
The poweRlaw package: a general overview
Colin S. Gillespie
Last updated: June 7, 2013

The poweRlaw package provides code to fit heavy tailed distributions,
including discrete and continuous power-law distributions. The fitting
procedure follows the method detailed in Clauset et al.1. The parameter 1 A. Clauset, C.R. Shalizi, and M.E.J.

Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–
703, 2009

values are obtained by maximising the likelihood. The cut-off value,
xmin, is estimated by minimising the Kolmogorov-Smirnoff statistic.

1 Installation

The package is hosted on CRAN and can be installed via

install.packages("poweRlaw")

The developmental version is hosted on github and can be installed
using the devtools package:2 2 If use Windows, you will need to install

the Rtools package first.

install.packages("devtools")

library(devtools)

install_github("poweRlaw", "csgillespie", subdir = "pkg")

Once installed, the package can be loaded ready for use with the
standard library command

library(poweRlaw)

2 Accessing documentation

Each function and dataset in the package is documented. The com-
mand

help(package = "poweRlaw")

will give a brief overview of the package and a complete list of all
functions. The list of vignettes associated with the package can be
obtained with

vignette(package = "poweRlaw")

Currently, there are two vignettes available. This vignette, which gives
an overview of the functionality, and a worked examples vignette.
These documents can be accessed via the commands

vignette("poweRlaw", package = "poweRlaw")

vignette("examples", package = "poweRlaw")

Help on functions can be obtained using the usual R mechanisms.
For example, help on the method displ can be obtained with

the powerlaw package: a general overview 2

?displ

and the associated example can be run with

example(displ)

A list of demos and data sets associated with the package can be
obtained with

demo(package = "poweRlaw")

data(package = "poweRlaw")

For example, the Moby dick data set can be load using The package also contains the data set
moby_sample. This data set is two thou-
sand randomly sampled values from the
larger moby data set.data(moby)

After running this command, the vector moby will be accessible, and
can be examined by typing

moby

at the R command prompt.
If you use this package, please cite it. The appropriate citation can

be obtained via:

citation("poweRlaw")

3 Example: Word frequency in Moby Dick

This example investigates the frequency of occurrence of unique
words in the novel Moby Dick by Herman Melville.3 The data can be 3 A. Clauset, C.R. Shalizi, and M.E.J.

Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–
703, 2009; and M.E.J. Newman. Power
laws, pareto distributions and zipf’s law.
Contemporary physics, 46(5):323–351, 2005

downloaded from

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

or loaded directly

data(moby)

3.1 Fitting a discrete power-law

To fit a discrete power-law,4 we create a discrete power-law object, 4 The examples vignette contains a more
thorough analysis of this particular data
set.

using the displ method5

5 displ: discrete power-law.
m_m = displ$new(moby)

Initially the lower cut-off xmin, is set to the smallest x value and the
scaling parameter, α, is set to NULL

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

the powerlaw package: a general overview 3

m_m$getXmin()

[1] 1

m_m$getPars()

NULL

This object also has standard setters

m_m$setXmin(5)

m_m$setPars(2)

For a given xmin value, we can estimate the corresponding α value
using its maximum likelihood estimator (mle) Instead of using the mle, we could do a

parameter scan:
estimate_pars(m_m, pars=seq(2, 3, 0.1))estimate_pars(m_m)

$pars

[1] 1.921

##

attr(,"class")

[1] "estimate_pars"

To estimate the lower bound xmin, we minimise the distance between
the data and the fitted model CDF, that is

D(x) = max
x≥xmin

|S(x)− P(x)|

where S(x) is the data CDF and P(x) is the theoretical CDF. The value
D(x) is known as the Kolmogorov-Smirnov statistic. Our estimate of
xmin is then the value of x that minimises D(x):

1 10 100 1000 10000

1e−04

1e−03

1e−02

1e−01

1e+00

x

C
D

F

Figure 1: Plot of the data CDF for the
Moby Dick data set. This corresponds
to figure 6.1(a) in Clauset, 2009. The line
corresponds to a power-law distribution
with parameters xmin = 7 and α = 1.95.

(est = estimate_xmin(m_m))

$KS

[1] 0.009229

##

$xmin

[1] 7

##

$pars

[1] 1.95

##

attr(,"class")

[1] "estimate_xmin"

For the Moby-Dick data set, the minimum is achieved when xmin = 7
and D(7) = 0.0092.

We can then set parameters of power-law distribution to these
"optimal" values

m_m$setXmin(est)

All distribution objects have generic plot methods:6 6 Generic lines and points functions
are also available.

the powerlaw package: a general overview 4

Plot the data (from xmin)

plot(m_m)

Add in the fitted distribution

lines(m_m, col = 2)

which gives figure 1. When calling the plot and lines function, the
data plotted is actually invisibly returned, i.e.

dd = plot(m_m)

head(dd, 3)

x y

1 1 1.0000

2 2 0.5141

3 3 0.3505

This makes it straight forward to create graphics using other R pack-
ages, such as ggplot2.

3.2 Uncertainty in xmin

xmin

F
re

qu
en

cy

0 5 10 15 20 25

0

500

1000

1500

α

F
re

qu
en

cy

1.85 1.90 1.95 2.00 2.05

0

100

200

300

400

Figure 2: Characterising uncertainty in
parameter values. (a) xmin uncertainty
(standard deviation 2) (b) α uncertainty
(std dev. 0.03)

0 5 10 15 20 25

1.85

1.90

1.95

2.00

2.05

xmin

α

Figure 3: Characterising uncertainty in
parameter values. Bivariate scatter plot
of xmin and α.

Clauset, el al, 2009 recommend a bootstrap procedure to get a handle
on parameter uncertainty. Essentially, we sample with replacement
from the data set and then re-infer the parameters.

To run the bootstrapping procedure, we use the bootstrap function

bs = bootstrap(m_m, no_of_sims = 1000, threads = 1)

this function runs in parallel, with the number of threads used deter-
mined by the threads argument. To detect the number of cores on
your machine, you can run:

parallel::detectCores()

[1] 8

The object returned by bootstrap is a list with three elements.

• The original Kolmogorov-Smirnov statistic.

• The results of the bootstrapping procedure.

• The average time (in seconds) for a single bootstrap.

The results of the bootstrap procedure can be investigated with his-
tograms

hist(bs$bootstraps[, 2], breaks = "fd")

hist(bs$bootstraps[, 3], breaks = "fd")

and a bivariate scatter plot

the powerlaw package: a general overview 5

Algorithm 1: Uncertainty in xmin

1: Set N equal to the number of values in the original data set
2: for i in 1:B:
3: Sample N values from the original data set
4: Estimate xmin and α using the Kolmogorov-Smirnoff statistic
5: end for

plot(bs$bootstraps[, 2], bs$bootstraps[, 3])

These commands give figures 2 and 3.

the powerlaw package: a general overview 6

Algorithm 2: Do we have a power-law?
1: Calculate point estimates xmin and the scaling parameter α.
2: Calculate the data KS statistic, KSd, for the original data set.
3: Set n1 equal to the number of values below xmin.
4: Set n2 = n− n1 and P = 0.
5: for i in 1:B:
6: Simulate n1 values from a discrete uniform distribution: U(1, xmin) and

n2 values from a discrete power-law distribution (with parameter α).
7: Calculate the associated KS statistic, KSsim.
8: If KSd > KSsim, then P = P + 1.
9: end for
10: p = P/B

3.3 Do we have a power-law?

Since it is possible to fit a power-law distribution to any data set, it is
appropriate to test whether it the observed data set actually follows a
power-law. Clauset et al, suggest that this hypothesis is tested using Algorithm 2 can be easily extended for

other distributions.a goodness-of-fit test, via a bootstrapping procedure. Essentially,
we perform a hypothesis test by generating multiple data sets (with
parameters xmin and α) and then "re-inferring" the model parameters.
The algorithm is detailed in Algorithm 2.

xmin

F
re

qu
en

cy

0 10 20 30 40

0

500

1000

1500

α

F
re

qu
en

cy

1.80 1.85 1.90 1.95 2.00 2.05

0

100

200

300

400

Figure 4: Histograms of the bootstrap
results.

0 10 20 30 40

1.80

1.85

1.90

1.95

2.00

2.05

xmin

α

Figure 5: Bivariate scatter plot of the
bootstrap results. The values of xmin
and α are obviously strongly correlated.

When α is close to one, this algorithm can be particularly time
consuming to run, for two reasons:

1. When generating random numbers from the discrete power-law
distribution, large values are probable, i.e. values greater than 108.
To overcome this bottleneck, when generating the random numbers
all numbers larger than 105 are generated using a continuous
approximation.

2. To calculate the Kolmogorov-Smirnov statistic, we need explore
the state space. It is computationally infeasible to explore the
entire state space when max(x) >> 105. To make this algorithm
computational feasible, we split the state space into two sections.
The first section is all values from

xmin, xmin + 1, xmin + 2, . . . , 105

this set is combined with an additional 105 values from

105, . . . , max(x)

To determine whether the underlying distribution may be a power-law,
we use the bootstrap_p function

##This may take a while

##Use the mle to estimate the parameters

bs_p = bootstrap_p(m_m, no_of_sims=1000, threads=2)

The object returned from the bootstrap procedure contains four ele-
ments

the powerlaw package: a general overview 7

• A p-value - bs$p. For this example, p = 0.513 which indicates that
we can not rule out the power law model. See section 4.2 of the
Clauset paper for further details.

• The original goodness of fit statistic - bs$gof.

• The result of the bootstrap procedure - a data frame with three
columns.

• The average time (in seconds) for a single bootstrap realisation.

The results of this procedure are shown in figures 4 and 5.

4 Distribution objects

For the Moby Dick example, we created a displ object

m_m = displ$new(moby)

The object m_m has class displ and inherits the discrete_distribution
class. A list of available distributions are given in table 1.

Distribution Object name # Parameters

Discrete Power-law displ 1

Discrete Log-normal dislnorm 2

Discrete Exponential disexp 1

Poisson dispois 1

CTN Power-law conpl 1

CTN Log-normal conlnorm 2

Table 1: Available distributions in the
poweRlaw package. These objects are all
reference classes.

All distribution objects listed in table 1 are reference classes. Each See ?setRefClass for further details on
references classes.distribution object has four fields:

• dat: a copy of the data.

• xmin: the lower cut-off xmin.

• pars: a vector of parameter values.

• internal: a list of values use in different numerical procedures.
This will differ between distribution objects.

By using the mutable states of reference objects, we are able to have
efficient caching of data structures, that can be reused. For example,
the mle of discrete power-laws uses the statistic:

n

∑
i=xmin

log(xi)

This value is calculated once for all values of xmin, then iterated over
when estimating xmin.

All distribution objects have a number of methods available. A list
of methods is given in table 2. See the associated help files for further
details.

the powerlaw package: a general overview 8

Method Name Description

dist_cdf Cumulative density/mass function (CDF)
dist_rand Random number generator
dist_data_cdf Data CDF
dist_ll Log-likelihood
estimate_xmin Point estimates of the cut-off point and parame-

ter values
estimate_pars Point estimates of the parameters (conditional on

the current xmin value)
bootstrap Bootstrap procedure (uncertainty in xmin)
bootstrap_p Bootstrap procedure to test whether we have a

power-law

Table 2: A list of functions for
distribution functions. These objects
do not change the object states. How-
ever, they may not be thread safe.

5 Loading data

Typically, data is stored in a csv or text file. To use this data, we load
it in the usual way7 7 The blackouts data set can be obtained

from Clauset’s website: http://goo.gl/
BsqnP .

blackouts = read.table("blackouts.txt")

Distribution objects take vectors as inputs, so

m_bl = conpl$new(blackouts$V1)

1e+03 1e+04 1e+05 1e+06 1e+07

0.005

0.010

0.020

0.050

0.100

0.200

0.500

1.000

x

y

Figure 6: CDF plot of the blackout
dataset with line of best fit. Since the
minimum value of x is large, we fit a
continuous power-law as this is more it
efficient.

6 Comparison with the plfit script

6.1 The discrete case

Other implementations of estimating the lower bound can be found
at

http://tuvalu.santafe.edu/~aaronc/powerlaws/

In particular, the script for estimating xmin can be loaded using

source("http://tuvalu.santafe.edu/~aaronc/powerlaws/plfit.r")

The results are directly comparable to the poweRlaw package. For
example, consider the Moby Dick data set again, we have

plfit(moby)

$xmin

[1] 7

##

$alpha

[1] 1.95

##

$D

[1] 0.009289

http://goo.gl/BsqnP
http://goo.gl/BsqnP
http://tuvalu.santafe.edu/~aaronc/powerlaws/

the powerlaw package: a general overview 9

Notice that the results are slightly different. This is because the plfit

by default does a parameter scan over the range

1.50, 1.51, 1.52, . . . , 2.49, 2.50

To exactly replicate the results, we could use

estimate_xmin(m_m, pars = seq(1.5, 2.5, 0.01))

6.2 The continuous case

The plfit script also fits continuous power-laws. Again the results
are comparable.

For example, suppose we have one thousand random numbers
from a continuous power-law distributions with parameters α = 2.5
and xmin = 10.0

r = rplcon(1000, 10, 2.5)

The plfit automatically detects if the data is continuous

plfit(r)

$xmin

[1] 11.47

##

$alpha

[1] 2.541

##

$D

[1] 0.02846

Fitting with the poweRlaw package gives the same values

m_r = conpl$new(r)

(est = estimate_xmin(m_r))

$KS

[1] 0.02846

##

$xmin

[1] 11.47

##

$pars

[1] 2.541

##

attr(,"class")

[1] "estimate_xmin"

Of course, using the poweRlaw package we can easily plot the data

10 20 50 100 200 500 1000

0.001

0.005

0.010

0.050

0.100

0.500

1.000

x

C
D

F

Figure 7: CDF plot of one thousand ran-
dom numbers generated from a power-
law with parameters α = 2.5 and xmin =
10. The line of best fit is also shown.

the powerlaw package: a general overview 10

m_r$setXmin(est)

plot(m_r)

lines(m_r, col = 2)

to get figure 7.

the powerlaw package: a general overview 11

Package and R version

Package Version

parallel 3.0.1
poweRlaw 0.20.0
VGAM 0.9-1

Table 3: A list of packages and versions
used.

version

_

platform x86_64-pc-linux-gnu

arch x86_64

os linux-gnu

system x86_64, linux-gnu

status

major 3

minor 0.1

year 2013

month 05

day 16

svn rev 62743

language R

version.string R version 3.0.1 (2013-05-16)

nickname Good Sport

This vignette was created using the excellent knitr package.8 8 Yihui Xie. knitr: A general-purpose pack-
age for dynamic report generation in R,
2013. URL http://CRAN.R-project.org/
package=knitr. R package version 1.1

http://CRAN.R-project.org/package=knitr
http://CRAN.R-project.org/package=knitr

the powerlaw package: a general overview 12

References

A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distribu-
tions in empirical data. SIAM review, 51(4):661–703, 2009.

M.E.J. Newman. Power laws, pareto distributions and zipf’s law.
Contemporary physics, 46(5):323–351, 2005.

Yihui Xie. knitr: A general-purpose package for dynamic report generation
in R, 2013. URL http://CRAN.R-project.org/package=knitr. R
package version 1.1.

http://CRAN.R-project.org/package=knitr

	Installation
	Accessing documentation
	Example: Word frequency in Moby Dick
	Distribution objects
	Loading data
	Comparison with the plfit script

