug-in is included with the package and can be viewed by doing

file.show(file=system.file("examples/ou2.c",package="pomp"))

The one-step simulator is in function ou2_step. Prototypes for the one-step simulator and other func-
tions are in the pomp.h header file; view it by doing

file.show(file=system.file("include/pomp.h", package="pomp"))
We can put the one-step simulator into the pomp object and simulate as before by doing

ou2.Cplug <- pomp(

ou2.Rplug,

rprocess=discrete.time.sim("ou2_step"),

paramnames=c (
"alpha.1","alpha.2","alpha.3", "alpha.4",
"sigma.1","sigma.2","sigma.3",
"tau"
Js

statenames=c("x1", "x2"),

obsnames=c ("y1","y2")

)

simdat.Cplug <- simulate(ou2.Cplug,params=theta,states=T,nsim=100000)

Note that ou2_step is written in such a way that we must specify paramnames, statenames, and
obsnames. These 100000 simulations of ou2.Cplug took 1.91 secs. This is a 122-fold speed-up relative
to ou2.Rplug.

A vectorized C implementation. The function ou2_adv is a fully vectorized version of the simulator
written in C. View this code by doing

file.show(file=system.file("examples/ou2.c",package="pomp"))

This function is called in the following rprocess function. Notice that the call to ou2_adv uses the .C
interface.

ou2.Cvect.rprocess <- function (xstart, times, params, ...) {
nvar <- nrow(xstart)
npar <- nrow(params)
nrep <- ncol(xstart)
ntimes <- length(times)
array(
.C("ou2_adv",
X = double(nvar*nrep*ntimes),
xstart = as.double(xstart),
par = as.double(params),
times = as.double(times),
n = as.integer(c(nvar,npar,nrep,ntimes))

ADVANCED TOPICS IN POMP 5

)$X,
dim=c (nvar,nrep,ntimes),
dimnames=1ist (rownames (xstart),NULL,NULL)
)
}

The call that constructs the pomp object is:

ou2.Cvect <- pomp(
ou2.Rplug,
rprocess=ou2.Cvect.rprocess
)
paramnames <- c(
"alpha.1","alpha.2","alpha.3", "alpha.4",
"sigma.1","sigma.2","sigma.3",
"tau",
"x1.0","x2.0"
)

simdat.Cvect <- simulate(ou2.Cvect,params=theta[paramnames],nsim=100000, states=T)

Note that we’ve had to rearrange the order of parameters here to ensure that they arrive at the native
codes in the right order. Doing 100000 simulations of ou2.Cvect took 2.2 secs, a 106-fold speed-up
relative to ou2.Rplug.

2. ACCUMULATOR VARIABLES

Recall the SIR example discussed in the “Introduction to pomp” vignette. In this example, the data
consist of reported cases, which are modeled as binomial draws from the true number of recoveries
having occurred since the last observation. In particular, suppose the zero time for the process is tg and
let tq,t2,...,t, be the times at which the data y1,ys,...,y, are recorded. Then the k-th observation
yr = C(tk—1,tx) is the observed number of cases in time interval [tg_1,¢k). If A r(tk—1,tx) is the
accumulated number of recoveries (I to R transitions) in the same interval, then the model assumes

yr = C(tg—1,tx) ~ binomial(A;_g(tk—1,tx),p)
where p is the probability a given case is actually recorded.

Now, it is easy to keep track of the cumulative number of recoveries when simulating the continuous-time
SIR state process; one simply has to add each recovery to an accumulator variable when it occurs. The
SIR simulator codes in the “Introduction to pomp” vignette do this, storing the cumulative number of
recoveries in a state variable cases, so that at any time ¢,

cases(t) = cumulative number of recoveries having occurred in the interval [tg, t).

It follows that A;r(tk—1,tx) = cases(ty) — cases(tx—1). Does this not violate the Markov assumption
upon which all the algorithms in pomp are based? Not really. Straightforwardly, one could augment the
state process, adding cases(tx—1) to the state vector at time t;. The state process would then become
a hybrid process, with one component (the S, I, R, and cases variables) evolving in continuous time,
while the retarded cases variable would update discretely.

It would, of course, be relatively easy to code up the model in this way, but because the need for
accumulator variables is so common, pomp provides an easier work-around. Specifically, in the pomp-
object constructing call to pomp, any variables named in the zeronames argument are assumed to be
accumulator variables. At present, however, only the rprocess plug-ins and the deterministic-skeleton
trajectory codes take this into account; setting zeronames will have no effect on custom rprocess codes.

6 A. A. KING
3. INCORPORATING NATIVE CODES USING POMPBUILDER

It’s possible to use native codes for dprocess and for the measurement model portions of the pomp
as well. In the “Introduction to pomp” vignette, we looked at the SIR model, which we implemented
using an FEuler-multinomial approximation to the continuous-time Markov process. Here, we implement
a similar model using native C codes. The new, and still experimental, pompBuilder function helps us
do this.

We'll start by writing snippets of C code to implement each of the important parts of our model. First,
we encode a negative binomial measurement model.

negative binomial measurement model
E[cases|incid] = rho*incid
Var[cases|incid] = rho*incid*(1+rho*incid/theta)
rmeas <- '

cases = rnbinom_mu(theta,rho*incid);
!

dmeas <- '
1lik = dnbinom_mu(cases,theta,rho*incid,give_log);

!
Next the function that takes one Euler step.

SIR process model with extra-demographic stochasticity
and seasonal transmission

step.fn <- '
int nrate = 6;
double ratel[nrate]; // transition rates
double trans/[nrate]; // transition numbers
double beta; // transmission rate
double dW; // white noise increment
int k;

// seasonality in transmission
beta = betal*seasl+betal2*seas2+beta3*seas3;

// compute the environmental stochasticity
dW = rgammawn (beta_sd,dt);

// compute the transition rates

rate[0] = mu*popsize; // birth into susceptible class
rate[1] = (iotatbetax*I*dW/dt)/popsize; // force of infection
rate[2] = mu; // death from susceptible class
rate[3] = gamma; // recovery

rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the transition numbers

trans[0] = rpois(rate[0]*dt); // births are Poisson
reulermultinom(2,S8,&rate[1],dt,&trans[1]);
reulermultinom(2,I,&rate[3],dt,&trans[3]);
reulermultinom(1,R,&rate[5],dt,&trans[5]);

ADVANCED TOPICS IN POMP 7

// balance the equations

S += trans[0]-trans[1]-trans[2];

I += trans[1]-trans[3]-trans([4];

R += trans[3]-trans[5];

incid += trans[3]; // incidence is cumulative recoveries

if (beta_sd > 0.0) W += (dW-dt)/beta_sd; // increment has mean = 0, variance = dt

Now the deterministic skeleton. The “D” prepended to each state variable indicates the derivative of the
state variable.

skel <- '
int nrate = 6;
double ratel[nrate]; // transition rates
double term[nrate]; // transition numbers
double beta; // transmission rate
double dW; // white noise increment
int k;

beta = betal*seasl+betal*seas2+beta3*seas3;

// compute the transition rates

rate[0] = mu*popsize; // birth into susceptible class
rate[1] = (iota+betax*I)/popsize; // force of infection

rate[2] = mu; // death from susceptible class
rate[3] = gamma; // recovery

rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the several terms
term[0] = rate[0];

term([1] rate[1]*S;

term([2] rate[2]*S;

term[3] = rate[3]*I;

term[4] = rate[4]*I;

term[5] rate[5]*R;

// assemble the differential equations
DS = term[0]-term[1]-term[2];

DI = term[1]-term[3]-term[4];

DR = term[3]-term[5];

Dincid = term[3]; // accumulate the new I->R transitions
DW = 0;

Next, we write snippets to perform parameter transformations. Note the convention of prepending “T”
to the name to signify the transformed parameter. The log-barycentric transformation is very useful
when dealing with parameters (such as our initial conditions) constrained to lie on a unit simplex.

8 A. A. KING

parameter transformations
note we use barycentric coordinates for the initial conditions
the success of this depends on SO, IO, RO being in
adjacent memory locations, in that order
partrans <- "
Tgamma = exp(gamma) ;
Tmu = exp(mu);
Tiota = exp(iota);
Tbetal exp (betal) ;
Tbeta2 = exp(beta2);
Tbeta3 = exp(beta3);
Tbeta_sd = exp(beta_sd);
Trho = expit(rho);
Ttheta = exp(theta);
from_log_barycentric(&TS_0,&S_0,3);

n

paruntrans <- "

Tgamma = log(gamma) ;

Tmu = log(mu);

Tiota = log(iota);

Tbetal = log(betal);

Tbeta2 = log(beta2);

Tbeta3 = log(beta3);

Tbeta_sd = log(beta_sd);

Trho = logit(rho);

Ttheta = log(theta);
to_log_barycentric(&TS_0,&S_0,3);

To model seasonality in transmission, we’ll use periodic B-splines. The following constructs a covariate
table with three cubic, periodic B-spline basis functions.

covartab <- data.frame(
time=seq(from=-1/52,to=10+1/52,by=1/26)

)
covartab <- cbind(
covartab,
with(covartab,
periodic.bspline.basis(
x=time,
nbasis=3,
degree=3,
period=1,
names="seasyd"
)
)

A call to pompBuilder assembles the given codes, compiles them, and links them to the current R session.

ADVANCED TOPICS IN POMP 9

pompBuilder (
name="SIR",
data=data.frame(
cases=NA,
time=seq(0,10,by=1/52)
),
times="time",
t0=-1/52,
dmeasure=dmeas,
rmeasure=rmeas,
step.fn=step.fn,
step.fn.delta.t=1/52/20,
skeleton.type="vectorfield",
skeleton=skel,
covar=covartab,
tcovar="time",
parameter. transform=partrans,
parameter.inv.transform=paruntrans,
statenames=c("S","I","R","incid", "W"),
paramnames=c (
"gamma", "mu", "iota",
"betal", "beta2", "beta3", "beta.sd",
"popsize", "rho", "theta",
"s.o","I1.0","R.O"

),
zeronames=c ("incid", "W"),
initializer=function(params, t0, ...) {

x0 <- setNames (numeric(5),c("S","I","R","incid","W"))
fracs <- params[c("S.0","I.0","R.0")]

x0[1:3] <- round(params['popsize']*fracs/sum(fracs))
x0

) -> sir

Let’s specify some parameters, simulate, and compute a deterministic trajectory:

coef (sir) <- c(
gamma=26,mu=0.02,iota=0.01,
betal=400, beta2=480,beta3=320,
beta.sd=0.001,
popsize=2.1e6,
rho=0.6,theta=10,
S.0=26/400,1.0=0.001,R.0=1
)

sir <- simulate(sir,seed=3493885L)

traj <- trajectory(sir,hmax=1/52)

The C codes generated by the above can be generated by running the “sir” demo: do demo("sir",package="pomp")

10

10

time

time

FI1GURE 1. Results of plot(sir).

&= 0000867 000S596T 0000S@ISC 00ST 00Ss ¥'0 20 00 20— VvOo-
&} (2}
z o proul M
4
<
< n
T T T T — T T T T T T 1 T T T T
0002 000T 00S 0000ST 000SET 0000800S 000€ 000T
Sased S |

10

ADVANCED TOPICS IN POMP 11

4. THE LOW-LEVEL INTERFACE

There is a low-level interface to pomp objects, primarily designed for package developers. Ordinary users
should have little reason to use this interface. In this section, each of the methods that make up this
interface will be introduced.

Getting initial states. The init.state method is called to initialize the state (unobserved) process.
It takes a vector or matrix of parameters and returns a matrix of initial states.
pompExample (ou2)

newly created pomp object(s):
ou2

true.p <- coef(ou2)
x0 <- init.state(ou2)

x0
[,1]
x1 -3
x2 4

new.p <- cbind(true.p,true.p,true.p)
new.p["x1.0",] <- 1:3
init.state(ou2, params=new.p)

(11 [,2] [,3]
x1 1 2 3
2 4 4 4

Simulating the process model. The rprocess method gives access to the process model simulator.
It takes initial conditions (which need not correspond to the zero-time t0 specified when the pomp object
was constructed), a set of times, and a set of parameters. The initial states and parameters must be
matrices, and they are checked for commensurability. The method returns a rank-3 array containing
simulated state trajectories, sampled at the times specified.

x <- rprocess (ou2,xstart=x0, times=time (ou2, t0=T) ,params=true.p)
dim(x)

[1] 2 1101
x[,,1:5]

[,1] [,2] [,3] [,4] [,5]
x1 -3 -3.283357 -0.6275075 6.035261 9.479388
x2 4 7.630037 7.6131727 10.854834 2.597988

Note that the dimensions of x are nvars x nreps x ntimes, where nvars is the number of state vari-
ables, nreps is the number of simulated trajectories (which is the number of columns in the params and
xstart matrices), and ntimes is the length of the times argument. Note also that x[,,1] is identical
to xstart.

12 A. A. KING

Simulating the measurement model. The rmeasure method gives access to the measurement model
simulator:

x <- x[,,-1,drop=F]
y <- rmeasure (ou2,x=x,times=time (ou2),params=true.p)
dim(y)

[1] 2 1100
yl,,1:5]

[,1] [,2] (,3] [,4] (,5]
y1l -1.548630 -0.5511519 6.020389 9.617936 9.241980
y2 8.308526 9.2890896 12.274503 1.584327 -1.991055

Process and measurement model densities. The dmeasure and dprocess methods give access to
the measurement and process model densities, respectively.

fp <- dprocess(ou2,x=x,times=time (ou2),params=true.p)
dim(fp)

(11 1 99
fpl,36:40]

[1] 0.006356768 0.008230949 0.011165882 0.018466369
[5] 0.015810859

fm <- dmeasure(ou2,y=yl[,1,],x=x,times=time (ou2),params=true.p)
dim(fm)

(11 1 100
fm[,36:40]

[1] 0.118826706 0.065905743 0.016613495 0.118275252
[5] 0.008519114

All of these are to be preferred to direct access to the slots of the pomp object, because they do error
checking on the inputs and outputs.

5. OTHER EXAMPLES

There are a number of example pomp objects included with the package. These can be found by running
pompExample ()

The R scripts that generated these are included in the examples directory of the installed package. The
majority of these use compiled code, which can be found in the package source.

A. A. KING, DEPARTMENTS OF ECOLOGY & EVOLUTIONARY BIOLOGY AND MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN
ARBOR, MICHIGAN 48109-1048 USA

E-mail address: kingaa at umich dot edu

URL: http:pomp.r-forge.r-project.org

