
Package ‘pomp’

March 22, 2014

Type Package

Title Statistical inference for partially observed Markov processes

Version 0.49-1

Date 2014-03-22

URL http://pomp.r-forge.r-project.org

Description Inference methods for partially-observed Markov processes

Depends R(>= 2.14.1), stats, graphics, methods, mvtnorm, subplex, nloptr, deSolve

License GPL(>= 2)

LazyData true

BuildVignettes true

MailingList

Subscribe to pomp-announce@r-forge.r-project.org for announcements by going to http://lists.r-

forge.r-project.org/mailman/listinfo/pomp-announce.

Collate aaa.R authors.R generics.R version.R eulermultinom.R

plugins.R parmat.R logmeanexp.R slice-design.R profile-design.R sobol.R bsplines.R sannbox.R

pomp-fun.R pomp-class.R pomp.R pomp-methods.R

rmeasure-pomp.R rprocess-pomp.R init-state-pomp.R

dmeasure-pomp.R dprocess-pomp.R skeleton-pomp.R dprior-pomp.R rprior-pomp.R

simulate-pomp.R trajectory-pomp.R plot-pomp.R

pfilter.R pfilter-methods.R minim.R traj-match.R bsmc.R

mif-class.R particles-mif.R mif.R mif-methods.R compare-mif.R

pmcmc.R pmcmc-methods.R compare-pmcmc.R nlf-funcs.R nlf-guts.R nlf-objfun.R nlf.R

probe.R probe-match.R basic-probes.R spect.R spect-match.R abc.R abc-methods.R

builder.R example.R

1

http://pomp.r-forge.r-project.org

2 R topics documented:

R topics documented:

pomp-package . 3

abc . 4

abc-methods . 6

B-splines . 7

basic.probes . 8

blowflies . 10

bsmc . 11

dacca . 13

eulermultinom . 14

gompertz . 16

logmeanexp . 17

LondonYorke . 18

mif . 19

mif-methods . 22

nlf . 23

ou2 . 26

parmat . 26

pfilter . 27

pfilter-methods . 29

plugins . 31

pmcmc . 34

pmcmc-methods . 36

pomp . 37

pomp-methods . 43

pompBuilder . 46

pompExample . 48

probe . 49

probed.pomp-methods . 52

profileDesign . 54

ricker . 55

rw2 . 55

sannbox . 56

simulate-pomp . 57

sir . 59

sliceDesign . 60

sobol . 61

spect . 62

traj.match . 65

trajectory . 67

verhulst . 69

Index 70

pomp-package 3

pomp-package Partially-observed Markov processes

Description

The pomp package provides facilities for inference on time series data using partially-observed

Markov processes (AKA state-space models or nonlinear stochastic dynamical systems). One can

use pomp to fit nonlinear, non-Gaussian dynamic models to time-series data. The first step in using

pomp is to encode one’s model and data in an object of class pomp. One does this via a call to

pomp, which involves specifying the process and measurement components of the model in one or

more of a variety of ways. Details on this are given in the documentation for the pomp function and

examples are given in the ‘intro_to_pomp’ vignette.

Currently, pomp provides algorithms for (i) simulation of stochastic dynamical systems (see simulate),

(ii) particle filtering (AKA sequential Monte Carlo or sequential importance sampling), see pfilter),

(iii) the iterated filtering method of Ionides et al. (2006), see mif), (iv) the nonlinear forecast-

ing algorithm of Kendall et al. (2005), see nlf), (v) the particle MCMC approach of Andrieu

et al. (2010), see pmcmc, (vi) basic trajectory matching, see traj.match, (vi) the probe-matching

method of Wood (2010) and Kendall et al. (1999), see probe.match, (vii) a spectral probe-matching

method (Reuman et al., 2006), see spect.match. See the package website http://pomp.r-forge.

r-project.org for these references. The package also provides various tools for plotting and ex-

tracting information on models and data as well as an API for algorithm development. Future

support for additional algorithms in envisioned, and implementations of the Bayesian sequential

Monte Carlo approach of Liu \& West. Much of the work in pomp has been done under the aus-

pices of a working group of the National Center for Ecological Analysis and Synthesis (NCEAS),

"Inference for Mechanistic Models".

The package is provided under the GNU Public License (GPL). Contributions are welcome, as

are comments, suggestions for improvements, and bug reports. See the package website http:

//pomp.r-forge.r-project.org for more information, access to the package mailing list, links

to the authors’ websites, and references to the literature.

Classes

pomp makes extensive use of S4 classes. The basic class, pomp, encodes a partially-observed

Markov process together with a uni- or multi-variate data set and (possibly) parameters.

Vignettes

The vignette ‘Introduction to pomp’ illustrates the facilities of the package using familiar stochastic

processes. Methods for accelerating your codes are discussed in the ‘Advanced topics in pomp’

vignette. These vignettes are installed in the package doc directory and are accessible via the

HTML documentation. They can also be viewed at http://pomp.r-forge.r-project.org.

Author(s)

Aaron A. King <kingaa at umich dot edu>

http://pomp.r-forge.r-project.org
http://pomp.r-forge.r-project.org
http://pomp.r-forge.r-project.org
http://pomp.r-forge.r-project.org
http://pomp.r-forge.r-project.org

4 abc

See Also

pomp, pfilter, simulate, trajectory, mif, nlf, probe.match, traj.match, bsmc, pmcmc

abc The ABC algorithm

Description

The approximate Bayesian computation (ABC) algorithm for estimating the parameters of a partially-

observed Markov process.

Usage

S4 method for signature 'pomp'

abc(object, Nabc = 1, start, pars,

rw.sd, probes, scale, epsilon,

verbose = getOption("verbose"), transform = FALSE, ...)

S4 method for signature 'probed.pomp'

abc(object, probes,

verbose = getOption("verbose"), transform = FALSE, ...)

S4 method for signature 'abc'

abc(object, Nabc, start, pars,

rw.sd, probes, scale, epsilon,

verbose = getOption("verbose"), transform, ...)

S4 method for signature 'abc'

continue(object, Nabc = 1, ...)

Arguments

object An object of class pomp.

Nabc The number of ABC iterations to perform.

start named numeric vector; the starting guess of the parameters.

pars optional character vector naming the ordinary parameters to be estimated. Every

parameter named in pars must have a positive random-walk standard deviation

specified in rw.sd. Leaving pars unspecified is equivalent to setting it equal to

the names of all parameters with a positive value of rw.sd.

rw.sd numeric vector with names; used to parameterize a Gaussian random walk MCMC

proposal. The random walk is only applied to parameters named in pars. The al-

gorithm requires that the random walk be nontrivial, so each element in rw.sd[pars]

must be positive. The following must be satisfied: names(rw.sd) must be a sub-

set of names(start), rw.sd must be non-negative (zeros are simply ignored),

the name of every positive element of rw.sd must be in pars.

probes

scale

abc 5

epsilon

verbose logical; if TRUE, print progress reports.

transform logical; if TRUE, optimization is performed on the transformed scale.

... Additional arguments. These are currently ignored.

Value

An object of class abc. This class inherits from class probed.pomp and contains the following

additional slots:

pars, Nabc, dprior, hyperparams, transform, scale, epsilon These slots hold the values of the

corresponding arguments of the call to abc.

random.walk.sd a named numeric vector containing the random-walk variances used to parame-

terize a Gaussian random walk MCMC proposal.

probes, conv.rec

Re-running ABC Iterations

To re-run a sequence of ABC iterations, one can use the abc method on a abc object. By default,

the same parameters used for the original ABC run are re-used (except for tol, max.fail, and

verbose, the defaults of which are shown above). If one does specify additional arguments, these

will override the defaults.

Continuing ABC Iterations

One can continue a series of ABC iterations from where one left off using the continue method. A

call to abc to perform Nabc=m iterations followed by a call to continue to perform Nabc=n iterations

will produce precisely the same effect as a single call to abc to perform Nabc=m+n iterations. By

default, all the algorithmic parameters are the same as used in the original call to abc. Additional

arguments will override the defaults.

Details

TO APPEAR.

Author(s)

Edward L. Ionides <ionides at umich dot edu>, Aaron A. King <kingaa at umich dot edu>

References

T. Toni and M. P. H. Stumpf, Simulation-based model selection for dynamical systems in systems

and population biology, Bioinformatics 26:104–110, 2010.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf, Approximate Bayesian computation

scheme for parameter inference and model selection in dynamical systems Journal of the Royal

Society, Interface 6:187–202, 2009.

6 abc-methods

See Also

abc-methods, pomp, probe. See the “intro_to_pomp” vignette for an example

abc-methods Methods of the "abc" class

Description

Methods of the "abc" class.

Usage

S4 method for signature 'abc'

conv.rec(object, pars, ...)

S4 method for signature 'abc'

plot(x, y, pars, scatter = FALSE, ...)

S4 method for signature 'abc'

dprior(object, params, log = FALSE, ...)

Arguments

object, x The abc object.

pars Names of parameters.

y Ignored.

scatter WHAT DOES THIS DO?

params Named vector of parameters.

log if TRUE, log probabilities are returned.

... Further arguments (either ignored or passed to underlying functions).

Methods

conv.rec conv.rec(object, pars = NULL) returns the columns of the convergence-record matrix

corresponding to the names in pars. By default, all rows are returned.

plot Plots a series of diagnostic plots.

Author(s)

Edward L. Ionides <ionides at umich dot edu>, Aaron A. King <kingaa at umich dot edu>

See Also

abc, pomp

B-splines 7

B-splines B-spline bases

Description

These functions generate B-spline basis functions. bspline.basis gives a basis of spline functions.

periodic.bspline.basis gives a basis of periodic spline functions.

Usage

bspline.basis(x, nbasis, degree = 3, names = NULL)

periodic.bspline.basis(x, nbasis, degree = 3, period = 1, names = NULL)

Arguments

x Vector at which the spline functions are to be evaluated.

nbasis The number of basis functions to return.

degree Degree of requested B-splines.

period The period of the requested periodic B-splines.

names optional; the names to be given to the basis functions. These will be the column-

names of the matrix returned. If the names are specified as a format string

(e.g., "basis%d"), sprintf will be used to generate the names from the column

number. If a single non-format string is specified, the names will be generated

by paste-ing name to the column number. One can also specify each column

name explicitly by giving a length-nbasis string vector. By default, no column-

names are given.

Details

Direct access to the underlying C routines is available. See the header file “pomp.h” for details.

Value

bspline.basis Returns a matrix with length(x) rows and nbasis columns. Each column

contains the values one of the spline basis functions.

periodic.bspline.basis

Returns a matrix with length(x) rows and nbasis columns. The basis func-

tions returned are periodic with period period.

Author(s)

Aaron A. King <kingaa at umich dot edu>

8 basic.probes

Examples

x <- seq(0,2,by=0.01)

y <- bspline.basis(x,degree=3,nbasis=9,names="basis")

matplot(x,y,type='l',ylim=c(0,1.1))

lines(x,apply(y,1,sum),lwd=2)

x <- seq(-1,2,by=0.01)

y <- periodic.bspline.basis(x,nbasis=5,names="spline%d")

matplot(x,y,type='l')

basic.probes Some probes for partially-observed Markov processes

Description

Several simple and configurable probes are provided in the package. These can be used directly and

as examples for building custom probes.

Usage

probe.mean(var, trim = 0, transform = identity, na.rm = TRUE)

probe.median(var, na.rm = TRUE)

probe.var(var, transform = identity, na.rm = TRUE)

probe.sd(var, transform = identity, na.rm = TRUE)

probe.marginal(var, ref, order = 3, diff = 1, transform = identity)

probe.nlar(var, lags, powers, transform = identity)

probe.acf(var, lags, type = c("covariance", "correlation"),

transform = identity)

probe.ccf(vars, lags, type = c("covariance", "correlation"),

transform = identity)

probe.period(var, kernel.width, transform = identity)

probe.quantile(var, prob, transform = identity)

Arguments

var, vars character; the name(s) of the observed variable(s).

trim the fraction of observations to be trimmed (see mean).

transform transformation to be applied to the data before the probe is computed.

na.rm if TRUE, remove all NA observations prior to computing the probe.

kernel.width width of modified Daniell smoothing kernel to be used in power-spectrum com-

putation: see kernel.

prob a single probability; the quantile to compute: see quantile.

lags In probe.ccf, a vector of lags between time series. Positive lags correspond to

x advanced relative to y; negative lags, to the reverse.

In probe.nlar, a vector of lags present in the nonlinear autoregressive model

that will be fit to the actual and simulated data. See Details, below, for a precise

description.

basic.probes 9

powers the powers of each term (corresponding to lags) in the the nonlinear autoregres-

sive model that will be fit to the actual and simulated data. See Details, below,

for a precise description.

type Compute autocorrelation or autocovariance?

ref empirical reference distribution. Simulated data will be regressed against the

values of ref, sorted and, optionally, differenced. The resulting regression co-

efficients capture information about the shape of the marginal distribution. A

good choice for ref is the data itself.

order order of polynomial regression.

diff order of differencing to perform.

... Additional arguments to be passed through to the probe computation.

Details

Each of these functions is relatively simple. See the source code for a complete understanding of

what each does.

probe.mean, probe.median, probe.var, probe.sd return functions that compute the mean, me-

dian, variance, and standard deviation of variable var, respectively.

probe.period returns a function that estimates the period of the Fourier component of the var

series with largest power.

probe.marginal returns a function that regresses the marginal distribution of variable var against

the reference distribution ref. If diff>0, the data and the reference distribution are first

differenced diff times and centered. Polynomial regression of order order is used. This

probe returns order regression coefficients (the intercept is zero).

probe.nlar returns a function that fit a nonlinear (polynomial) autoregressive model to the uni-

variate series (variable var). Specifically, a model of the form yt =
∑

βky
pk

t−τk
+ ǫt will be

fit, where τk are the lags and pk are the powers. The data are first centered. This function

returns the regression coefficients, βk.

probe.acf returns a function that, if type=="covariance", computes the autocovariance of vari-

able var at lags lags; if type=="correlation", computes the autocorrelation of variable var

at lags lags.

probe.ccf returns a function that, if type=="covariance", computes the cross covariance of the

two variables named in vars at lags lags; if type=="correlation", computes the cross

correlation.

probe.quantile returns a function that estimates the prob-th quantile of variable var.

Value

A call to any one of these functions returns a probe function, suitable for use in probe or probe.match.

That is, the function returned by each of these takes a data array (such as comes from a call to obs)

as input and returns a single numerical value.

Author(s)

Daniel C. Reuman (d.reuman at imperial dot ac dot uk)

Aaron A. King (kingaa at umich dot edu)

10 blowflies

References

B. E. Kendall, C. J. Briggs, W. M. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nis-

bet, S. N. Wood Why do populations cycle? A synthesis of statistical and mechanistic modeling

approaches, Ecology, 80:1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466:

1102–1104, 2010.

See Also

pomp-class, pomp-methods

blowflies Model for Nicholson’s blowflies.

Description

blowflies1 and blowflies2 are pomp objects encoding stochastic delay-difference models.

Details

The data are from "population I", a control culture in one of A. J. Nicholson’s experiments with the

Australian sheep-blowfly Lucilia cuprina. The experiment is described on pp. 163–4 of Nicholson

(1957). Unlimited quantities of larval food were provided; the adult food supply (ground liver) was

constant at 0.4g per day. The data were taken from the table provided by Brillinger et al. (1980).

The models are discrete delay equations:

R(t+ 1) ∼ Poisson(PN(t− τ) exp (−N(t− τ)/N0)e(t+ 1)∆t)

S(t+ 1) ∼ binomial(N(t), exp (−δǫ(t+ 1)∆t))

N(t) = R(t) + S(t)

where e(t) and ǫ(t) are Gamma-distributed i.i.d. random variables with mean 1 and variances

σ2
p/∆t, σ2

d/∆t, respectively. blowflies1 has a timestep (∆t) of 1 day, and blowflies2 has a

timestep of 2 days. The process model in blowflies1 thus corresponds exactly to that studied by

Wood (2010). The measurement model in both cases is taken to be

y(t) ∼ negbin(N(t), 1/σ2
y)

, i.e., the observations are assumed to be negative-binomially distributed with mean N(t) and vari-

ance N(t) + (σyN(t))2.

Do

file.show(system.file("examples","blowflies.R",package="pomp"))

to view the code that constructs these pomp objects.

bsmc 11

References

A. J. Nicholson (1957) The self-adjustment of populations to change. Cold Spring Harbor Symposia

on Quantitative Biology, 22, 153–173.

Y. Xia and H. Tong (2011) Feature Matching in Time Series Modeling. Statistical Science 26,

21–46.

E. L. Ionides (2011) Discussion of “Feature Matching in Time Series Modeling” by Y. Xia and H.

Tong. Statistical Science 26, 49–52.

S. N. Wood (2010) Statistical inference for noisy nonlinear ecological dynamic systems. Nature

466, 1102–1104.

W. S. C. Gurney, S. P. Blythe, and R. M. Nisbet (1980) Nicholson’s blowflies revisited. Nature 287,

17–21.

D. R. Brillinger, J. Guckenheimer, P. Guttorp and G. Oster (1980) Empirical modelling of popula-

tion time series: The case of age and density dependent rates. in G. Oster (ed.), Some Questions in

Mathematical Biology, vol. 13, pp. 65–90. American Mathematical Society, Providence.

See Also

pomp-class and the vignettes

Examples

pompExample(blowflies)

plot(blowflies1)

plot(blowflies2)

bsmc Liu and West Bayesian Particle Filter

Description

Generates draws from the posterior distribution for the parameters using the Liu and West algorithm.

bsmc gives draws from the posterior.

Usage

S4 method for signature 'pomp'

bsmc(object, params, Np, est, smooth = 0.1,

ntries = 1, tol = 1e-17, lower = -Inf, upper = Inf, seed = NULL,

verbose = getOption("verbose"), max.fail = 0,

transform = FALSE, ...)

12 bsmc

Arguments

object An object of class pomp or inheriting class pomp.

params, Np Specifications for the prior distribution of particles. See details below.

est Names of the rows of params that are to be estimated. No updates will be made

to the other parameters. If est is not specified, all parameters for which there is

variation in params will be estimated.

smooth Kernel density smoothing parameters. The compensating shrinkage factor will

be sqrt(1-smooth^2). Thus, smooth=0 means that no noise will be added to

parameters. Generally, the value of smooth should be chosen close to 0 (i.e.,

shrink~0.1).

ntries Number of draws from rprocess per particle used to estimate the expected

value of the state process at time t+1 given the state and parameters at time t.

tol Particles with log likelihood below tol are considered to be “lost”. A filtering

failure occurs when, at some time point, all particles are lost. When all particles

are lost, the conditional log likelihood at that time point is set to be log(tol).

lower, upper optional; lower and upper bounds on the priors. This is useful in case there are

box constraints satisfied by the priors. The posterior is guaranteed to lie within

these bounds.

seed optional; an object specifying if and how the random number generator should

be initialized (‘seeded’). If seed is an integer, it is passed to set.seed prior

to any simulation and is returned as the “seed” element of the return list. By

default, the state of the random number generator is not changed and the value

of .Random.seed on the call is stored in the “seed” element of the return list.

verbose logical; if TRUE, print diagnostic messages.

max.fail The maximum number of filtering failures allowed. If the number of filtering

failures exceeds this number, execution will terminate with an error.

transform logical; if TRUE, the algorithm operates on the transformed scale.

... currently ignored.

Details

There are two ways to specify the prior distribution of particles. If params is unspecified or is a

named vector, Np draws are made from the prior distribution, as specified by rprior. Alternatively,

params can be specified as an npars x Np matrix (with rownames).

Value

An object of class “bsmcd.pomp”. The “params” slot of this object will hold the parameter posterior

medians. The slots of this class include:

post A matrix containing draws from the approximate posterior distribution.

prior A matrix containing draws from the prior distribution (identical to params on

call).

eff.sample.size

A vector containing the effective number of particles at each time point.

dacca 13

smooth The smoothing parameter used (see above).

seed The state of the random number generator at the time bsmc was called. If the

argument seed was specified, this is a copy; if not, this is the internal state of

the random number generator at the time of call.

nfail The number of filtering failures encountered.

cond.log.evidence

A vector containing the conditional log evidence scores at each time point.

log.evidence The estimated log evidence.

weights The resampling weights for each particle.

Author(s)

Michael Lavine (lavine at math dot umass dot edu), Matthew Ferrari (mferrari at psu dot edu),

Aaron A. King

See Also

pomp-class

Examples

See the vignettes for examples.

dacca Model of cholera transmission for historic Bengal.

Description

dacca is a pomp object containing census and cholera mortality data from the Dacca district of the

former British province of Bengal over the years 1891 to 1940 together with a stochastic differential

equation transmission model. The model is that of King et al. (2008). The parameters are the MLE

for the SIRS model with seasonal reservoir.

Data are provided courtesy of Dr. Menno J. Bouma, London School of Tropical Medicine and

Hygiene.

Details

dacca is a pomp object containing the model, data, and MLE parameters. Parameters that natu-

rally range over the positive reals are log-transformed; parameters that range over the unit interval

are logit-transformed; parameters that are naturally unbounded or take integer values are not trans-

formed.

References

King, A. A., Ionides, E. L., Pascual, M., and Bouma, M. J. Inapparent infections and cholera

dynamics. Nature 454:877-880 (2008)

14 eulermultinom

See Also

euler.sir, pomp

Examples

pompExample(dacca)

plot(dacca)

#MLEs on the natural scale

coef(dacca)

#MLEs on the transformed scale

coef(dacca,transform=TRUE)

plot(simulate(dacca))

now change 'eps' and simulate again

coef(dacca,"eps") <- 1

plot(simulate(dacca))

eulermultinom Euler-multinomial death process

Description

Density and random-deviate generation for the Euler-multinomial death process with parameters

size, rate, and dt.

Usage

reulermultinom(n = 1, size, rate, dt)

deulermultinom(x, size, rate, dt, log = FALSE)

rgammawn(n = 1, sigma, dt)

Arguments

n integer; number of random variates to generate.

size scalar integer; number of individuals at risk.

rate numeric vector of hazard rates.

sigma numeric scalar; intensity of the Gamma white noise process.

dt numeric scalar; duration of Euler step.

x matrix or vector containing number of individuals that have succumbed to each

death process.

log logical; if TRUE, return logarithm(s) of probabilities.

eulermultinom 15

Details

If N individuals face constant hazards of death in k ways at rates r1, r2, . . . , rk, then in an interval

of duration ∆t, the number of individuals remaining alive and dying in each way is multinomially

distributed:

(N −

k∑

i=1

∆ni,∆n1, . . . ,∆nk) ∼ multinomial(N ; p0, p1, . . . , pk),

where ∆ni is the number of individuals dying in way i over the interval, the probability of remaining

alive is p0 = exp(−
∑

i ri∆t), and the probability of dying in way j is

pj =
rj∑
i ri

(1− exp(−
∑

i

ri∆t)).

In this case, we can say that

(∆n1, . . . ,∆nk) ∼ eulermultinom(N, r,∆t),

where r = (r1, . . . , rk). Draw m random samples from this distribution by doing

dn <- reulermultinom(n=m,size=N,rate=r,dt=dt),

where r is the vector of rates. Evaluate the probability that x = (x1, . . . , xk) are the numbers of

individuals who have died in each of the k ways over the interval ∆t =dt, by doing

deulermultinom(x=x,size=N,rate=r,dt=dt).

Breto & Ionides discuss how an infinitesimally overdispersed death process can be constructed by

compounding a binomial process with a Gamma white noise process. The Euler approximation of

the resulting process can be obtained as follows. Let the increments of the equidispersed process be

given by

reulermultinom(size=N,rate=r,dt=dt).

In this expression, replace the rate r with r∆W/∆t, where ∆W˜Gamma(dt/σ2, σ2) is the in-

crement of an integrated Gamma white noise process with intensity σ. That is, ∆W has mean ∆t
and variance σ2∆t. The resulting process is overdispersed and converges (as ∆t goes to zero) to a

well-defined process. The following lines of R code accomplish this:

dW <- rgammawn(sigma=sigma,dt=dt)

dn <- reulermultinom(size=N,rate=r,dt=dW)

or

dn <- reulermultinom(size=N,rate=r*dW/dt,dt=dt).

He et al. use such overdispersed death processes in modeling measles.

For all of the functions described here, direct access to the underlying C routines is available: see

the header file “pomp.h”, included with the package.

Value

reulermultinom Returns a length(rate) by n matrix. Each column is a different random draw.

Each row contains the numbers of individuals succumbed to the corresponding

process.

16 gompertz

deulermultinom Returns a vector (of length equal to the number of columns of x) containing

the probabilities of observing each column of x given the specified parameters

(size, rate, dt).

rgammawn Returns a vector of length n containing random increments of the integrated

Gamma white noise process with intensity sigma.

Author(s)

Aaron A. King <kingaa at umich dot edu>

References

C. Bret\’o & E. L. Ionides, Compound Markov counting processes and their applications to model-

ing infinitesimally over-dispersed systems. Stoch. Proc. Appl., 121:2571–2591, 2011.

D. He, E. L. Ionides, & A. A. King, Plug-and-play inference for disease dynamics: measles in large

and small populations as a case study. J. R. Soc. Interface, 7:271–283, 2010.

Examples

print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=0.1))

deulermultinom(x=dn,size=100,rate=c(1,2,3),dt=0.1)

an Euler-multinomial with overdispersed transitions:

dt <- 0.1

dW <- rgammawn(sigma=0.1,dt=dt)

print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=dW))

gompertz Gompertz model with log-normal observations.

Description

gompertz is a pomp object encoding a stochastic Gompertz population model with log-normal mea-

surement error.

Details

The state process is Xt+1 = K1−SXS
t ǫt, where S = e−r and the ǫt are i.i.d. lognormal random

deviates with variance σ2. The observed variables Yt are distributed as lognormal(logXt, τ). Pa-

rameters include the per-capita growth rate r, the carrying capacity K, the process noise s.d. σ,

the measurement error s.d. τ , and the initial condition X0. The pomp object includes parameter

transformations that log-transform the parameters for estimation purposes.

See Also

pomp-class and the "intro_to_pomp" vignette.

logmeanexp 17

Examples

pompExample(gompertz)

plot(gompertz)

coef(gompertz)

coef(gompertz,transform=TRUE)

logmeanexp The log-mean-exp trick

Description

logmeanexp computes the log-mean-exp of a set of numbers.

Usage

logmeanexp(x, se = FALSE)

Arguments

x numeric

se logical; give approximate standard error?

Value

log(mean(exp(x))) computed so as to avoid over- or underflow. If se = FALSE, the approximate

standard error is returned as well.

Author(s)

Aaron A. King <kingaa at umich dot edu>

Examples

generate a bifurcation diagram for the Ricker map

pompExample(ricker)

ll <- replicate(n=5,logLik(pfilter(ricker,Np=1000)))

an estimate of the log likelihood:

logmeanexp(ll)

logmeanexp(ll,se=TRUE)

18 LondonYorke

LondonYorke Historical childhood disease incidence data

Description

LondonYorke is a data-frame containing the monthly number of reported cases of chickenpox,

measles, and mumps from two American cities (Baltimore and New York) in the mid-20th century

(1928–1972).

Usage

data(LondonYorke)

References

W. P. London and J. A. Yorke, Recurrent Outbreaks of Measles, Chickenpox and Mumps: I. Sea-

sonal Variation in Contact Rates, American Journal of Epidemiology, 98:453–468, 1973.

Examples

data(LondonYorke)

plot(cases~time,data=LondonYorke,subset=disease=="measles",type='n',main="measles",bty='l')

lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="Baltimore",col="red")

lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="New York",col="blue")

legend("topright",legend=c("Baltimore","New York"),lty=1,col=c("red","blue"),bty='n')

plot(

cases~time,

data=LondonYorke,

subset=disease=="chickenpox"&town=="New York",

type='l',col="blue",main="chickenpox, New York",

bty='l'

)

plot(

cases~time,

data=LondonYorke,

subset=disease=="mumps"&town=="New York",

type='l',col="blue",main="mumps, New York",

bty='l'

)

mif 19

mif The MIF algorithm

Description

The MIF algorithm for estimating the parameters of a partially-observed Markov process.

Usage

mif(object, ...)

S4 method for signature 'pomp'

mif(object, Nmif = 1, start, pars, ivps = character(0),

particles, rw.sd, Np, ic.lag, var.factor,

cooling.type, cooling.fraction, cooling.factor,

method = c("mif","unweighted","fp","mif2"),

tol = 1e-17, max.fail = Inf,

verbose = getOption("verbose"), transform = FALSE, ...)

S4 method for signature 'pfilterd.pomp'

mif(object, Nmif = 1, Np, tol, ...)

S4 method for signature 'mif'

mif(object, Nmif, start, ivps,

particles, rw.sd, Np, ic.lag, var.factor,

cooling.type, cooling.fraction,

method, tol, transform, ...)

S4 method for signature 'mif'

continue(object, Nmif = 1, ...)

Arguments

object An object of class pomp.

Nmif The number of MIF iterations to perform.

start named numerical vector; the starting guess of the parameters.

pars optional character vector naming the ordinary parameters to be estimated. Every

parameter named in pars must have a positive random-walk standard deviation

specified in rw.sd. Leaving pars unspecified is equivalent to setting it equal to

the names of all parameters with a positive value of rw.sd that are not ivps.

ivps optional character vector naming the initial-value parameters (IVPs) to be es-

timated. Every parameter named in ivps must have a positive random-walk

standard deviation specified in rw.sd. If pars is empty, i.e., only IVPs are to be

estimated, see below “"Using MIF to estimate initial-value parameters only"”.

particles Function of prototype particles(Np,center,sd,...) which sets up the start-

ing particle matrix by drawing a sample of size Np from the starting particle

distribution centered at center and of width sd. If particles is not supplied

by the user, the default behavior is to draw the particles from a multivariate

normal distribution with mean center and standard deviation sd.

20 mif

rw.sd numeric vector with names; the intensity of the random walk to be applied to

parameters. The random walk is only applied to parameters named in pars (i.e.,

not to those named in ivps). The algorithm requires that the random walk be

nontrivial, so each element in rw.sd[pars] must be positive. rw.sd is also used

to scale the initial-value parameters (via the particles function). Therefore,

each element of rw.sd[ivps] must be positive. The following must be satisfied:

names(rw.sd) must be a subset of names(start), rw.sd must be non-negative

(zeros are simply ignored), the name of every positive element of rw.sd must

be in either pars or ivps.

Np the number of particles to use in filtering. This may be specified as a single

positive integer, in which case the same number of particles will be used at each

timestep. Alternatively, if one wishes the number of particles to vary across

timestep, one may specify Np either as a vector of positive integers (of length

length(time(object,t0=TRUE))) or as a function taking a positive integer

argument. In the latter case, Np(k) must be a single positive integer, represent-

ing the number of particles to be used at the k-th timestep: Np(0) is the num-

ber of particles to use going from timezero(object) to time(object)[1],

Np(1), from timezero(object) to time(object)[1], and so on, while when

T=length(time(object,t0=TRUE)), Np(T) is the number of particles to sam-

ple at the end of the time-series.

ic.lag a positive integer; the timepoint for fixed-lag smoothing of initial-value param-

eters. The mif update for initial-value parameters consists of replacing them by

their filtering mean at time times[ic.lag], where times=time(object). It

makes no sense to set ic.lag>length(times); if it is so set, ic.lag is set to

length(times) with a warning. For method='mif2', the default is ic.lag=length(times).

var.factor a positive number; the scaling coefficient relating the width of the starting parti-

cle distribution to rw.sd. In particular, the width of the distribution of particles

at the start of the first MIF iteration will be random.walk.sd*var.factor.

cooling.type, cooling.fraction, cooling.factor

specifications for the cooling schedule, i.e., the manner in which the intensity

of the parameter perturbations is reduced with successive filtering iterations.

cooling.type specifies the nature of the cooling schedule. When cooling.type="geometric",

on the n-th MIF iteration, the relative perturbation intensity is cooling.fraction^(n/50).

When cooling.type="hyperbolic", on the n-th MIF iteration, the relative

perturbation intensity is (s+1)(s+n), where (s+1)/(s+50)=cooling.fraction.

cooling.fraction is the relative magnitude of the parameter perturbations af-

ter 50 MIF iterations. cooling.factor is now deprecated: to achieve the old

behavior, use cooling.type="geometric" and cooling.fraction=(cooling.factor)^50.

method method sets the update rule used in the algorithm. method="mif" uses the iter-

ated filtering update rule (Ionides 2006, 2011); method="unweighted" updates

the parameter to the unweighted average of the filtering means of the parameters

at each time; method="fp" updates the parameter to the filtering mean at the end

of the time series. method="mif2" [EXPLAIN]

tol See the description under pfilter.

max.fail See the description under pfilter.

verbose logical; if TRUE, print progress reports.

mif 21

transform logical; if TRUE, optimization is performed on the transformed scale.

... additional arguments that override the defaults.

Re-running MIF Iterations

To re-run a sequence of MIF iterations, one can use the mif method on a mif object. By default, the

same parameters used for the original MIF run are re-used (except for weighted, tol, max.fail,

and verbose, the defaults of which are shown above). If one does specify additional arguments,

these will override the defaults.

Continuing MIF Iterations

One can resume a series of MIF iterations from where one left off using the continue method. A

call to mif to perform Nmif=m iterations followed by a call to continue to perform Nmif=n iterations

will produce precisely the same effect as a single call to mif to perform Nmif=m+n iterations. By

default, all the algorithmic parameters are the same as used in the original call to mif. Additional

arguments will override the defaults.

Using MIF to estimate initial-value parameters only

One can use MIF’s fixed-lag smoothing to estimate only initial value parameters (IVPs). In this

case, pars is left empty and the IVPs to be estimated are named in ivps. If theta is the current

parameter vector, then at each MIF iteration, Np particles are drawn from a distribution centered

at theta and with width proportional to var.factor*rw.sd, a particle filtering operation is per-

formed, and theta is replaced by the filtering mean at time(object)[ic.lag]. Note the impli-

cation that, when mif is used in this way on a time series any longer than ic.lag, unnecessary

work is done. If the time series in object is longer than ic.lag, consider replacing object with

window(object,end=ic.lag).

Details

If particles is not specified, the default behavior is to draw the particles from a multivariate normal

distribution. It is the user’s responsibility to ensure that, if the optional particles argument

is given, that the particles function satisfies the following conditions:

particles has at least the following arguments: Np, center, sd, and Np may be assumed to be

a positive integer; center and sd will be named vectors of the same length. Additional arguments

may be specified; these will be filled with the elements of the userdata slot of the underlying pomp

object (see pomp-class).

particles returns a length(center) x Np matrix with rownames matching the names of center

and sd. Each column represents a distinct particle.

The center of the particle distribution returned by particles should be center. The width of the

particle distribution should vary monotonically with sd. In particular, when sd=0, the particles

should return matrices with Np identical columns, each given by the parameters specified in center.

Author(s)

Aaron A. King <kingaa at umich dot edu>

22 mif-methods

References

E. L. Ionides, C. Bret\’o, & A. A. King, Inference for nonlinear dynamical systems, Proc. Natl.

Acad. Sci. U.S.A., 103:18438–18443, 2006.

E. L. Ionides, A. Bhadra, Y. Atchad\’e, & A. A. King, Iterated filtering, Annals of Statistics,

39:1776–1802, 2011.

A. A. King, E. L. Ionides, M. Pascual, and M. J. Bouma, Inapparent infections and cholera dynam-

ics, Nature, 454:877–880, 2008.

See Also

mif-methods, pomp, pomp-class, pfilter. See the “intro_to_pomp” vignette for examples.

mif-methods Methods of the "mif" class

Description

Methods of the "mif" class.

Usage

S4 method for signature 'mif'

logLik(object, ...)

S4 method for signature 'mif'

conv.rec(object, pars, transform = FALSE, ...)

S4 method for signature 'mif'

plot(x, y = NULL, ...)

compare.mif(z)

Arguments

object The mif object.

pars Names of parameters.

x The mif object.

y Ignored.

z A mif object or list of mif objects.

transform optional logical; should the parameter transformations be applied? See coef for

details.

... Further arguments (either ignored or passed to underlying functions).

nlf 23

Methods

conv.rec conv.rec(object, pars = NULL) returns the columns of the convergence-record matrix

corresponding to the names in pars. By default, all rows are returned.

logLik Returns the value in the loglik slot.

mif Re-runs the MIF iterations. See the documentation for mif.

compare.mif Given a mif object or a list of mif objects, compare.mif produces a set of diagnostic

plots.

plot Plots a series of diagnostic plots. When x is a mif object, plot(x) is equivalent to compare.mif(list(x)).

predvarplot predvarplot(object, pars = NULL, mean = FALSE, ...) produces a plot of

the scaled prediction variances for each parameter. This can be used to diagnose a good value

of the mif parameters var.factor and ic.lag. If used in this way, one should run mif with

Nmif=1 first. Additional arguments in ... will be passed to the actual plotting function.

print Prints a summary of the mif object.

show Displays the mif object.

Author(s)

Aaron A. King <kingaa at umich dot edu>

References

E. L. Ionides, C. Bret\’o, & A. A. King, Inference for nonlinear dynamical systems, Proc. Natl.

Acad. Sci. U.S.A., 103:18438–18443, 2006.

A. A. King, E. L. Ionides, M. Pascual, and M. J. Bouma, Inapparent infections and cholera dynam-

ics, Nature, 454:877–880, 2008.

See Also

mif, pomp, pomp-class, pfilter

nlf Fit Model to Data Using Nonlinear Forecasting (NLF)

Description

Calls an optimizer to maximize the nonlinear forecasting (NLF) goodness of fit, by simulating data

from a model, fitting a nonlinear autoregressive model to the simulated time series (which may be

multivariate) and using the fitted model to predict some or all variables in the data time series. NLF

is an ‘indirect inference’ method using a quasi-likelihood as the objective function.

24 nlf

Usage

nlf(object, start, est, lags, period = NA, tensor = FALSE,

nconverge=1000, nasymp=1000, seed = 1066,

transform = identity,

nrbf = 4, method = "subplex", skip.se = FALSE,

verbose = FALSE, gr = NULL,

bootstrap=FALSE, bootsamp = NULL,

lql.frac = 0.1, se.par.frac = 0.1, eval.only = FALSE,

transform.params = FALSE, ...)

Arguments

object A pomp object, with the data and model to fit to it.

start Named numeric vector with guessed parameters.

est Vector containing the names or indices of parameters to be estimated.

lags A vector specifying the lags to use when constructing the nonlinear autoregres-

sive prediction model. The first lag is the prediction interval.

period numeric; period=NA means the model is nonseasonal. period>0 is the period of

seasonal forcing in ’real time’.

tensor logical; if FALSE, the fitted model is a generalized additive model with time

mod period as one of the predictors, i.e., a gam with time-varying intercept. If

TRUE, the fitted model is a gam with lagged state variables as predictors and

time-periodic coefficients, constructed using tensor products of basis functions

of state variables with basis functions of time.

nconverge Number of convergence timesteps to be discarded from the model simulation.

nasymp Number of asymptotic timesteps to be recorded from the model simulation.

seed Integer specifying the random number seed to use. When fitting, it is usually

best to always run the simulations with the same sequence of random numbers,

which is accomplished by setting seed to an integer. If you want a truly random

simulation, set seed=NULL.

transform optional function. If specified, forecasting is performed using data and model

simulations transformed by this function. By default, transform is the identity

function, i.e., no transformation is performed. The main purpose of transform

is to achieve approximately multivariate normal forecasting errors. If data are

univariate, transform should take a scalar and return a scalar. If data are multi-

variate, transform should assume a vector input and return a vector of the same

length.

nrbf A scalar specifying the number of radial basis functions to be used at each lag.

method Optimization method. Choices are subplex and any of the methods used by

optim.

skip.se Logical; if TRUE, skip the computation of standard errors.

verbose Logical; if TRUE, the negative log quasilikelihood and parameter values are

printed at each iteration of the optimizer.

gr optional; passed to optim if optim is used.

nlf 25

bootstrap Logical; if TRUE the indices in bootsamp will determine which of the conditional

likelihood values be used in computing the quasi-loglikelihood.

bootsamp Vector of integers; used to have the quasi-loglikelihood evaluated using a boot-

strap re-sampling of the data set.

lql.frac target fractional change in log quasi-likelihood for quadratic standard error esti-

mate

se.par.frac initial parameter-change fraction for quadratic standard error estimate

eval.only logical; if TRUE, no optimization is attempted and the quasi-loglikelihood value

is evaluated at the start parameters.

transform.params

logical; if TRUE, parameters are optimized on the transformed scale.

... Arguments that will be passed to optim or subplex in the control list.

Details

This is functionally a wrapper for nlf.objfun, which does the statistical heavy lifting and should

be consulted for details.

Value

A list corresponding to the output from the optimizer, except that the full parameter vector is re-

turned (not just the ones fitted), the log quasilikelihood (LQL) (not -LQL) is reported, xstart is

included, and asymptotic Wald standard errors based on M-estimator theory are returned for each

fitted parameter.

Author(s)

Stephen P. Ellner <spe2 at cornell dot edu> and Bruce E. Kendall <kendall at bren dot

ucsb dot edu>

References

The following papers describe and motivate the NLF approach to model fitting:

Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T. and Nychka D. W. (1998)

Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to

population modeling. American Naturalist 151, 425–440.

Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P., Ellner, S. P., McCauley, E., Nisbet, R.

M. and Wood S. N. (1999) Why do populations cycle? A synthesis of statistical and mechanistic

modeling approaches. Ecology 80, 1789–1805. Available online at http://www2.bren.ucsb.

edu/~kendall/pubs/1999Ecology.pdf

Kendall, B. E., Ellner, S. P., McCauley, E., Wood, S. N., Briggs, C. J., Murdoch, W. W. and

Turchin, P. (2005) Population cycles in the pine looper moth (Bupalus piniarius): dynamical tests

of mechanistic hypotheses. Ecological Monographs 75, 259–276. Available online at http:

//repositories.cdlib.org/postprints/818/

http://www2.bren.ucsb.edu/~kendall/pubs/1999Ecology.pdf
http://www2.bren.ucsb.edu/~kendall/pubs/1999Ecology.pdf
http://repositories.cdlib.org/postprints/818/
http://repositories.cdlib.org/postprints/818/

26 parmat

ou2 Two-dimensional discrete-time Ornstein-Uhlenbeck process

Description

ou2 is a pomp object encoding a bivariate discrete-time Ornstein-Uhlenbeck process.

Details

If the state process is X(t) = (x1(t), x2(t)), then

X(t+ 1) = αX(t) + σǫ(t),

where α and σ are 2x2 matrices, σ is lower-triangular, and ǫ(t) is standard bivariate normal. The

observation process is Y (t) = (y1(t), y2(t)), where yi(t) ∼ normal(xi(t), τ). The functions

rprocess, dprocess, rmeasure, dmeasure, and skeleton are implemented using compiled C

code for computational speed: see the source code for details. This object is demonstrated in the

vignette "Advanced topics in pomp".

See Also

pomp and the vignettes

Examples

pompExample(ou2)

plot(ou2)

coef(ou2)

x <- simulate(ou2)

plot(x)

pf <- pfilter(ou2,Np=1000)

logLik(pf)

parmat Create a matrix of parameters

Description

parmat is a utility that makes a vector of parameters suitable for use in pomp functions.

Usage

parmat(params, nrep = 1)

Arguments

params named numeric vector or matrix of parameters.

nrep number of replicates (columns) desired.

pfilter 27

Value

parmat returns a matrix consisting of nrep copies of params.

Author(s)

Aaron A. King <kingaa at umich dot edu>

Examples

generate a bifurcation diagram for the Ricker map

pompExample(ricker)

p <- parmat(coef(ricker),nrep=500)

p["r",] <- exp(seq(from=1.5,to=4,length=500))

x <- trajectory(ricker,times=seq(from=1000,to=2000,by=1),params=p)

matplot(p["r",],x["N",,],pch='.',col='black',xlab="log(r)",ylab="N",log='x')

pfilter Particle filter

Description

Run a plain vanilla particle filter. Resampling is performed at each observation.

Usage

S4 method for signature 'pomp'

pfilter(object, params, Np, tol = 1e-17,

max.fail = Inf, pred.mean = FALSE, pred.var = FALSE,

filter.mean = FALSE, save.states = FALSE,

save.params = FALSE, seed = NULL,

verbose = getOption("verbose"), ...)

S4 method for signature 'pfilterd.pomp'

pfilter(object, params, Np, tol, ...)

Arguments

object An object of class pomp or inheriting class pomp.

params A npars x Np numeric matrix containing the parameters corresponding to the

initial state values in xstart. This must have a ‘rownames’ attribute. If it

desired that all particles should share the same parameter values, one one may

supply params as a named numeric vector.

Np the number of particles to use. This may be specified as a single positive integer,

in which case the same number of particles will be used at each timestep. Alter-

natively, if one wishes the number of particles to vary across timesteps, one may

specify Np either as a vector of positive integers (of length length(time(object,t0=TRUE)))

or as a function taking a positive integer argument. In the latter case, Np(k)

must be a single positive integer, representing the number of particles to be

28 pfilter

used at the k-th timestep: Np(0) is the number of particles to use going from

timezero(object) to time(object)[1], Np(1), from timezero(object) to

time(object)[1], and so on, while when T=length(time(object,t0=TRUE)),

Np(T) is the number of particles to sample at the end of the time-series. When

object is of class mif, this is by default the same number of particles used in

the mif iterations.

tol positive numeric scalar; particles with likelihood less than tol are considered to

be “lost”. A filtering failure occurs when, at some time point, all particles are

lost. When all particles are lost, the conditional likelihood at that time point is

set to tol.

max.fail integer; the maximum number of filtering failures allowed. If the number of

filtering failures exceeds this number, execution will terminate with an error. By

default, max.fail is set to infinity, so no error can be triggered.

pred.mean logical; if TRUE, the prediction means are calculated for the state variables and

parameters.

pred.var logical; if TRUE, the prediction variances are calculated for the state variables

and parameters.

filter.mean logical; if TRUE, the filtering means are calculated for the state variables and

parameters.

save.states, save.params

logical. If save.states=TRUE, the state-vector for each particle at each time

is saved in the saved.states slot of the returned pfilterd.pomp object. If

save.params=TRUE, the parameter-vector for each particle at each time is saved

in the saved.params slot of the returned pfilterd.pomp object.

seed optional; an object specifying if and how the random number generator should

be initialized (‘seeded’). If seed is an integer, it is passed to set.seed prior

to any simulation and is returned as the “seed” element of the return list. By

default, the state of the random number generator is not changed and the value

of .Random.seed on the call is stored in the “seed” element of the return list.

verbose logical; if TRUE, progress information is reported as pfilter works.

... By default, when pfilter pfilter is run on a pfilterd.pomp object, the set-

tings in the original call are re-used. This default behavior can be overridden by

changing the settings (see Examples below).

Value

An object of class pfilterd.pomp. This class inherits from class pomp and contains the following

additional slots:

pred.mean, pred.var, filter.mean matrices of prediction means, variances, and filter means, re-

spectively. In each of these, the rows correspond to states and parameters (if appropriate), in

that order, the columns to successive observations in the time series contained in object.

eff.sample.size numeric vector containing the effective number of particles at each time point.

cond.loglik numeric vector containing the conditional log likelihoods at each time point.

saved.states If pfilter was called with save.states=TRUE, this is the list of state-vectors at each

time point, for each particle. It is a length-ntimes list of nvars-by-Np arrays. In particular,

saved.states[[t]][,i] can be considered a sample from f [Xt|y1:t].

pfilter-methods 29

saved.params If pfilter was called with save.params=TRUE, this is the list of parameter-vectors

at each time point, for each particle. It is a length-ntimes list of npars-by-Np arrays. In

particular, saved.params[[t]][,i] is the parameter portion of the i-th particle at time t.

seed the state of the random number generator at the time pfilter was called. If the argument

seed was specified, this is a copy; if not, this is the internal state of the random number

generator at the time of call.

Np, tol, nfail the number of particles used, failure tolerance, and number of filtering failures, re-

spectively.

loglik the estimated log-likelihood.

These can be accessed using the $ operator as if the returned object were a list. In addition,

logLik returns the log likelihood. Note that if the argument params is a named vector, then

these parameters are included in the params slot of the returned pfilterd.pomp object. That is

coef(pfilter(obj,params=theta))==theta if theta is a named vector of parameters.

Author(s)

Aaron A. King <kingaa at umich dot edu>

References

M. S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A Tutorial on Particle Filters for Online

Nonlinear, Non-Gaussian Bayesian Tracking. IEEE Trans. Sig. Proc. 50:174–188, 2002.

See Also

pomp-class

Examples

pompExample(gompertz)

pf <- pfilter(gompertz,Np=1000) ## use 1000 particles

logLik(pf)

cond.logLik(pf) ## conditional log-likelihoods

eff.sample.size(pf)

logLik(pfilter(gompertz)) ## run it again with 1000 particles

logLik(pfilter(gompertz,Np=2000)) ## run it with 2000 particles and get the filtering means

See the vignettes for more examples.

pfilter-methods Methods of the "pfilterd.pomp" class

Description

Methods of the "pfilterd.pomp" class.

30 pfilter-methods

Usage

S4 method for signature 'pfilterd.pomp'

logLik(object, ...)

S4 method for signature 'pfilterd.pomp'

pred.mean(object, pars, ...)

S4 method for signature 'pfilterd.pomp'

pred.var(object, pars, ...)

S4 method for signature 'pfilterd.pomp'

filter.mean(object, pars, ...)

S4 method for signature 'pfilterd.pomp'

eff.sample.size(object, ...)

S4 method for signature 'pfilterd.pomp'

cond.logLik(object, ...)

S4 method for signature 'pfilterd.pomp'

as(object, class)

S4 method for signature 'pfilterd.pomp,data.frame'

coerce(from, to = "data.frame", strict = TRUE)

S3 method for class 'pfilterd.pomp'

as.data.frame(x, row.names, optional, ...)

Arguments

object, x An object of class pfilterd.pomp or inheriting class pfilterd.pomp.

pars Names of parameters.

class character; name of the class to which object should be coerced.

from, to the classes between which coercion should be performed.

strict ignored.

row.names, optional

ignored.

... Additional arguments unused at present.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pfilter, pomp-class

plugins 31

plugins Plug-ins for dynamical models based on stochastic Euler algorithms

Description

Plug-in facilities for implementing discrete-time Markov processes and continuous-time Markov

processes using the Euler algorithm. These can be used in the rprocess and dprocess slots of

pomp.

Usage

onestep.sim(step.fun, PACKAGE)

euler.sim(step.fun, delta.t, PACKAGE)

discrete.time.sim(step.fun, delta.t = 1, PACKAGE)

gillespie.sim(rate.fun, v, d, PACKAGE)

onestep.dens(dens.fun, PACKAGE)

Arguments

step.fun This can be either an R function or the name of a compiled, dynamically loaded

native function containing the model simulator. It should be written to take

a single Euler step from a single point in state space. If it is an R function,

it should be of the form step.fun(x,t,params,delta.t,...). Here, x is a

named numeric vector containing the value of the state process at time t, params

is a named numeric vector containing parameters, and delta.t is the length of

the Euler time-step. If step.fun is the name of a native function, it must be of

type “pomp_onestep_sim” as defined in the header “pomp.h”, which is included

with the pomp package. For details on how to write such codes, see Details.

rate.fun This can be either an R function or the name of a compiled, dynamically loaded

native function that computes the transition rates. If it is an R function, it should

be of the form rate.fun(j,x,t,params,...). Here, j is the number of the

event, x is a named numeric vector containing the value of the state process

at time t and params is a named numeric vector containing parameters. If

rate.fun is a native function, it must be of type “pomp_ssa_rate_fn” as de-

fined in the header “pomp.h”, which is included with the package. For details

on how to write such codes, see Details.

v, d Matrices that specify the continuous-time Markov process in terms of its ele-

mentary events. Each should have dimensions nvar x nevent, where nvar is

the number of state variables and nevent is the number of elementary events. v

describes the changes that occur in each elementary event: it will usually com-

prise the values 1, -1, and 0 according to whether a state variable is incremented,

decremented, or unchanged in an elementary event. d is a binary matrix that de-

scribes the dependencies of elementary event rates on state variables: d[i,j]

will have value 1 if event rate j must be updated as a result of a change in state

variable i and 0 otherwise

32 plugins

dens.fun This can be either an R function or a compiled, dynamically loaded native func-

tion containing the model transition log probability density function. If it is

an R function, it should be of the form dens.fun(x1,x2,t1,t2,params,...).

Here, x1 and x2 are named numeric vectors containing the values of the state

process at times t1 and t2, params is a named numeric vector containing pa-

rameters. If dens.fun is the name of a native function, it should be of type

“pomp_onestep_pdf” as defined in the header “pomp.h”, which is included with

the pomp package. This function should return the log likelihood of a transition

from x1 at time t1 to x2 at time t2, assuming that no intervening transitions

have occurred. For details on how to write such codes, see Details.

delta.t Size of Euler time-steps.

PACKAGE an optional argument that specifies to which dynamically loaded library we re-

strict the search for the native routines. If this is “base”, we search in the R

executable itself.

Details

onestep.sim is the appropriate choice when it is possible to simulate the change in state from

one time to another, regardless of how large the interval between them is. To use onestep.sim,

you must write a function step.fun that will advance the state process from one arbitrary time to

another. euler.sim is appropriate when one cannot do this but can compute the change in state

via a sequence of smaller steps. This is desirable, for example, if one is simulating a continuous

time process but is willing to approximate it using an Euler approach. discrete.time.sim is

appropriate when the process evolves in discrete time. In this case, by default, the intervals between

observations are integers.

To use euler.sim or discrete.time.sim, you must write a function step.fun that will take a

single Euler step, of size at most delta.t. euler.sim and discrete.time.sim will create simu-

lators that take as many steps as needed to get from one time to another. See below for information

on how euler.sim chooses the actual step size it uses.

gillespie.sim allows exact simulation of a continuous-time, discrete-state Markov process using

Gillespie’s algorithm. This is an “event-driven” approach: correspondingly, to use gillespie.sim,

you must write a function rate.fun that computes the rates of each elementary event and specify

two matrices (d,v) that describe, respectively, the dependencies of each rate and the consequences

of each event.

onestep.dens will generate a suitable dprocess function when one can compute the likelihood

of a given state transition simply by knowing the states at two times under the assumption that

the state has not changed between the times. This is typically possible, for instance, when the

rprocess function is implemented using onestep.sim, euler.sim, or discrete.time.sim. [NB:

currently, there are no high-level algorithms in pomp that use dprocess. This function is provided

for completeness only, and with an eye toward future development.]

If step.fun is written as an R function, it must have at least the arguments x, t, params, delta.t,

and On a call to this function, x will be a named vector of state variables, t a scalar time, and

params a named vector of parameters. The length of the Euler step will be delta.t. If the argument

covars is included and a covariate table has been included in the pomp object, then on a call to this

function, covars will be filled with the values, at time t, of the covariates. This is accomplished via

interpolation of the covariate table. Additional arguments may be given: these will be filled by the

correspondingly-named elements in the userdata slot of the pomp object (see pomp). If step.fun

plugins 33

is written in a native language, it must be a function of type “pomp_onestep_sim” as specified in

the header “pomp.h” included with the package (see the directory “include” in the installed package

directory).

If rate.fun is written as an R function, it must have at least the arguments j, x, t, params, and

.... Here, j is the an integer that indicates which specific elementary event we desire the rate of. x

is a named vector containing the value of the state process at time t, and params is a named vector

containing parameters. If the argument covars is included and a covariate table has been included

in the pomp object, then on a call to this function, covars will be filled with the values, at time t,

of the covariates. This is accomplished via interpolation of the covariate table. If rate.fun is a

native function, it must be of type “pomp_ssa_rate_fn” as defined in the header “pomp.h”, which is

included with the package.

In writing dens.fun, you must assume that no state transitions have occurred between t1 and t2. If

dens.fun is written as an R function, it must have at least the arguments x1, x2, t1, t2, params, and

.... On a call to this function, x1 and x2 will be named vectors of state variables at times t1 and t2,

respectively. The named vector params contains the parameters. If the argument covars is included

and a covariate table has been included in the pomp object, then on a call to this function, covars

will be filled with the values, at time t1, of the covariates. If the argument covars is included and

a covariate table has been included in the pomp object, then on a call to this function, covars will

be filled with the values, at time t1, of the covariates. This is accomplished via interpolation of the

covariate table. As above, any additional arguments will be filled by the correspondingly-named

elements in the userdata slot of the pomp object (see pomp). If dens.fun is written in a native

language, it must be a function of type “pomp_onestep_pdf” as defined in the header “pomp.h”

included with the package (see the directory “include” in the installed package directory).

Value

onestep.sim, euler.sim, discrete.time.sim, and gillespie.sim each return functions suit-

able for use as the argument rprocess argument in pomp.

onestep.dens returns a function suitable for use as the argument dprocess in pomp.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

eulermultinom, pomp

Examples

examples showing how to use these functions

are provided in the "intro_to_pomp" vignette

34 pmcmc

pmcmc The PMCMC algorithm

Description

The Particle MCMC algorithm for estimating the parameters of a partially-observed Markov pro-

cess.

Usage

S4 method for signature 'pomp'

pmcmc(object, Nmcmc = 1, start, pars,

rw.sd, Np, tol = 1e-17, max.fail = 0,

verbose = getOption("verbose"), transform = FALSE, ...)

S4 method for signature 'pfilterd.pomp'

pmcmc(object, Nmcmc = 1, Np, tol, ...)

S4 method for signature 'pmcmc'

pmcmc(object, Nmcmc, start, pars,

rw.sd, Np, tol, max.fail = 0,

verbose = getOption("verbose"), transform, ...)

S4 method for signature 'pmcmc'

continue(object, Nmcmc = 1, ...)

Arguments

object An object of class pomp.

Nmcmc The number of PMCMC iterations to perform.

start named numeric vector; the starting guess of the parameters.

pars optional character vector naming the ordinary parameters to be estimated. Every

parameter named in pars must have a positive random-walk standard deviation

specified in rw.sd. Leaving pars unspecified is equivalent to setting it equal to

the names of all parameters with a positive value of rw.sd.

rw.sd numeric vector with names; used to parameterize a Gaussian random walk MCMC

proposal. The random walk is only applied to parameters named in pars. The al-

gorithm requires that the random walk be nontrivial, so each element in rw.sd[pars]

must be positive. The following must be satisfied: names(rw.sd) must be a sub-

set of names(start), rw.sd must be non-negative (zeros are simply ignored),

the name of every positive element of rw.sd must be in pars.

Np a positive integer; the number of particles to use in each filtering operation.

tol numeric scalar; particles with log likelihood below tol are considered to be

“lost”. A filtering failure occurs when, at some time point, all particles are lost.

max.fail integer; maximum number of filtering failures permitted. If the number of fail-

ures exceeds this number, execution will terminate with an error.

verbose logical; if TRUE, print progress reports.

transform logical; if TRUE, optimization is performed on the transformed scale.

... Additional arguments. These are currently ignored.

pmcmc 35

Value

An object of class pmcmc. This class inherits from class pfilterd.pomp and contains the following

additional slots:

pars, Nmcmc, dprior, hyperparams These slots hold the values of the corresponding arguments

of the call to pmcmc.

random.walk.sd a named numeric vector containing the random-walk variances used to parame-

terize a Gaussian random walk MCMC proposal.

log.prior a numeric value containing the log of the prior density evaluated at the parameter vector

in the params slot.

Re-running PMCMC Iterations

To re-run a sequence of PMCMC iterations, one can use the pmcmc method on a pmcmc object.

By default, the same parameters used for the original PMCMC run are re-used (except for tol,

max.fail, and verbose, the defaults of which are shown above). If one does specify additional

arguments, these will override the defaults.

Continuing PMCMC Iterations

One can continue a series of PMCMC iterations from where one left off using the continue method.

A call to pmcmc to perform Nmcmc=m iterations followed by a call to continue to perform Nmcmc=n

iterations will produce precisely the same effect as a single call to pmcmc to perform Nmcmc=m+n

iterations. By default, all the algorithmic parameters are the same as used in the original call to

pmcmc. Additional arguments will override the defaults.

Details

pmcmc implements an MCMC algorithm in which the true likelihood of the data is replaced by

an unbiased estimate computed by a particle filter. This gives an asymptotically correct Bayesian

procedure for parameter estimation (Andrieu and Roberts, 2009). An extension to give a correct

Bayesian posterior distribution of unobserved state variables (Andrieu et al, 2010) has not yet been

implemented.

Author(s)

Edward L. Ionides <ionides at umich dot edu>, Aaron A. King <kingaa at umich dot edu>

References

C. Andrieu, A. Doucet and R. Holenstein, Particle Markov chain Monte Carlo methods, J. R. Stat.

Soc. B, to appear, 2010.

C. Andrieu and G.O. Roberts, The pseudo-marginal approach for efficient computation, Ann. Stat.

37:697-725, 2009.

See Also

pmcmc-class, pmcmc-methods, pomp, pomp-class, pfilter.

36 pmcmc-methods

pmcmc-methods Methods of the "pmcmc" class

Description

Methods of the "pmcmc" class.

Usage

S4 method for signature 'pmcmc'

logLik(object, ...)

S4 method for signature 'pmcmc'

conv.rec(object, pars, ...)

S4 method for signature 'pmcmc'

filter.mean(object, pars, ...)

S4 method for signature 'pmcmc'

plot(x, y = NULL, ...)

compare.pmcmc(z)

Arguments

object, x The pmcmc object.

pars Names of parameters.

y Ignored.

z A pmcmc object or list of pmcmc objects.

... Further arguments (either ignored or passed to underlying functions).

Methods

conv.rec conv.rec(object, pars = NULL) returns the columns of the convergence-record matrix

corresponding to the names in pars. By default, all rows are returned.

logLik Returns the value in the loglik slot.

pmcmc Re-runs the PMCMC iterations. See the documentation for pmcmc.

compare.pmcmc Given a pmcmc object or a list of pmcmc objects, compare.pmcmc produces a set

of diagnostic plots.

plot Plots a series of diagnostic plots. When x is a pmcmc object, plot(x) is equivalent to compare.pmcmc(list(x)).

filter.mean filter.mean(object, pars = NULL) returns the rows of the filtering-mean matrix

corresponding to the names in pars. By default, all rows are returned.

print Prints a summary of the pmcmc object.

show Displays the pmcmc object.

pfilter See pfilter.

pomp 37

Author(s)

Edward L. Ionides <ionides at umich dot edu>, Aaron A. King <kingaa at umich dot edu>

References

C. Andrieu, A. Doucet and R. Holenstein, Particle Markov chain Monte Carlo methods, J. Roy.

Stat. Soc B, to appear, 2010.

C. Andrieu and G.O. Roberts, The pseudo-marginal approach for efficient computation, Ann Stat

37:697-725, 2009.

See Also

pmcmc, pomp, pomp-class, pfilter

pomp Partially-observed Markov process object.

Description

Create a new pomp object to hold a partially-observed Markov process model together with a uni-

or multi-variate time series.

Usage

S4 method for signature 'data.frame'

pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,

skeleton = NULL, skeleton.type = c("map","vectorfield"), skelmap.delta.t = 1,

initializer, rprior, dprior, params, covar, tcovar,

obsnames, statenames, paramnames, covarnames, zeronames,

PACKAGE, parameter.transform, parameter.inv.transform)

S4 method for signature 'numeric'

pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,

skeleton = NULL, skeleton.type = c("map","vectorfield"), skelmap.delta.t = 1,

initializer, rprior, dprior, params, covar, tcovar,

obsnames, statenames, paramnames, covarnames, zeronames,

PACKAGE, parameter.transform, parameter.inv.transform)

S4 method for signature 'matrix'

pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,

skeleton = NULL, skeleton.type = c("map","vectorfield"), skelmap.delta.t = 1,

initializer, rprior, dprior, params, covar, tcovar,

obsnames, statenames, paramnames, covarnames, zeronames,

PACKAGE, parameter.transform, parameter.inv.transform)

S4 method for signature 'pomp'

38 pomp

pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,

skeleton, skeleton.type, skelmap.delta.t,

initializer, rprior, dprior, params, covar, tcovar,

obsnames, statenames, paramnames, covarnames, zeronames,

PACKAGE, parameter.transform, parameter.inv.transform)

Arguments

data, times The time series data and times at which observations are made. data can be

specified as a vector, a matrix, a data-frame, or a pomp object.. If data is a

numeric vector, times must be a numeric vector of the same length. If data is

a matrix, it should have dimensions nobs x ntimes, where nobs is the number

of observed variables and ntimes is the number of times at which observations

were made (i.e., each column is a distinct observation of the nobs variables). In

this case, times must be given as a numeric vector (of length ntimes). If data

is a data-frame, times must name of the column of observation times. Note

that, in this case, data is a data-frame, it will be internally coerced to an array

with storage-mode ‘double’. Note that the times must be numeric and strictly

increasing.

t0 The zero-time. This must be no later than the time of the first observation,

times[1]. The stochastic dynamical system is initialized at time t0.

rprocess optional function; a function of prototype rprocess(xstart,times,params,...)

that simulates from the unobserved process. The easiest way to specify rprocess

is to use one of the plugins provided as part of the pomp package. See below

for details.

dprocess optional function; a function of prototype dprocess(x,times,params,log,...)

that evaluates the likelihood of a sequence of consecutive state transitions. The

easiest way to specify dprocess is to use one of the plugins provided as part

of the pomp package. It is not typically necessary (or even feasible) to define

dprocess. See below for details.

rmeasure optional; the measurement model simulator. This can be specified in one of

three ways: (1) as a function of prototype rmeasure(x,t,params,...) that

makes a draw from the observation process given states x, time t, and pa-

rameters params. (2) as the name of a native (compiled) routine with proto-

type “pomp_measure_model_simulator” as defined in the header file “exam-

ples/pomp.h”. In the above cases, if the measurement model depends on covari-

ates, the optional argument covars will be filled with interpolated values at each

call. (3) using the formula-based measurement.model facility (see below).

dmeasure optional; the measurement model probability density function. This can be spec-

ified in one of three ways: (1) as a function of prototype dmeasure(y,x,t,params,log,...)

that computes the p.d.f. of y given x, t, and params. (2) as the name of a native

(compiled) routine with prototype “pomp_measure_model_density” as defined

in the header file “examples/pomp.h”. In the above cases, if the measurement

model depends on covariates, the optional argument covars will be filled with

interpolated values at each call. (3) using the formula-based measurement.model

facility (see below). As might be expected, if log=TRUE, this function should re-

turn the log likelihood.

pomp 39

measurement.model

optional; a formula or list of formulae, specifying the measurement model.

These formulae are parsed internally and used to generate rmeasure and dmeasure

functions. If measurement.model is given it overrides any specification of

rmeasure or dmeasure. See below for an example. NB: it will typically be

possible to acclerate measurement model computations by writing dmeasure

and/or rmeasure functions directly.

skeleton, skeleton.type, skelmap.delta.t

The function skeleton specifies the deterministic skeleton of the unobserved

Markov process. If we are dealing with a discrete-time Markov process, its de-

terministic skeleton is a map: indicate this by specifying skeleton.type="map".

If we are dealing with a continuous-time Markov process, its deterministic skele-

ton is a vectorfield: indicate this by specifying skeleton.type="vectorfield".

The skeleton function can be specified in one of two ways: (1) as an R func-

tion of prototype skeleton(x,t,params,...) that evaluates the deterministic

skeleton at state x and time t given the parameters params, or (2) as the name

of a native (compiled) routine with prototype “pomp_skeleton” as defined in the

header file “pomp.h”. If the deterministic skeleton depends on covariates, the

optional argument covars will be filled with interpolated values of the covari-

ates at the time t.

With a discrete-time skeleton, the default assumption is that time advances 1 unit

per iteration of the map; to change this, set skelmap.delta.t to the appropriate

time-step.

initializer optional function of prototype initializer(params,t0,...) that yields ini-

tial conditions for the state process when given a vector, params, of parameters.

By default (i.e., if it is unspecified when pomp is called), the initializer assumes

any parameters in params the names of which end in “.0” are initial values.

These are simply copied over as initial conditions when init.state is called

(see init.state-pomp). The names of the state variables are the same as the

corresponding initial value parameters, but with the “.0” dropped.

rprior optional; function drawing a sample from a prior distribution on parameters.

This can be specified in one of two ways: (1) as an R function of prototype

rprior(params,...), (2) as the name of a native (compiled) routine with pro-

totype “pomp_rprior” as defined in the header file “pomp.h”.

dprior optional; function evaluating the prior distribution. This can be specified in one

of two ways: (1) as an R function of prototype dprior(params,log=FALSE,...),

(2) as the name of a native (compiled) routine with prototype “pomp_dprior” as

defined in the header file “pomp.h”.

params optional named numeric vector of parameters.

covar, tcovar An optional table of covariates: covar is the table (with one column per vari-

able) and tcovar the corresponding times (one entry per row of covar). covar

can be specified as either a matrix or a data frame. In either case the columns

are taken to be distinct covariates. If covar is a data frame, tcovar can be ei-

ther the name or the index of the time variable. If a covariate table is supplied,

then the value of each of the covariates is interpolated as needed, i.e., when-

ever rprocess, dprocess, rmeasure, dmeasure, skeleton, or init.state is

40 pomp

evaluated. The resulting interpolated values are passed to the corresponding

functions as a numeric vector named covars.
obsnames, statenames, paramnames, covarnames

Optional character vectors specifying the names of observables, state variables,

parameters, or covariates, respectively. These are only used in the event that

one or more of the basic functions (rprocess, dprocess, rmeasure, dmeasure,

skeleton) are defined using native routines. In that case, these name vectors

are matched against the corresponding names and the indices of the names are

passed to the native routines. Using this facility allows one to write one or more

of rprocess, dprocess, rmeasure, dmeasure, skeleton in native code in a

way that does not depend on the order of states, parameters, and covariates at

run time. See the “Advanced topics in pomp” vignette for more on this topic and

examples.

zeronames Optional character vector specifying the names of accumulator variables. See

the “Advanced topics in pomp” vignette for a discussion of this.

PACKAGE An optional string giving the name of the dynamically loaded library in which

any native routines are to be found.

parameter.transform, parameter.inv.transform

Optional functions specifying parameter transformations. These functions must

have arguments params and parameter.transform should transform pa-

rameters from the user’s scale to the scale that rprocess, dprocess, rmeasure,

dmeasure, skeleton, and initializer will use internally. parameter.inv.transform

should be the inverse of parameter.transform. Note that it is the user’s re-

sponsibility to make sure this holds. If obj is the constructed pomp object, and

coef(obj) is non-empty, a simple check of this is

x <- coef(obj,transform=TRUE)

obj1 <- obj

coef(obj1,transform=TRUE) <- x

identical(coef(obj),coef(obj1))

identical(coef(obj1,transform=TRUE),x).

By default, both functions are the identity transformation. See the “introduc-

tion_to_pomp” vignette for an example.

... Any additional arguments given to pomp will be stored in the pomp object and

passed as arguments to each of the functions rprocess, dprocess, rmeasure,

dmeasure, and initializer whenever they are evaluated.

Details

It is not typically necessary (or desirable, or even feasible) to define all of the functions

rprocess, dprocess, rmeasure, dmeasure, and skeleton in any given problem. Each algo-

rithm makes use of a different subset of these functions. In general, the specification of

process-model codes rprocess and/or dprocess can be somewhat nontrivial: for this reason,

plugins have been developed to streamline this process for the user. Currently, if one’s process

model evolves in discrete time or one is willing to make such an approximation (e.g., via an Euler

approximation), then the euler.sim, discrete.time.sim, or onestep.sim plugin for rprocess

and onestep.dens plugin for dprocess are available. For exact simulation of certain continuous-

time Markov chains, an implementation of Gillespie’s algorithm is available (see gillespie.sim).

To use the plugins, consult the help documentation (?plugins) and the vignettes.

pomp 41

It is anticipated that, in specific cases, it will be possible to obtain increased computational efficiency

by writing custom versions of rprocess and/or dprocess. See the “Advanced topics in pomp”

vignette for a discussion of this. If such custom versions are desired, the following describes how

each of these functions should be written in this case.

rprocess In general, the specification of rprocess can be somewhat nontrivial: for this reason,

plugins have been developed to streamline this process for the user. Currently, if one’s pro-

cess model evolves in discrete time or one is willing to make such an approximation (e.g., via

an Euler approximation), then the euler.sim or onestep.sim plugin is available. For exact

simulation of certain continuous-time Markov chains, an implementation of Gillespie’s algo-

rithm is available (see gillespie.sim). To use the plugins, consult the help documentation

(?plugins) and the vignettes.

If the plugins are not used rprocess must have at least the following arguments: xstart,

times, params, and It can also take additional arguments. It is guaranteed that these will

be filled with the corresponding elements the user has included as additional arguments in the

construction of the pomp object.

In calls to rprocess, xstart can be assumed to be a rank-2 array (matrix) with rows cor-

responding to state variables and columns corresponding to independent realizations of the

process. params will similarly be a rank-2 array with rows corresponding to parameters and

columns corresponding to independent realizations. The columns of params correspond to

those of xstart; in particular, they will agree in number. Both xstart and params will have

rownames, which are available for use by the user.

rprocess must return a rank-3 array with rownames. Suppose x is the array returned. Then

dim(x)=c(nvars,nreps,ntimes), where nvars (=nrow(xstart)) is the number of state

variables, nreps (=ncol(xstart)) is the number of independent realizations simulated, and

ntimes is the length of the vector times. x[,j,k] is the value of the state process in the

j-th realization at time times[k]. In particular, x[,,1] must be identical to xstart. The

rownames of x must correspond to those of xstart.

dprocess In general, the specification of dprocess can be somewhat nontrivial: for this reason,

plugins have been developed to streamline this process for the user. Currently, if one’s pro-

cess model evolves in discrete time or one is willing to make such an approximation (e.g., via

an Euler approximation), then the onestep.dens plugin for dprocess is available. To use the

plugins, consult the help documentation (?plugins) and the vignettes.

If the plugins are not used, dprocess must have at least the following arguments: x, times,

params, log, and It may take additional arguments. It is guaranteed that these will be

filled with the corresponding elements the user has included as additional arguments in the

construction of the pomp object.

In calls to dprocess, x may be assumed to be an nvars x nreps x ntimes array, where these

terms have the same meanings as above. params will be a rank-2 array with rows correspond-

ing to individual parameters and columns corresponding to independent realizations. The

columns of params correspond to those of x; in particular, they will agree in number. Both x

and params will have rownames, available for use by the user.

dprocess must return a rank-2 array (matrix). Suppose d is the array returned. Then dim(d)=c(nreps,ntimes-1).

d[j,k] is the probability density of the transition from state x[,j,k-1] at time times[k-1]

to state x[,j,k] at time times[k]. If log=TRUE, then the log of the pdf is returned.

In writing this function, you may assume that the transitions are consecutive. It should

be quite clear that, but for this assumption, it would be quite difficult in general to write the

42 pomp

transition probabilities. In fact, from one perspective, the algorithms in pomp are designed to

overcome just this difficulty.

At present, no methods in pomp make use of dprocess.

The measurement-model, deterministic skeleton, and initializer components are easily specified

without the use of plugins. The following is a guide to writing these components.

rmeasure if provided, must take at least the arguments x, t, params, and It may take addi-

tional arguments, which will be filled with user-specified data as above. x may be assumed to

be a named numeric vector of length nvars, (which has the same meanings as above). t is a

scalar quantity, the time at which the measurement is made. params may be assumed to be a

named numeric vector of length npars.

rmeasure must return a named numeric vector. If y is the returned vector, then length(y)=nobs,

where nobs is the number of observable variables.

dmeasure if provided, must take at least the arguments y, x, t, params, log, and y may

be assumed to be a named numeric vector of length nobs containing (actual or simulated)

values of the observed variables; x will be a named numeric vector of length nvar containing

state variables params, a named numeric vector containing parameters; and t, a scalar, the

corresponding observation time. It may take additional arguments which will be filled with

user-specified data as above. dmeasure must return a single numeric value, the pdf of y given

x at time t. If log=TRUE, then the log of the pdf is returned.

skeleton If skeleton is an R function, it must have at least the arguments x, t, params, and

x is a numeric vector containing the coordinates of a point in state space at which evaluation of

the skeleton is desired. t is a numeric value giving the time at which evaluation of the skeleton

is desired. Of course, these will be irrelevant in the case of an autonomous skeleton. params

is a numeric vector holding the parameters. The optional argument covars is a numeric

vector containing the values of the covariates at the time t. covars will have one value

for each column of the covariate table specified when the pomp object was created. covars

is constructed from the covariate table (see covar, below) by interpolation. skeleton may

take additional arguments, which will be filled, as above, with user-specified data. skeleton

must return a numeric vector of the same length as x. The return value is interpreted as the

vectorfield (if the dynamical system is continuous) or the value of the map (if the dynamical

system is discrete), at the point x at time t.

If skeleton is the name of a native routine, this routine must be of prototype “pomp_skeleton”

as defined in the header “pomp.h” (see the “include” directory in the installed package direc-

tory).

initializer if provided, must have at least the arguments params, t0, and params is a

named numeric vector of parameters. t0 will be the time at which initial conditions are de-

sired. initializer must return a named numeric vector of initial states.

Value

An object of class pomp. If data is an object of class pomp, then by default the returned pomp object

is identical to data. If additional arguments are given, these override the defaults.

Warning

Some error checking is done by pomp, but complete error checking is impossible. If the user-

specified functions do not conform to the above specifications (see Details), then the results may

pomp-methods 43

be invalid. In particular, if both rmeasure and dmeasure are specified, the user should verify

that these two functions correspond to the same model and if skeleton is specified, the user is

responsible for verifying that it corresponds to the true deterministic skeleton of the model. Each

pomp-package algorithm uses some subset of the five basic components (rprocess, dprocess,

rmeasure, dmeasure, skeleton). If an algorithm requires a component that was not given in the

construction of the pomp object, an error is generated.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp-methods, plugins, time, time<-, timezero, timezero<-, coef, coef<-, obs, states, window,

as.data.frame.pomp

Examples

For examples, see the vignettes, the data()-loadable

example \code{pomp} objects, and the provided example files.

Not run:

pompExample()

pomp.home <- system.file("examples",package="pomp")

pomp.examples <- list.files(pomp.home)

file.show(

file.path(pomp.home,pomp.examples),

header=paste("======",pomp.examples,"=======")

)

End(Not run)

pomp-methods Methods of the "pomp" class

Description

Methods of the pomp class.

Usage

S3 method for class 'pomp'

as.data.frame(x, row.names, optional, ...)

S4 method for signature 'pomp'

coef(object, pars, transform = FALSE, ...)

S4 replacement method for signature 'pomp'

coef(object, pars, transform = FALSE, ...) <- value

S4 method for signature 'pomp'

obs(object, vars, ...)

S4 method for signature 'pomp'

44 pomp-methods

data.array(object, vars, ...)

S4 method for signature 'pomp'

partrans(object, params, dir = c("forward","inverse"), ...)

S4 method for signature 'pomp'

plot(x, y, variables, panel = lines,

nc = NULL, yax.flip = FALSE,

mar = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1),

oma = c(6, 0, 5, 0), axes = TRUE, ...)

S4 method for signature 'pomp'

print(x, ...)

S4 method for signature 'pomp'

show(object)

S4 method for signature 'pomp'

states(object, vars, ...)

S4 method for signature 'pomp'

time(x, t0 = FALSE, ...)

S4 replacement method for signature 'pomp'

time(object, t0 = FALSE, ...) <- value

S4 method for signature 'pomp'

timezero(object, ...)

S4 replacement method for signature 'pomp'

timezero(object, ...) <- value

S4 method for signature 'pomp'

window(x, start, end, ...)

S4 method for signature 'pomp'

as(object, class)

S4 method for signature 'pomp,data.frame'

coerce(from, to = "data.frame", strict = TRUE)

Arguments

object, x The pomp object.

pars optional character; names of parameters to be retrieved or set.

vars optional character; names of observed variables to be retrieved.

transform optional logical; should the parameter transformations be applied?

value numeric; values to be assigned.

params a vector or matrix of parameters to be transformed.

dir direction of the transformation. dir="forward" applies the transformation from

the “natural” scale to the “internal” scale. This is the transformation specified

by the parameter.transform argument to pomp; it is stored in the ‘par.trans’

slot of object. dir="inverse" applies the inverse transformation (stored in the

‘par.untrans’ slot).

t0 logical; if TRUE on a call to time, the zero time is prepended to the time vector;

if TRUE on a call to time<-, the first element in value is taken to be the initial

time.

start, end start and end times of the window.

pomp-methods 45

class character; name of the class to which object should be coerced.

from, to the classes between which coercion should be performed.

strict ignored.

y ignored.

variables optional character; names of variables to plot.

panel a function of prototype panel(x, col, bg, pch, type, ...) which gives

the action to be carried out in each panel of the display.

nc the number of columns to use. Defaults to 1 for up to 4 series, otherwise to 2.

yax.flip logical; if TRUE, the y-axis (ticks and numbering) should flip from side 2 (left)

to 4 (right) from series to series.

mar, oma the ’par’ settings for ’mar’ and ’oma’ to use. Modify with care!

axes logical; indicates if x- and y- axes should be drawn.

row.names, optional

ignored.

... Further arguments (either ignored or passed to underlying functions).

Details

coef coef(object) returns the contents of the params slot of object. coef(object,pars) re-

turns only those parameters named in pars. coef(object,transform=TRUE) returns parameter.inv.transform(coef(object))

where parameter.inv.transform is the user parameter inverse transformation function spec-

ified when object was created. Likewise, coef(object,pars,transform=TRUE) returns

parameter.inv.transform(coef(object))[pars].

coef<- Assigns values to the params slot of the pomp object. coef(object) <- value has

the effect of replacing the parameters of object with value. If coef(object) exists, then

coef(object,pars) <- value replaces those parameters of object named in pars with the

elements of value; the names of value are ignored. If some of the names in pars do not al-

ready name parameters in coef(object), then they are concatenated. If coef(object) does

not exist, then coef(object,pars) <- value assigns value to the parameters of object;

in this case, the names of object will be pars and the names of value will be ignored.

coef(object,transform=TRUE) <- value assigns parameter.transform(value) to the

params slot of object. Here, parameter.transform is the parameter transformation func-

tion specified when object was created. coef(object,pars,transform=TRUE) <- value

first, discards any names the value may have, sets names(value) <- pars, and then replaces

the elements of object’s params slot parameter.transform(value). In this case, if some

of the names in pars do not already name parameters in coef(object,transform=TRUE),

then they are concatenated.

obs, data.array These functions are synonymous. obs(object) returns the array of observations.

obs(object,vars) gives just the observations of variables named vars. vars may specify

the variables by position or by name.

states states(object) returns the array of states. states(object,vars) gives just the state

variables named in vars. vars may specify the variables by position or by name.

time time(object) returns the vector of observation times. time(object,t0=TRUE) returns the

vector of observation times with the zero-time t0 prepended.

46 pompBuilder

time<- time(object) <- value replaces the observation times slot (times) of object with

value. time(object,t0=TRUE) <- value has the same effect, but the first element in value

is taken to be the initial time. The second and subsequent elements of value are taken to be

the observation times. Those data and states (if they exist) corresponding to the new times are

retained.

timezero, timezero<- timezero(object) returns the zero-time t0. timezero(object) <- value

sets the zero-time to value.

window window(x,start=t1,end=t2 returns a new pomp object, identical to x but with only the

data in the window between times t1 and t2 (inclusive). By default, start is the time of the

first observation and end is the time of the last.

show Displays the pomp object.

plot Plots the data and state trajectories (if the latter exist). Additional arguments are passed to the

low-level plotting routine.

print Prints the pomp object in a nice way.

as, coerce The coerce method should typically not be used directly. It is defined by setAs as a

method to be used by as. A pomp object can be coerced to a data frame via as(object,"data.frame").

The data frame contains the times, the data, and the state trajectories, if they exist.

rprocess simulates the process model. See rprocess-pomp.

dprocess evaluates the process model density. See dprocess-pomp.

rmeasure simulates the measurement model. See rmeasure-pomp.

dmeasure evaluates the measurement-model density. See dmeasure-pomp.

skeleton evaluates the deterministic skeleton (be it a vector field or a map). See skeleton-pomp.

init.state returns a vector of initialial conditions. See init.state-pomp.

simulate simulate can be used to simulate state and observation trajectories. See documentation

under simulate-pomp.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp, pomp-class, rprocess, dprocess, rmeasure, dmeasure, init.state, simulate

pompBuilder Write, compile, link, and build a pomp object using native codes

Description

pompBuilder is an EXPERIMENTAL facility for producing compiled pomp objects.

pompBuilder 47

Usage

pompBuilder(data, times, t0, name, statenames, paramnames,

tcovar, covar,

rmeasure, dmeasure, step.fn, step.fn.delta.t,

skeleton, skeleton.type, skelmap.delta.t = 1,

parameter.transform, parameter.inv.transform,

..., link = TRUE, save = FALSE)

Arguments

data, times, t0

The data, times, and zero-time. See pomp for more information. data must be a

data-frame.

name character; the stem of the name for the files that will be produced.

statenames, paramnames

names of state-variables and parameters, respectively

tcovar, covar optional. covar is a data-frame containing covariates (variables in columns,

timepoints in rows); tcovar is the name of the column containing time.

rmeasure, dmeasure

C codes implementing the measurement model

step.fn, step.fn.delta.t

step.fn is a C code that implements an Euler step function. The Euler time-step

is step.fn.delta.t, which should be a positive number.

skeleton, skeleton.type, skelmap.delta.t

skeleton is a C code that implements the deterministic skeleton. As in pomp,

skeleton.type indicates whether the skeleton is a map (discrete-time) or vec-

torfield (continuous-time). If the former, skelmap.delta.t is the time-step of

the map.

parameter.transform, parameter.inv.transform

optional C codes that implement parameter transformations. parameter.transform

maps parameters from the estimation scale to the natural scale; parameter.inv.transformation

maps them from the natural scale to the estimation scale.

... additional arguments are passed to pomp

link logical; if TRUE, the resulting code will be linked after compilation.

save logical; if TRUE, the resulting C code will be saved in the current working

directory. The shared-object library will also be created in this directory. If

FALSE, the C code and shared-object library will be created in the temporary

directory.

Details

pompBuilder assumes that files can be written to the current working directory and that dynamic

shared objects can be compiled and linked, i.e., that R CMD SHLIB will work. This will not typically

be the case in out-of-the-box Windows installations.

48 pompExample

Value

The constructed pomp object. A side-effect is the writing and compilation of a C code into a dy-

namics shared object. These files will reside in the current working directory (see getwd). If

pompBuilder has been called with link=FALSE, this dynamic shared object must be linked (see

dyn.load) before the pomp object can be used.

Parallel computing caution: note that, since a side-effect of running pompBuilder is the writing

and compilation of a file, caution must be used when running parallel computations. Simultaneous

execution of pompBuilder on nodes sharing a common disk will cause all nodes to attempt to write

the same file at the same time; the results will be undefined. If multiple nodes are to work on the

same pomp object built by pompBuilder, first run pompBuilder once (perhaps with link=FALSE)

to write the C file and compile it into a dynamic shared object file. The pomp object returned by

pompBuilder can then be shared with all worker nodes. Note, however, that all worker nodes must

dynamically load (using dyn.load) the dynamic shared object file before anything can be done with

the pomp object.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp and the demos.

Examples

see the demos

pompExample Pre-built examples of pomp objects.

Description

pompExample loads pre-built example pomp objects.

Usage

pompExample(example, envir = .GlobalEnv)

Arguments

example example to load given as a name or literal character string. Evoked without an

argument, pompExample lists all available examples.

envir the environment into which the objects should be loaded.

Value

pompExample has the side effect of creating one or more pomp objects in the global workspace.

probe 49

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

blowflies, dacca, gompertz, ou2, ricker, rw2, euler.sir, gillespie.sir, bbs, verhulst

Examples

pompExample()

pompExample(euler.sir)

pompExample("gompertz")

probe Probe a partially-observed Markov process.

Description

probe applies one or more “probes” to time series data and model simulations and compares the

results. It can be used to diagnose goodness of fit and/or as the basis for “probe-matching”, a gen-

eralized method-of-moments approach to parameter estimation. probe.match calls an optimizer to

adjust model parameters to do probe-matching, i.e., to minimize the discrepancy between simulated

and actual data. This discrepancy is measured using the “synthetic likelihood” as defined by Wood

(2010). probe.match.objfun constructs an objective function for probe-matching suitable for use

in optim-like optimizers.

Usage

S4 method for signature 'pomp'

probe(object, probes, params, nsim, seed = NULL, ...)

S4 method for signature 'probed.pomp'

probe(object, probes, params, nsim, seed, ...)

S4 method for signature 'pomp'

probe.match.objfun(object, params, est, probes, nsim,

seed = NULL, fail.value = NA, transform = FALSE, ...)

S4 method for signature 'probed.pomp'

probe.match.objfun(object, probes, nsim, seed, ...)

S4 method for signature 'pomp'

probe.match(object, start, est = character(0),

probes, nsim, seed = NULL,

method = c("subplex","Nelder-Mead","SANN","BFGS",

"sannbox","nloptr"),

verbose = getOption("verbose"),

fail.value = NA, transform = FALSE, ...)

S4 method for signature 'probed.pomp'

probe.match(object, probes, nsim, seed,

..., verbose = getOption("verbose"))

50 probe

S4 method for signature 'probe.matched.pomp'

probe.match(object, est, probes,

nsim, seed, transform, fail.value, ...,

verbose = getOption("verbose"))

Arguments

object An object of class pomp.

probes A single probe or a list of one or more probes. A probe is simply a scalar- or

vector-valued function of one argument that can be applied to the data array of

a pomp. A vector-valued probe must always return a vector of the same size. A

number of basic examples are provided with the package (see basic.probes).

params optional named numeric vector of model parameters. By default, params=coef(object).

nsim The number of model simulations to be computed.

seed optional; if non-NULL, the random number generator will be initialized with this

seed for simulations. See simulate-pomp.

start named numeric vector; the initial guess of parameters.

est character vector; the names of parameters to be estimated.

method Optimization method. Choices refer to algorithms used in optim, subplex, and

nloptr.

verbose logical; print diagnostic messages?

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values

of the objective function. It should be a large number (i.e., bigger than any

legitimate values the objective function is likely to take).

transform logical; if TRUE, optimization is performed on the transformed scale.

... Additional arguments. In the case of probe, these are currently ignored. In the

case of probe.match, these are passed to the optimizer (one of optim, subplex,

nloptr, or sannbox). These are passed via the optimizer’s control list (in the

case of optim, subplex, and sannbox) or the opts list (in the case of nloptr).

Details

A call to probe results in the evaluation of the probe(s) in probes on the data. Additionally, nsim

simulated data sets are generated (via a call to simulate) and the probe(s) are applied to each of

these. The results of the probe computations on real and simulated data are stored in an object of

class probed.pomp.

A call to probe.match results in an attempt to optimize the agreement between model and data,

as measured by the specified probes, over the parameters named in est. The results, including

coefficients of the fitted model and values of the probes for data and fitted-model simulations, are

stored in an object of class probe.matched.pomp.

The objective function minimized by probe.match — in a form suitable for use with optim-like

optimizers — is created by a call to probe.match.objfun. Specifically, probe.match.objfun will

return a function that takes a single numeric-vector argument that is assumed to cotain the parame-

ters named in est, in that order. This function will return the negative synthetic log likelihood for

the probes specified.

probe 51

Value

probe returns an object of class probed.pomp. probed.pomp is derived from the pomp class and

therefore have all the slots of pomp. In addition, a probed.pomp class has the following slots:

probes list of the probes applied.

datvals, simvals values of each of the probes applied to the real and simulated data, respectively.

quantiles fraction of simulations with probe values less than the value of the probe of the data.

pvals two-sided p-values: fraction of the simvals that deviate more extremely from the mean of

the simvals than does datavals.

synth.loglik the log synthetic likelihood (Wood 2010). This is the likelihood assuming that the

probes are multivariate-normally distributed.

probe.match returns an object of class probe.matched.pomp, which is derived from class probed.pomp.

probe.matched.pomp objects therefore have all the slots above plus the following:

est, transform, fail.value values of the corresponding arguments in the call to probe.match.

value value of the objective function at the optimum.

evals number of function and gradient evaluations by the optimizer. See optim.

convergence, msg Convergence code and message from the optimizer. See optim and nloptr.

probe.match.objfun returns a function suitable for use as an objective function in an optim-like

optimizer.

Author(s)

Daniel C. Reuman, Aaron A. King

References

B. E. Kendall, C. J. Briggs, W. M. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nis-

bet, S. N. Wood Why do populations cycle? A synthesis of statistical and mechanistic modeling

approaches, Ecology, 80:1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466:

1102–1104, 2010.

See Also

pomp-class, pomp-methods, basic.probes, probe.match

Examples

pompExample(ou2)

good <- probe(

ou2,

probes=list(

y1.mean=probe.mean(var="y1"),

y2.mean=probe.mean(var="y2"),

y1.sd=probe.sd(var="y1"),

52 probed.pomp-methods

y2.sd=probe.sd(var="y2"),

extra=function(x)max(x["y1",])

),

nsim=500

)

summary(good)

plot(good)

bad <- probe(

ou2,

params=c(alpha.1=0.1,alpha.4=0.2,x1.0=0,x2.0=0,

alpha.2=-0.5,alpha.3=0.3,

sigma.1=3,sigma.2=-0.5,sigma.3=2,

tau=1),

probes=list(

y1.mean=probe.mean(var="y1"),

y2.mean=probe.mean(var="y2"),

y1.sd=probe.sd(var="y1"),

y2.sd=probe.sd(var="y2"),

extra=function(x)range(x["y1",])

),

nsim=500

)

summary(bad)

plot(bad)

probed.pomp-methods Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp",

and "spect.matched.pomp" classes

Description

Methods of the probed.pomp, probe.matched.pomp, spect.pomp, and spect.matched.pomp classes

Usage

S4 method for signature 'probed.pomp'

summary(object, ...)

S4 method for signature 'probed.pomp'

plot(x, y, ...)

S4 method for signature 'probe.matched.pomp'

summary(object, ...)

S4 method for signature 'probe.matched.pomp'

plot(x, y, ...)

S4 method for signature 'spect.pomp'

summary(object, ...)

S4 method for signature 'probed.pomp'

logLik(object, ...)

S4 method for signature 'spect.pomp'

probed.pomp-methods 53

plot(x, y, max.plots.per.page = 4,

plot.data = TRUE,

quantiles = c(.025, .25, .5, .75, .975),

quantile.styles = list(lwd=1, lty=1, col="gray70"),

data.styles = list(lwd=2, lty=2, col="black"))

S4 method for signature 'spect.matched.pomp'

summary(object, ...)

S4 method for signature 'spect.matched.pomp'

plot(x, y, ...)

S4 method for signature 'probed.pomp'

as(object, class)

Arguments

object, x the object to be summarized or plotted.

y ignored.

max.plots.per.page

maximum number of plots per page

plot.data plot the data spectrum?

quantiles quantiles to plot

quantile.styles

plot style parameters for the quantiles

data.styles plot style parameters for the data spectrum

class character; name of the class to which object should be coerced.

... Further arguments (either ignored or passed to underlying functions).

Methods

plot displays diagnostic plots.

summary displays summary information.

logLik returns the synthetic likelihood for the probes. NB: in general, this is not the same as the

likelihood.

as when a ‘probed.pomp’ is coerced to a ‘data.frame’, the first row gives the probes applied to the

data; the rest of the rows give the probes evaluated on simulated data. The rownames of the

result can be used to distinguish these.

In addition, slots of this object can be accessed via the $ operator.

Author(s)

Daniel C. Reuman, Aaron A. King

See Also

probe, probed.pomp, probe.matched.pomp, probe.match

54 profileDesign

profileDesign Design matrices for likelihood profile calculations.

Description

profileDesign generates a data-frame where each row can be used as the starting point for a profile

likelihood calculation.

Usage

profileDesign(..., lower, upper, nprof,

stringsAsFactors = default.stringsAsFactors())

Arguments

... Specifies the parameters over which to profile.

lower, upper Named numeric vectors, specifying the range over which the other parameters

are to be sampled.

nprof The number of starts per profile point.

stringsAsFactors

should character vectors be converted to factors?

Value

profileDesign returns a data frame with nprof points per profile point. The other parameters in

vars are sampled using sobol.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

sobol

Examples

A one-parameter profile design:

x <- profileDesign(p=1:10,lower=c(a=0,b=0),upper=c(a=1,b=5),nprof=20)

dim(x)

plot(x)

A two-parameter profile design:

x <- profileDesign(p=1:10,q=3:5,lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=20)

dim(x)

plot(x)

ricker 55

ricker Ricker model with Poisson observations.

Description

ricker is a pomp object encoding a stochastic Ricker model with Poisson measurement error.

Details

The state process is Nt+1 = rNt exp(−Nt + et), where the et are i.i.d. normal random deviates

with zero mean and variance σ2. The observed variables yt are distributed as Poisson(φNt).

See Also

pomp-class and the vignettes

Examples

pompExample(ricker)

plot(ricker)

coef(ricker)

rw2 Two-dimensional random-walk process

Description

rw2 is a pomp object encoding a 2-D normal random walk.

Details

The random-walk process is fully but noisily observed.

See Also

pomp-class and the vignettes

Examples

pompExample(rw2)

plot(rw2)

x <- simulate(rw2,nsim=10,seed=20348585L,params=c(x1.0=0,x2.0=0,s1=1,s2=3,tau=1))

plot(x[[1]])

56 sannbox

sannbox Simulated annealing with box constraints.

Description

sannbox is a straightforward implementation of simulated annealing with box constraints.

Usage

sannbox(par, fn, control = list(), ...)

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized, with first argument the vector of parameters over

which minimization is to take place. It should return a scalar result.

control A named list of control parameters. See ‘Details’.

... ignored.

Details

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization is

produced. Higher values may produce more tracing information.

fnscale An overall scaling to be applied to the value of fn during optimization. If negative, turns

the problem into a maximization problem. Optimization is performed on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on par/parscale

and these should be comparable in the sense that a unit change in any element produces about

a unit change in the scaled value.

maxit The total number of function evaluations: there is no other stopping criterion. Defaults to

10000.

temp starting temperature for the cooling schedule. Defaults to 1.

tmax number of function evaluations at each temperature. Defaults to 10.

candidate.dist function to randomly select a new candidate parameter vector. This should

be a function with three arguments, the first being the current parameter vector, the sec-

ond the temperature, and the third the parameter scaling. By default, candidate.dist is

function(par,temp,scale) rnorm(n=length(par),mean=par,sd=scale*temp).

sched cooling schedule. A function of a three arguments giving the temperature as a function of it-

eration number and the control parameters temp and tmax. By default, sched is function(k,temp,tmax) temp/log(((k-1)%/%tmax)*tmax+exp(1))

Alternatively, one can supply a numeric vector of temperatures. This must be of length at least

maxit.

simulate-pomp 57

Value

sannbox returns a list with components:

counts two-element integer vector. The first number gives the number of calls made to fn. The

second number is provided for compatibility with optim and will always be NA.

convergence provided for compatibility with optim; will always be 0.

final.params last tried value of par.

final.value value of fn corresponding to final.params.

par best tried value of par.

value value of fn corresponding to par.

Author(s)

Daniel Reuman, Imperial College London and Aaron A. King <kingaa at umich dot edu>

See Also

traj.match, probe.match.

simulate-pomp Running simulations of a partially-observed Markov process

Description

simulate can be used to generate simulated data sets and/or to simulate the state process.

Usage

S4 method for signature 'pomp'

simulate(object, nsim = 1, seed = NULL, params,

states = FALSE, obs = FALSE, times, t0,

as.data.frame = FALSE, ...)

Arguments

object An object of class pomp.

nsim The number of simulations to perform. Note that the number of replicates will

be nsim times ncol(xstart).

seed optional; if set, the pseudorandom number generator (RNG) will be initialized

with seed. the random seed to use. The RNG will be restored to its original

state afterward.

params either a named numeric vector or a numeric matrix with rownames. The param-

eters to use in simulating the model. If params is not given, then the contents of

the params slot of object will be used, if they exist.

states Do we want the state trajectories?

58 simulate-pomp

obs Do we want data-frames of the simulated observations?

times, t0 times specifies the times at which simulated observations will be made. t0

specifies the start time (the time at which the initial conditions hold). The default

for times is is times=time(object,t0=FALSE) and t0=timezero(object),

respectively.

as.data.frame logical; if TRUE, return the result as a data-frame.

... further arguments that are currently ignored.

Details

Simulation of the state process and of the measurement process are each accomplished by a single

call to the user-supplied rprocess and rmeasure functions, respectively. This makes it possible for

the user to write highly optimized code for these potentially expensive computations.

Value

If states=FALSE and obs=FALSE (the default), a list of nsim pomp objects is returned. Each has a

simulated data set, together with the parameters used (in slot params) and the state trajectories also

(in slot states). If times is specified, then the simulated observations will be at times times.

If nsim=1, then a single pomp object is returned (and not a singleton list).

If states=TRUE and obs=FALSE, simulated state trajectories are returned as a rank-3 array with

dimensions nvar x (ncol(params)*nsim) x ntimes. Here, nvar is the number of state variables

and ntimes the length of the argument times. The measurement process is not simulated in this

case.

If states=FALSE and obs=TRUE, simulated observations are returned as a rank-3 array with dimen-

sions nobs x (ncol(params)*nsim) x ntimes. Here, nobs is the number of observables.

If both states=TRUE and obs=TRUE, then a named list is returned. It contains the state trajectories

and simulated observations as above.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp-class

Examples

pompExample(ou2)

x <- simulate(ou2,seed=3495485,nsim=10)

x <- simulate(ou2,seed=3495485,nsim=10,states=TRUE,obs=TRUE)

sir 59

sir SIR models.

Description

euler.sir is a pomp object encoding a simple seasonal SIR model. Simulation is performed us-

ing an Euler multinomial approximation. gillespie.sir has the same model implemented using

Gillespie’s algorithm. bbs is a nonseasonal SIR model together with data from a 1978 outbreak of

influenza in a British boarding school.

Details

This example is discussed extensively in the “Introduction to pomp” and “Advanced topics in

pomp” vignettes.

The codes that construct these pomp objects can be found in the “examples” directory in the installed

package. Do system.file("examples",package="pomp")) to find this directory. For the basic

rprocess, dmeasure, rmeasure, and skeleton functions, these codes use compiled native routines

built into the package’s library. View “src/sir.c” in the package source or file.show("examples/sir.c")

from an R session to view these codes.

The boarding school influenza outbreak is described in Anonymous (1978).

References

Anonymous (1978). Influenza in a boarding school. British Medical Journal 1:587

See Also

pomp-class and the vignettes

Examples

pompExample(euler.sir)

plot(euler.sir)

plot(simulate(euler.sir,seed=20348585))

coef(euler.sir)

pompExample(gillespie.sir)

plot(gillespie.sir)

plot(simulate(gillespie.sir,seed=20348585))

coef(gillespie.sir)

pompExample(bbs)

plot(bbs)

coef(bbs)

60 sliceDesign

sliceDesign Design matrices for likelihood slices.

Description

sliceDesign generates a data-frame representing points taken along one or more slices through a

point in a multidimensional space.

Usage

sliceDesign(center, ...)

Arguments

center center is a named numeric vector specifying the point through which the slice(s)

is (are) to be taken.

... Additional numeric vector arguments specify the slices.

Value

sliceDesign returns a data frame with one row per point along a slice. The column slice is a

factor that tells which slice each point belongs to.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

profileDesign

Examples

A single 11-point slice through the point c(A=3,B=8,C=0) along the B direction.

x <- sliceDesign(center=c(A=3,B=8,C=0),B=seq(0,10,by=1))

dim(x)

plot(x)

Two slices through the same point along the A and C directions.

x <- sliceDesign(c(A=3,B=8,C=0),A=seq(0,5,by=1),C=seq(0,5,length=11))

dim(x)

plot(x)

sobol 61

sobol Sobol’ low-discrepancy sequence

Description

Generate a data-frame containing a Sobol’ low-discrepancy sequence.

Usage

sobol(vars, n)

sobolDesign(lower, upper, nseq)

Arguments

vars Named list of ranges of variables.

lower,upper named numeric vectors giving the lower and upper bounds of the ranges, respec-

tively.

n,nseq Number of vectors requested.

Value

sobol Returns a data frame with n ‘observations’ of the variables in vars.

sobolDesign Returns a data frame with nseq ‘observations’ of the variables over the range

specified.

Author(s)

Aaron A. King <kingaa at umich dot edu>

References

W. H. Press, S. A. Teukolsky, W. T. Vetterling, \& B. P. Flannery, Numerical Recipes in C, Cam-

bridge University Press, 1992

See Also

sliceDesign, profileDesign

Examples

plot(sobol(vars=list(a=c(0,1),b=c(100,200)),100))

plot(sobolDesign(lower=c(a=0,b=100),upper=c(b=200,a=1),100))

62 spect

spect Power spectrum computation for partially-observed Markov pro-

cesses.

Description

spect estimates the power spectrum of time series data and model simulations and compares the re-

sults. It can be used to diagnose goodness of fit and/or as the basis for frequency-domain parameter

estimation (spect.match).

spect.match tries to match the power spectrum of the model to that of the data. It calls an optimizer

to adjust model parameters to minimize the discrepancy between simulated and actual data.

Usage

S4 method for signature 'pomp'

spect(object, params, vars, kernel.width, nsim, seed = NULL,

transform = identity,

detrend = c("none","mean","linear","quadratic"),

...)

S4 method for signature 'spect.pomp'

spect(object, params, vars, kernel.width, nsim, seed = NULL, transform,

detrend, ...)

spect.match(object, start, est = character(0),

vars, nsim, seed = NULL,

kernel.width, transform = identity,

detrend = c("none","mean","linear","quadratic"),

weights, method = c("subplex","Nelder-Mead","SANN"),

verbose = getOption("verbose"),

eval.only = FALSE, fail.value = NA, ...)

Arguments

object An object of class pomp.

params optional named numeric vector of model parameters. By default, params=coef(object).

vars optional; names of observed variables for which the power spectrum will be

computed. This must be a subset of rownames(obs(object)). By default, the

spectrum will be computed for all observables.

kernel.width width parameter for the smoothing kernel used for calculating the estimate of

the spectrum.

nsim number of model simulations to be computed.

seed optional; if non-NULL, the random number generator will be initialized with this

seed for simulations. See simulate-pomp.

transform function; this transformation will be applied to the observables prior to estima-

tion of the spectrum, and prior to any detrending.

spect 63

detrend de-trending operation to perform. Options include no detrending, and subtrac-

tion of constant, linear, and quadratic trends from the data. Detrending is applied

to each data series and to each model simulation independently.

weights optional. The mismatch between model and data is measured by a weighted

average of mismatch at each frequency. By default, all frequencies are weighted

equally. weights can be specified either as a vector (which must have length

equal to the number of frequencies) or as a function of frequency. If the latter,

weights(freq) must return a nonnegative weight for each frequency.

start named numeric vector; the initial guess of parameters.

est character vector; the names of parameters to be estimated.

method Optimization method. Choices are subplex and any of the methods used by

optim.

verbose logical; print diagnostic messages?

eval.only logical; if TRUE, no optimization is attempted. Instead, the probe-mismatch

value is simply evaluated at the start parameters.

fail.value optional scalar; if non-NA, this value is substituted for non-finite values of the

objective function.

... Additional arguments. In the case of spect, these are currently ignored. In the

case of spect.match, these are passed to optim or subplex in the control list.

Details

A call to spect results in the estimation of the power spectrum for the (transformed, detrended)

data and nsim model simulations. The results of these computations are stored in an object of class

spect.pomp.

A call to spect.match results in an attempt to optimize the agreement between model and data

spectrum over the parameters named in est. The results, including coefficients of the fitted model

and power spectra of fitted model and data, are stored in an object of class spect.matched.pomp.

Value

spect returns an object of class spect.pomp, which is derived from class pomp and therefore has

all the slots of that class. In addition, spect.pomp objects have the following slots:

kernel.width width parameter of the smoothing kernel used.

transform transformation function used.

freq numeric vector of the frequencies at which the power spectrum is estimated.

datspec, simspec estimated power spectra for data and simulations, respectively.

pvals one-sided p-values: fraction of the simulated spectra that differ more from the mean simu-

lated spectrum than does the data. The metric used is L2 distance.

detrend detrending option used.

spect.match returns an object of class spect.matched.pomp, which is derived from class {spect.pomp}

and therefore has all the slots of that class. In addition, spect.matched.pomp objects have the fol-

lowing slots:

64 spect

est, weights, fail.value values of the corresponding arguments in the call to spect.match.

evals number of function and gradient evaluations by the optimizer. See optim.

value Value of the objective function.

convergence, msg Convergence code and message from the optimizer. See optim.

Author(s)

Daniel C. Reuman, Cai GoGwilt, Aaron A. King

References

D.C. Reuman, R.A. Desharnais, R.F. Costantino, O. Ahmad, J.E. Cohen (2006) Power spectra

reveal the influence of stochasticity on nonlinear population dynamics. Proceedings of the National

Academy of Sciences 103, 18860-18865.

D.C. Reuman, R.F. Costantino, R.A. Desharnais, J.E. Cohen (2008) Color of environmental noise

affects the nonlinear dynamics of cycling, stage-structured populations. Ecology Letters, 11, 820-

830.

See Also

pomp-class, pomp-methods, probe, probe.match

Examples

pompExample(ou2)

good <- spect(

ou2,

vars=c("y1","y2"),

kernel.width=3,

detrend="mean",

nsim=500

)

summary(good)

plot(good)

ou2.bad <- ou2

coef(ou2.bad,c("x1.0","x2.0","alpha.1","alpha.4")) <- c(0,0,0.1,0.2)

bad <- spect(

ou2.bad,

vars=c("y1","y2"),

kernel.width=3,

detrend="mean",

nsim=500

)

summary(bad)

plot(bad)

traj.match 65

traj.match Trajectory matching

Description

Facilities for matching trajectories to data. Trajectory matching is equivalent to maximum likeli-

hood estimation under the assumption that process noise is entirely absent, i.e., that all stochasticity

is measurement error.

Usage

S4 method for signature 'pomp'

traj.match(object, start, est = character(0),

method = c("Nelder-Mead","subplex","SANN","BFGS",

"sannbox","nloptr"),

transform = FALSE, ...)

S4 method for signature 'traj.matched.pomp'

traj.match(object, est, transform, ...)

S4 method for signature 'pomp'

traj.match.objfun(object, params, est, transform = FALSE, ...)

Arguments

object A pomp object. If object has no skeleton slot, an error will be generated.

start named numeric vector containing an initial guess for parameters. By default

start=coef(object) if the latter exists.

params optional named numeric vector of parameters. This should contain all parame-

ters needed by the skeleton and dmeasure slots of object. In particular, any

parameters that are to be treated as fixed should be present here. Parameter val-

ues given in params for parameters named in est will be ignored. By default,

params=coef(object) if the latter exists.

est character vector containing the names of parameters to be estimated. In the case

of traj.match.objfun, the objective function that is constructed will assume

that its argument contains the parameters in this order.

method Optimization method. Choices are subplex, “sannbox”, and any of the methods

used by optim.

transform logical; if TRUE, optimization is performed on the transformed scale.

... Extra arguments that will be passed either to the optimizer (optim, subplex,

nloptr, or sannbox, via their control (optim, subplex, sannbox) or opts

(nloptr) lists) or to the ODE integrator. In traj.match, extra arguments will be

passed to the optimizer. In traj.match.objfun, extra arguments are passed to

trajectory. If extra arguments are needed by both optimizer and trajectory,

construct an objective function first using traj.match.objfun, then give this

objective function to the optimizer.

66 traj.match

Details

In pomp, trajectory matching is the term used for maximizing the likelihood of the data under the

assumption that there is no process noise. Specifically, traj.match calls an optimizer (optim,

subplex, and sannbox are the currently supported options) to minimize an objective function. For

any value of the model parameters, this objective function is calculated by

1. computing the deterministic trajectory of the model given the parameters. This is the trajectory

returned by trajectory, which relies on the model’s deterministic skeleton as specified in the

construction of the pomp object object.

2. evaluating the negative log likelihood of the data under the measurement model given the

deterministic trajectory and the model parameters. This is accomplished via the model’s

dmeasure slot. The negative log likelihood is the objective function’s value.

The objective function itself — in a form suitable for use with optim-like optimizers — is created

by a call to traj.match.objfun. Specifically, traj.match.objfun will return a function that

takes a single numeric-vector argument that is assumed to cotain the parameters named in est, in

that order.

Value

traj.match returns an object of class traj.matched.pomp. This class inherits from class pomp

and contains the following additional slots:

transform, est the values of these arguments on the call to traj.match.

evals number of function and gradient evaluations by the optimizer. See optim.

value value of the objective function. Larger values indicate better fit (i.e., traj.match attempts

to maximize this quantity.

convergence, msg convergence code and message from the optimizer. See optim.

Available methods for objects of this type include summary and logLik. The other slots of this

object can be accessed via the $ operator.

traj.match.objfun returns a function suitable for use as an objective function in an optim-like

optimizer.

See Also

trajectory, pomp, optim, subplex

Examples

pompExample(ou2)

true.p <- c(

alpha.1=0.9,alpha.2=0,alpha.3=-0.4,alpha.4=0.99,

sigma.1=2,sigma.2=0.1,sigma.3=2,

tau=1,

x1.0=50,x2.0=-50

)

simdata <- simulate(ou2,nsim=1,params=true.p,seed=43553)

guess.p <- true.p

trajectory 67

res <- traj.match(

simdata,

start=guess.p,

est=c('alpha.1','alpha.3','alpha.4','x1.0','x2.0','tau'),

maxit=2000,

method="Nelder-Mead",

reltol=1e-8

)

summary(res)

plot(range(time(res)),range(c(obs(res),states(res))),type='n',xlab="time",ylab="x,y")

points(y1~time,data=as(res,"data.frame"),col='blue')

points(y2~time,data=as(res,"data.frame"),col='red')

lines(x1~time,data=as(res,"data.frame"),col='blue')

lines(x2~time,data=as(res,"data.frame"),col='red')

pompExample(ricker)

ofun <- traj.match.objfun(ricker,est=c("r","phi"),transform=TRUE)

optim(fn=ofun,par=c(2,0),method="BFGS")

pompExample(bbs)

some options are passed to the ODE integrator

ofun <- traj.match.objfun(bbs,est=c("beta","gamma"),transform=TRUE,hmax=0.001,rtol=1e-6)

optim(fn=ofun,par=c(0,-1),method="Nelder-Mead",control=list(reltol=1e-10))

trajectory Compute trajectories of the deterministic skeleton.

Description

The method trajectory computes a trajectory of the deterministic skeleton of a Markov process.

In the case of a discrete-time system, the deterministic skeleton is a map and a trajectory is obtained

by iterating the map. In the case of a continuous-time system, the deterministic skeleton is a vector-

field; trajectory integrates the vectorfield to obtain a trajectory.

Usage

S4 method for signature 'pomp'

trajectory(object, params, times, t0, as.data.frame = FALSE, ...)

Arguments

object an object of class pomp.

params a rank-2 array of parameters. Each column of params is a distinct parameter

vector.

times, t0 times is a numeric vector specifying the times at which a trajectory is desired.

t0 specifies the start time (the time at which the initial conditions hold). The de-

fault for times is times=time(object,t0=FALSE) and t0=timezero(object),

respectively.

68 trajectory

as.data.frame logical; if TRUE, return the result as a data-frame.

... additional arguments are passed to the ODE integrator if the skeleton is a vec-

torfield and ignored if it is a map. See ode for a description of the additional

arguments accepted.

Details

This function makes repeated calls to the user-supplied skeleton of the pomp object. For specifi-

cations on supplying this, see pomp.

When the skeleton is a vectorfield, trajectory integrates it using ode.

When the skeleton is a map, trajectory iterates it. By default, time is advanced 1 unit per it-

eration. The user can change this behavior by specifying the desired timestep using the argument

skelmap.delta.t in the construction of the pomp object.

Value

Returns an array of dimensions nvar x nreps x ntimes. If x is the returned matrix, x[i,j,k] is

the i-th component of the state vector at time times[k] given parameters params[,j].

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp, traj.match, ode

Examples

pompExample(euler.sir)

x <- trajectory(euler.sir)

plot(time(euler.sir),x["I",1,],type='l',xlab='time',ylab='I')

lines(time(euler.sir),x["cases",1,],col='red')

coef(euler.sir,c("gamma")) <- log(12)

x <- trajectory(euler.sir)

plot(time(euler.sir),x["I",1,],type='l',xlab='time',ylab='I')

lines(time(euler.sir),x["cases",1,],col='red')

x <- trajectory(euler.sir,as.data.frame=TRUE)

verhulst 69

verhulst Simple Verhulst-Pearl (logistic) model.

Description

verhulst is a pomp object encoding a univariate stochastic logistic model with measurement error.

Details

The model is written as an Ito diffusion, dn = rn(1 − n/K)dt + σndW , where W is a Wiener

process. It is implemented using the euler.sim plug-in.

See Also

pomp-class and the vignettes

Examples

pompExample(verhulst)

plot(verhulst)

coef(verhulst)

params <- cbind(

c(n.0=100,K=10000,r=0.2,sigma=0.4,tau=0.1),

c(n.0=1000,K=11000,r=0.1,sigma=0.4,tau=0.1)

)

x <- simulate(verhulst,params=params,states=TRUE)

matplot(time(verhulst),t(x['n',,]),type='l')

y <- trajectory(verhulst,params=params)

matlines(time(verhulst),t(y['n',,]),type='l',lwd=2)

Index

∗Topic datasets
blowflies, 10

dacca, 13

gompertz, 16

LondonYorke, 18

ou2, 26

ricker, 55

rw2, 55

sir, 59

verhulst, 69

∗Topic design
profileDesign, 54

sliceDesign, 60

sobol, 61

∗Topic distribution
eulermultinom, 14

∗Topic models
basic.probes, 8

mif-methods, 22

nlf, 23

pfilter, 27

pfilter-methods, 29

plugins, 31

pmcmc-methods, 36

pomp, 37

pomp-methods, 43

pomp-package, 3

probe, 49

probed.pomp-methods, 52

simulate-pomp, 57

spect, 62

traj.match, 65

trajectory, 67

∗Topic optimize
sannbox, 56

∗Topic smooth
B-splines, 7

∗Topic ts
abc, 4

abc-methods, 6

basic.probes, 8

bsmc, 11

mif, 19

mif-methods, 22

nlf, 23

pfilter, 27

pfilter-methods, 29

pmcmc, 34

pmcmc-methods, 36

pomp, 37

pomp-methods, 43

pomp-package, 3

probe, 49

probed.pomp-methods, 52

simulate-pomp, 57

spect, 62

traj.match, 65

trajectory, 67

$,bsmcd.pomp-method (bsmc), 11

$,pfilterd.pomp-method

(pfilter-methods), 29

$,probe.matched.pomp-method

(probed.pomp-methods), 52

$,probed.pomp-method

(probed.pomp-methods), 52

$,traj.matched.pomp-method

(traj.match), 65

$-bsmcd.pomp (bsmc), 11

$-pfilterd.pomp (pfilter-methods), 29

$-probe.matched.pomp

(probed.pomp-methods), 52

$-probed.pomp (probed.pomp-methods), 52

$-traj.matched.pomp (traj.match), 65

abc, 4, 6

abc,abc-method (abc), 4

abc,pomp-method (abc), 4

abc,probed.pomp-method (abc), 4

abc-abc (abc), 4

70

INDEX 71

abc-class (abc), 4

abc-methods, 6, 6

abc-pomp (abc), 4

abc-probed.pomp (abc), 4

as,pfilterd.pomp-method

(pfilter-methods), 29

as,pomp-method (pomp-methods), 43

as,probed.pomp-method

(probed.pomp-methods), 52

as.data.frame.pfilterd.pomp

(pfilter-methods), 29

as.data.frame.pomp, 43

as.data.frame.pomp (pomp-methods), 43

B-splines, 7

basic.probes, 8, 50, 51

bbs, 49

bbs (sir), 59

blowflies, 10, 49

blowflies1 (blowflies), 10

blowflies2 (blowflies), 10

bsmc, 4, 11

bsmc,pomp-method (bsmc), 11

bsmc-pomp (bsmc), 11

bspline.basis (B-splines), 7

coef, 22, 43

coef,pomp-method (pomp-methods), 43

coef-pomp (pomp-methods), 43

coef<- (pomp-methods), 43

coef<-,pomp-method (pomp-methods), 43

coef<--pomp (pomp-methods), 43

coerce,pfilterd.pomp,data.frame-method

(pfilter-methods), 29

coerce,pomp,data.frame-method

(pomp-methods), 43

coerce,probed.pomp,data.frame-method

(probed.pomp-methods), 52

compare.mif (mif-methods), 22

compare.pmcmc (pmcmc-methods), 36

cond.logLik (pfilter-methods), 29

cond.logLik,pfilterd.pomp-method

(pfilter-methods), 29

cond.logLik-pfilterd.pomp

(pfilter-methods), 29

continue (mif), 19

continue,abc-method (abc), 4

continue,mif-method (mif), 19

continue,pmcmc-method (pmcmc), 34

continue-abc (abc), 4

continue-mif (mif), 19

continue-pmcmc (pmcmc), 34

conv.rec (mif-methods), 22

conv.rec,abc-method (abc-methods), 6

conv.rec,mif-method (mif-methods), 22

conv.rec,pmcmc-method (pmcmc-methods),

36

conv.rec-abc (abc-methods), 6

conv.rec-mif (mif-methods), 22

conv.rec-pmcmc (pmcmc-methods), 36

dacca, 13, 49

data.array (pomp-methods), 43

data.array,pomp-method (pomp-methods),

43

data.array-pomp (pomp-methods), 43

data.frame-pomp (pomp), 37

deulermultinom (eulermultinom), 14

discrete.time.sim, 40

discrete.time.sim (plugins), 31

dmeasure, 46

dprior,abc-method (abc-methods), 6

dprior-abc (abc-methods), 6

dprocess, 46

dyn.load, 48

eff.sample.size (pfilter-methods), 29

eff.sample.size,pfilterd.pomp-method

(pfilter-methods), 29

eff.sample.size-pfilterd.pomp

(pfilter-methods), 29

euler.sim, 40, 41, 69

euler.sim (plugins), 31

euler.sir, 14, 49

euler.sir (sir), 59

eulermultinom, 14, 33

filter.mean (pfilter-methods), 29

filter.mean,pfilterd.pomp-method

(pfilter-methods), 29

filter.mean,pmcmc-method

(pmcmc-methods), 36

filter.mean-pfilterd.pomp

(pfilter-methods), 29

filter.mean-pmcmc (pmcmc-methods), 36

getwd, 48

gillespie.sim, 40, 41

72 INDEX

gillespie.sim (plugins), 31

gillespie.sir, 49

gillespie.sir (sir), 59

gompertz, 16, 49

init.state, 46

kernel, 8

logLik,mif-method (mif-methods), 22

logLik,pfilterd.pomp-method

(pfilter-methods), 29

logLik,pmcmc-method (pmcmc-methods), 36

logLik,probed.pomp-method

(probed.pomp-methods), 52

logLik,traj.matched.pomp-method

(traj.match), 65

logLik-mif (mif-methods), 22

logLik-pfilterd.pomp (pfilter-methods),

29

logLik-pmcmc (pmcmc-methods), 36

logLik-probed.pomp

(probed.pomp-methods), 52

logLik-traj.matched.pomp (traj.match),

65

logmeanexp, 17

LondonYorke, 18

matrix-pomp (pomp), 37

mean, 8

mif, 3, 4, 19, 23

mif,mif-method (mif), 19

mif,pfilterd.pomp-method (mif), 19

mif,pomp-method (mif), 19

mif-methods, 22

mif-mif (mif), 19

mif-pfilterd.pomp (mif), 19

mif-pomp (mif), 19

nlf, 3, 4, 23

nloptr, 50, 51, 65

numeric-pomp (pomp), 37

obs, 9, 43

obs (pomp-methods), 43

obs,pomp-method (pomp-methods), 43

obs-pomp (pomp-methods), 43

ode, 68

onestep.dens, 40, 41

onestep.dens (plugins), 31

onestep.sim, 40, 41

onestep.sim (plugins), 31

optim, 24, 50, 51, 57, 63–66

ou2, 26, 49

parmat, 26

partrans (pomp-methods), 43

partrans,pomp-method (pomp-methods), 43

partrans-pomp (pomp-methods), 43

paste, 7

periodic.bspline.basis (B-splines), 7

pfilter, 3, 4, 20, 22, 23, 27, 30, 35–37

pfilter,pfilterd.pomp-method (pfilter),

27

pfilter,pomp-method (pfilter), 27

pfilter-methods, 29

pfilter-pfilterd.pomp (pfilter), 27

pfilter-pomp (pfilter), 27

pfilterd.pomp, 28, 35

pfilterd.pomp-class (pfilter), 27

plot,abc-method (abc-methods), 6

plot,bsmcd.pomp-method (bsmc), 11

plot,mif-method (mif-methods), 22

plot,pmcmc-method (pmcmc-methods), 36

plot,pomp-method (pomp-methods), 43

plot,probe.matched.pomp-method

(probed.pomp-methods), 52

plot,probed.pomp-method

(probed.pomp-methods), 52

plot,spect.matched.pomp-method

(probed.pomp-methods), 52

plot,spect.pomp-method

(probed.pomp-methods), 52

plot-abc (abc-methods), 6

plot-bsmcd.pomp (bsmc), 11

plot-mif (mif-methods), 22

plot-pmcmc (pmcmc-methods), 36

plot-pomp (pomp-methods), 43

plot-probe.matched.pomp

(probed.pomp-methods), 52

plot-probed.pomp (probed.pomp-methods),

52

plot-spect.pomp (probed.pomp-methods),

52

plugins, 31, 38, 40, 41, 43

pmcmc, 3, 4, 34, 36, 37

pmcmc,pfilterd.pomp-method (pmcmc), 34

pmcmc,pmcmc-method (pmcmc), 34

pmcmc,pomp-method (pmcmc), 34

INDEX 73

pmcmc-class (pmcmc), 34

pmcmc-methods, 36

pmcmc-pfilterd.pomp (pmcmc), 34

pmcmc-pmcmc (pmcmc), 34

pmcmc-pomp (pmcmc), 34

pomp, 3, 4, 6, 14, 22, 23, 26, 28, 32, 33, 35, 37,

37, 40, 42, 46–48, 51, 63, 65, 66, 68

pomp,data.frame-method (pomp), 37

pomp,matrix-method (pomp), 37

pomp,numeric-method (pomp), 37

pomp,pomp-method (pomp), 37

pomp-class, 10, 13, 29, 30, 46, 51, 58, 64

pomp-methods, 10, 43, 43, 51, 64

pomp-package, 3

pomp-pomp (pomp), 37

pompBuilder, 46

pompExample, 48

pred.mean (pfilter-methods), 29

pred.mean,pfilterd.pomp-method

(pfilter-methods), 29

pred.mean-pfilterd.pomp

(pfilter-methods), 29

pred.var (pfilter-methods), 29

pred.var,pfilterd.pomp-method

(pfilter-methods), 29

pred.var-pfilterd.pomp

(pfilter-methods), 29

print,pomp-method (pomp-methods), 43

print-pomp (pomp-methods), 43

probe, 6, 9, 49, 53, 64

probe,pomp-method (probe), 49

probe,probed.pomp-method (probe), 49

probe-pomp (probe), 49

probe-probed.pomp (probe), 49

probe.acf (basic.probes), 8

probe.ccf (basic.probes), 8

probe.marginal (basic.probes), 8

probe.match, 3, 4, 9, 51, 53, 57, 64

probe.match (probe), 49

probe.match,pomp-method (probe), 49

probe.match,probe.matched.pomp-method

(probe), 49

probe.match,probed.pomp-method (probe),

49

probe.match-pomp (probe), 49

probe.match-probe.matched.pomp (probe),

49

probe.match-probed.pomp (probe), 49

probe.match.objfun (probe), 49

probe.match.objfun,pomp-method (probe),

49

probe.match.objfun,probed.pomp-method

(probe), 49

probe.match.objfun-pomp (probe), 49

probe.match.objfun-probed.pomp (probe),

49

probe.matched.pomp, 50, 53

probe.matched.pomp-class (probe), 49

probe.matched.pomp-methods

(probed.pomp-methods), 52

probe.mean (basic.probes), 8

probe.median (basic.probes), 8

probe.nlar (basic.probes), 8

probe.period (basic.probes), 8

probe.quantile (basic.probes), 8

probe.sd (basic.probes), 8

probe.var (basic.probes), 8

probed.pomp, 5, 53

probed.pomp-class (probe), 49

probed.pomp-methods, 52

profileDesign, 54, 60, 61

quantile, 8

reulermultinom (eulermultinom), 14

rgammawn (eulermultinom), 14

ricker, 49, 55

rmeasure, 46

rprior, 12

rprocess, 46

rw2, 49, 55

sannbox, 50, 56, 65, 66

show,pomp-method (pomp-methods), 43

show-pomp (pomp-methods), 43

simulate, 3, 4, 46, 50

simulate,pomp-method (simulate-pomp), 57

simulate-pomp, 50, 57, 62

sir, 59

sliceDesign, 60, 61

sobol, 54, 61

sobolDesign (sobol), 61

spect, 62

spect,pomp-method (spect), 62

spect,spect.pomp-method (spect), 62

spect-pomp (spect), 62

spect-spect.pomp (spect), 62

74 INDEX

spect.match, 3

spect.match (spect), 62

spect.match,pomp-method (spect), 62

spect.match,spect.pomp-method (spect),

62

spect.match-pomp (spect), 62

spect.match-spect.pomp (spect), 62

spect.matched.pomp, 63

spect.matched.pomp-class (spect), 62

spect.matched.pomp-methods

(probed.pomp-methods), 52

spect.pomp, 63

spect.pomp-class (spect), 62

spect.pomp-methods

(probed.pomp-methods), 52

sprintf, 7

states, 43

states (pomp-methods), 43

states,pomp-method (pomp-methods), 43

states-pomp (pomp-methods), 43

subplex, 24, 50, 63, 65, 66

summary,probe.matched.pomp-method

(probed.pomp-methods), 52

summary,probed.pomp-method

(probed.pomp-methods), 52

summary,spect.matched.pomp-method

(probed.pomp-methods), 52

summary,spect.pomp-method

(probed.pomp-methods), 52

summary,traj.matched.pomp-method

(traj.match), 65

summary-probe.matched.pomp

(probed.pomp-methods), 52

summary-probed.pomp

(probed.pomp-methods), 52

summary-spect.matched.pomp

(probed.pomp-methods), 52

summary-spect.pomp

(probed.pomp-methods), 52

summary-traj.matched.pomp (traj.match),

65

time, 43

time,pomp-method (pomp-methods), 43

time-pomp (pomp-methods), 43

time<- (pomp-methods), 43

time<-,pomp-method (pomp-methods), 43

time<--pomp (pomp-methods), 43

timezero, 43

timezero (pomp-methods), 43

timezero,pomp-method (pomp-methods), 43

timezero-pomp (pomp-methods), 43

timezero<- (pomp-methods), 43

timezero<-,pomp-method (pomp-methods),

43

timezero<--pomp (pomp-methods), 43

traj.match, 3, 4, 57, 65, 68

traj.match,pomp-method (traj.match), 65

traj.match,traj.matched.pomp-method

(traj.match), 65

traj.match-pomp (traj.match), 65

traj.match-traj.matched.pomp

(traj.match), 65

traj.match.objfun (traj.match), 65

traj.match.objfun,pomp-method

(traj.match), 65

traj.match.objfun-pomp (traj.match), 65

traj.matched.pomp-class (traj.match), 65

trajectory, 4, 65, 66, 67

trajectory,pomp-method (trajectory), 67

trajectory-pomp (trajectory), 67

verhulst, 49, 69

window, 43

window,pomp-method (pomp-methods), 43

window-pomp (pomp-methods), 43

	pomp-package
	abc
	abc-methods
	B-splines
	basic.probes
	blowflies
	bsmc
	dacca
	eulermultinom
	gompertz
	logmeanexp
	LondonYorke
	mif
	mif-methods
	nlf
	ou2
	parmat
	pfilter
	pfilter-methods
	plugins
	pmcmc
	pmcmc-methods
	pomp
	pomp-methods
	pompBuilder
	pompExample
	probe
	probed.pomp-methods
	profileDesign
	ricker
	rw2
	sannbox
	simulate-pomp
	sir
	sliceDesign
	sobol
	spect
	traj.match
	trajectory
	verhulst
	Index

