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Abstract

Profile analysis is a multivariate data analysis technique that is the equivalent of
a repeated measures extension of MANOVA. Profile analysis is mainly concerned with
test scores; more specifically with profiles of test scores obtained from an educational
or psychological assessment. A test score profile shows differences in subscores on tests
that are commonly administered in medical, psychological, and educational studies to
rank participants of a study on some construct. Practitioners are typically interested in
quantifying both an individuals’ overall performance on the subtests (i.e., the level) and
the variation between the scores on the subtests (i.e., the pattern). A suite of profile
analytic procedures for decomposing observed scores into both level and pattern effects
exists for the R programming language in the profileR package (Bulut and Desjardins
2015). This package includes routines to perform criterion-related profile analysis, profile
analysis via multidimensional scaling, moderated profile analysis, profile analysis by group,
and a within-person factor model to derive score profiles. This article describes several of
these methods, illustrating their application with data sets included within the package,
as well as describing the future direction for the profileR package.

Keywords: Profile analysis, univariate, multivariate, criterion-related patterns, psychometrics,
R, profileR.

1. Introduction

A profile is a score vector that includes a person’s scores from a test consisting of multiple
subtests, subscales, or strands, measuring reading or mathematics abilities or some other
construct. Features in a test score profile, such as elevation, dispersion, and shape, bring
valuable pieces of information about the person, and collectively summarize average, variance,
and rank order of test scores within a profile (Watkins, Glutting, and Youngstrom 2005). A
test score profile conveys information about a person’s strengths and weaknesses in certain
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Figure 1: Score profiles of six individuals.

domains, skills, or abilities as measured by a battery of tests. In education, test score profiles
can be used to identify academic strengths and areas malleable to growth and can be used to
guide the development of instructional interventions or student placement. In psychological
settings, a test score profile can be used to identify which traits, or ability factors, manifest
themselves to some degree in the pattern of a person’s clinical profile on a latent construct.

The mean score of a score vector of tests (or subtests) indicates the level of a score profile
and can be interpreted as a measure of the overall strength of the profile. If the level is
subtracted from each score in a score profile, a vector of deviations containing the pattern in
the score profile is obtained (Davison, Kim, and Close 2009). Variation in profile levels of all
examinees can be interpreted as the variation among the examinees’ average profile score (i.e.,
between-person variation). Variation in the profile pattern of an examinee can be interpreted
as within-person variation in the score profile (Davison et al. 2009). Figure 1 shows est score
profiles of six individuals on three domains of a hypothetical test battery. For each person,
the three scores in the person’s profile vector are shown above the profile while each person’s
deviation scores are shown below the profile. Individual differences in the profile level can
be seen by comparing within an column for the three profiles. Comparing within rows and
across columns, the variation in the deviation scores (i.e., the pattern effect) is visible. The
first two test score profiles display a linearly decreasing pattern; the second two display a V
shape pattern; and the last two display a linearly increasing pattern.

2. Profile analysis theory

Profile analysis involves the analysis and quantification of the elevation, variation, and config-
uration of multiple test scores to identify individuals among subgroups (Cronbach and Gleser
1953; Stanton and Reynolds 2000). These test scores could arise from a single test composed
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of multiple subtests, repeated assessments in a classroom, parallel or alternate forms of a test,
or a psychological instrument(s) measuring multiple latent domains. Henceforth, we will refer
to these subtest and multiple tests generically as “variables”. The most common form of pro-
file analysis relies on a combination of multidimensional scaling and factor analytic techniques
which extract patterns in a score profile in order to average latent scores and the variance
of the profile scores (Davison, Gasser, and Ding 1996; Davison and Kuang 2000; Davison,
Kuang, and Kim 1999). The utility and validity of profile analysis for analyzing patterns of
individual test takers’ scores have been discussed extensively in the literature (e.g., Davison
et al. (1996) and Watkins et al. (2005)).

Profile analysis can be used by researchers or practitioners to identify whether two or more
groups of test takers have significantly distinct or similar score profiles. It can be used to
quantify the amount of variability associated with the level and pattern effects. It serves
as an aid in the analysis and interpretation of individual patterns. It may be conducted
across or within an individual. Furthermore, profile analysis allows for both inter- and intra-
individual interpretations of test scores from an individual and the quantification of the degree
of similarities with observed test score profiles.

There are several statistical frameworks that implement profile analysis. For example, cluster
analysis involves the partitioning of individuals into meaningful classes where both the number
of classes and the composition of the classes can be evaluated (Kaufman and Rousseeuw 2008).
This method primarily focuses on the identification of profile patterns and the classification
of individuals based on their observed score profiles. Cluster analysis may be performed in
R using the kmeans function provided in the stats package. If data are hierarchical, then the
hclust function, also provided in the stats package, should be considered. In addition, other
classification frameworks (e.g., classification trees) could be considered and can be fit using
the rpart package (Therneau, Atkinson, and Ripley 2015).

The profileR package implements several profile analytic methods described in Bulut (2013),
Davison (1994), Davison and Davenport (2002), and Davison et al. (2009) as well as other
published and unpublished techniques. The methods in the profileR package differ from the
existing classification methods in R by focusing on the quantification of variability associated
with the different components of a profile without the need for classification of individuals
into classes or groups.

The profileR package is in version 0.3 on CRAN and has been in active development for 3
years. The profileR package has long been a part of the CRAN Psychometric Task View.
Development of the package occurs at https://github.com/cddesja/profileR and all are
encouraged to contribute pull requests and file feature requests on the project’s GitHub site.

2.1. Assumptions

There are several statistical assumptions in profile analysis that are similar to the assumptions
in MANOVA. First, the test scores should have a multivariate normal distribution. This
assumption usually holds if there are more subjects in the smallest cell of the data than the
number of variables and if the sample sizes are equal across the variables. This assumption can
be assessed by checking skewness and kurtosis of the variables. If a variable is not normally
distributed marginally, then transformations (e.g., log or square-root transformations) may
be considered. In addition, univariate and multivariate outliers should be addressed prior
to performing profile analysis as they may produce either a Type I or Type II error and
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give no indication as to which type of error may have occurred in the analysis. Fortunately,
there are a multitude of packages available in R, such as the MVN (Korkmaz, Goksuluk, and
Zararsiz 2015), mvoutlier (Filzmoser and Gschwandtner 2015), and mvnormtest (Jarek 2012)
packages, that can readily and robustly assess this assumption.

The second assumption is homogeneity of the variance-covariance matrices of the test scores.
If the sample sizes are equal, this assumption is usually not an issue (French, Poulsen, and
Yu 2015). However, if sample sizes are unequal, then a test for homogeneity (e.g., Box’s M
test) may be performed. Box’s M is implemented in the biotools package (da Silva 2015)
in R and could be used. However, care must be taken as Box’s M is highly susceptible to
non-normality.

The final assumption is that the variables are linearly related. When the variables are normally
distributed and the sample size is large enough, this assumption is typically not an issue.
However, in case of any evidence against normality or unequal sample sizes, this assumption
should be assessed by constructing joint distribution plots of the test scores.

2.2. Profile plots

A profile plot is a graphical exploratory profile analytic technique for examining the relative
behavior of all variables in a multivariate data set. Profile plots can be created by plotting
the sample means for each variable for each individual, for a single group, or across multiple
groups. An individual profile plot examines the behavior of all variables but only on a subset
of the data (e.g., looking at all the test scores only for female examinees).

To have a clear and meaningful graphical summary of the variables in the data, all of the
variables must have the same units of measurement prior to plotting. For instance, if weight-
related variables are measured in different units (e.g., grams, kilograms, and pounds), they
must be placed on the same scale of measurement or transformed into a standardized score
(e.g., z scores). In a typical profile plot, the sample means for each group or scores for each
person are plotted against the measured domains. Figure 2 shows test score profiles of two
students on four content domains (reading, math, science, and social skills) on a general
aptitude test. One of the principal purposes for creating a profile plot is exploratory in order
to assess whether the profiles are parallel. In Figure 2, the lines appear to be parallel across
the four content domains. Profile analysis can be used to test whether the lines are indeed
parallel. The details of this procedure are explained in the following section.

2.3. Profile analysis with Hotelling’s T 2 test

We can formally test the null hypothesis that the univariate mean of the test scores in a
profile are equivalent using Hotelling’s T 2 test. For this test, hypothesis testing proceeds as
follows:

H0 : µ = µ0 against Ha : µ 6= µa (1)

which is equivalent to testing the following null hypothesis:

H0 :
µ1

µ0
1

=
µ2

µ0
2

= · · · = µp
µ0
p

= 1 (2)
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Figure 2: A profile plot with two persons and four content domains.

against the alternative that at least one of these ratios is not equal to 1:

Ha :
µj
µ0
j

6= 1 for at least one j ∈ {1, 2, . . . , p} (3)

Furthermore, instead of testing whether the ratios of the means over their hypothesized means
are equivalent to one, profile analysis can be used for testing the null hypothesis that all of
these ratios are equivalent. After rejecting the null hypothesis in Equation 2, a second null
hypothesis can be tested as:

H0 :
µ1

µ0
1

=
µ2

µ0
2

= · · · = µp
µ0
p

. (4)

A typical test of the profile using Hotelling’s T 2 would proceed as follows:

Step 1: The differences between successive ratios are computed. For this computation, the
ratio of the j + 1th variable over its hypothesized mean is calculated and then this ratio is
subtracted from the ratio of jth variable over its hypothesized mean:

Dij =
Xij+1

µ0
j+1

− Xij

µ0
j

, (5)

where Dij represents this difference for observation i. It should be noted that testing the
null hypothesis that all of the ratios are equal to one another is equivalent to testing the null
hypothesis that all the mean differences are equal to 0:

H0 : µD = 0. (6)
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Step 2: Hotelling’s T 2 test is then applied to test the null hypothesis that the mean of the
differences is equal to 0.

To motivate the use of the Hotelling’s T 2, consider the square of the t-statistic for testing
a hypothesis regarding a univariate mean. Under the null hypothesis, the t statistic has a
distribution with n− 1 degrees of freedom:

t =
(x̄− µ0)

s/
√
n

. (7)

Now consider squaring this test statistic as shown below:

t2 =
(x̄− µ0)2

s2/n
= n(x̄− µ0)

(
1

s2

)
(x̄− µ0) ∼ F1,n−1 (8)

If a t-distributed random variable with n−1 degrees of freedom is squared, a random variable
with an F1,n−1 distribution is obtained. The null hypothesis of H0 is rejected if t2 > F1,n−1,α,
where α typically is 0.05.

In the expression for Hotelling’s T 2, the difference between the sample mean and the µ0 in the
univariate t-test is replaced with the difference between the sample mean vector, x̄, and the
hypothesized mean vector, µ0. The sample variance is replaced by the inverse of the sample
variance-covariance matrix S, yielding the matrix form of the equation:

T 2 = n(x̄− µ0)>S−1(x̄− µ0) (9)

For large n, T 2 is approximately chi-square distributed with p degrees of freedom. If the
sample variance-covariance matrix S is replaced by the population variance-covariance matrix
Σ, then Hotelling’s T 2 becomes

T 2 = n(x̄− µ0)>Σ−1(x̄− µ0). (10)

This test is exactly chi-square distributed with p degrees of freedom. For small samples,
the chi-square approximation for T 2 does not take into account variation due to estimating
the sample variance-covariance matrix S. Therefore, better results can be obtained from the
transformation of the Hotelling’s T 2 statistic to an F statistic as shown below:

F =
n− p
p(n− 1)

T 2 ∼ Fp,n−p. (11)

Under the null hypothesis, H0 : µ = µ0, this will have a F distribution with p and n − p
degrees of freedom. The null hypothesis, H0, is rejected if the test statistic F is greater than
the critical value from the F-table with p and n−p of freedom, evaluated at level α as follows:

F > Fp,n−p,α. (12)

As for other statistical tests, it is necessary to consider the assumptions under which the
Hotelling’s T 2 test is carried out, and to assess which of those assumptions may be satisfied
for the data. There are four assumptions underlying Hotelling’s T 2 test:
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1. The data from population i is sampled from a population with mean vector µi. This
assumption essentially means that there are no subpopulations with different population
mean vectors.

2. The data from both populations have common variance-covariance matrix, Σ. This
assumption may be assessed using Bartlett’s Test by testing the null hypothesis that
Σ1 from population 1 is equal to Σ2 from population 2 against the general alternative
that these variance-covariance matrices are not equal.

3. The subjects from both populations are independently sampled. It should be noted that
this assumption does not require the variables to be independent of one another. The
results of Hotelling’s T 2 test are not generally robust to violations of this assumption.

4. Both populations should have a multivariate normal distribution. According to the
Central Limit Theorem, the sample mean vectors tend to be approximately multivariate
normally distributed regardless of the distribution of the original variables as the sample
size becomes larger. Thus, Hotelling’s T 2 test may not be adequately sensitive to
violations of this assumption.

Again, many of these assumptions can be readily assessed in R.

2.4. Profile analysis by groups

In profile analysis, multivariate data are typically collected across multiple groups, time points,
variables, etc. A profile consisting of multivariate data can be examined as lines in a profile
plot (as described earlier) representing a set of variables across time points or groups. Profile
analysis then allows us to answer three basic questions that arise from this plot:

1. Are the groups parallel between time points or variables?

2. Are the groups at equal levels across time points or variables?

3. Do the profiles exhibit flatness across time points or variables?

If the answer to any of these questions is no (i.e., that a specific null hypothesis is rejected),
then there is a significant effect. The type of effect depends on which of these null hypotheses
is rejected.

Parallelism

In profile analysis, parallelism is usually the main test of interest because the test examines
whether each segment is the same across all individuals or groups. A segment in this context
is simply the difference in the response between time points or variables. Therefore, the
segment is equivalent to the slope of the line between two points on the x-axis. Parallelism is
assessed using a multivariate test which compares the multiple segments of the profile.

A one-way MANOVA can be used to test whether there is evidence for significant non-
parallelism between the groups. The within-group variance comes from subtracting the seg-
ment matrix for each individual in the group from the group mean. The between-group
variance is obtained by subtracting each group mean segment matrix from the grand mean
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segment matrix. If the null hypothesis of parallelism is rejected, there is a significant inter-
action between group membership and the measured variables or group membership and the
time points (e.g., if a test is repeatedly administered).

Equal levels (coincident profiles)

The test of equal levels across the profiles is the most straightforward test in profile analysis.
Given that the profiles are parallel, an equal level test examines whether the profiles coincide
(i.e., there are no group differences). The test is used for determining whether one group
scores higher on average across all the variables (e.g., domains or subtests) or time points. To
evaluate this, the grand mean of all time points or variables is calculated for each group. Since
all of the time points or variables are collapsed into a group mean, this becomes a univariate
test. This is equivalent to a between-groups main effect in ANOVA. Mathematically, the test
simply measures the relative contributions of between-group and within-group variations to
the total sum of squared errors. This should look familiar, as it is the basis behind simple
ANOVA models. For i groups measured on j variables:

∑
i

∑
j

(Xij − X̄tot)
2 = np

∑
j

(X̄j − X̄tot)
2 + p

∑
i

∑
j

(Xij − X̄j)
2. (13)

where X̄tot is the grand mean, n is the sample size of each group, and p is the number of
groups. Based on this test, if the group levels are significantly different from one another,
then the null hypothesis of equal levels is rejected.

Flatness

Flatness evaluates the extent to which the profiles are flat (i.e., no differences in mean response
within any group) given the profiles are parallel. The flatness null hypothesis is that the
segments are 0 (i.e., the slope of each line segment is zero and the profile is flat). This is
evaluated independently for each group, making this a within-subjects test. If the line is not
flat (i.e., any of the segments vary significantly from 0) then there is a within groups main
effect of the time point (if the data are from repeated assessments) or a measured variable
(e.g., multiple subtests or a test measuring multiple domains). Hotelling’s T 2 test can be used
to test the difference of the zero-matrix and the segmented data for each group as follows:

T 2 = N(X̄tot)
>(Swg)−1(X̄tot) (14)

where X̄tot is the grand mean, N is the number of segments, and Swg is the within-group
variance-covariance matrix. Wilk’s λ can then be calculated from the T 2 statistic using the
following equation:

λ =
1

1 + T 2
(15)

It should be noted that if parallelism is rejected, the other two tests (equal levels and flatness)
are meaningless. In that case, flatness may be assessed within each group, and various within-
and between-group contrasts may be analyzed.
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2.5. Criterion-related profile analysis

Davison and Davenport (2002) extended their previous work in profile analysis by defining
pattern and level components as linear components of a score profile and considered whether
the profiles had any theoretical or applied validity with respect to an external, dichotomous
criterion. They termed this approach as criterion-related profile analysis.

Consider the test score data from a personality inventory presented in Table 1 (available in
profileR via IPMMc dataset).

Table 1: Inventory of Personality and Mood Manifestation. (Note: A = anxiety, H =
hypochrondriasis, S = schizophrenia, B = bipolar disorder, and C corresponds to the cri-
terion, 1 = neurotic and 0 = psychotic. Adapted from Davison and Davenport (2002)).

A H S B C

75 60 50 50 1
60 75 45 55 1
60 60 55 45 1
50 50 75 60 0
45 55 60 75 0
55 45 60 60 0

If we wanted to predict whether an individual’s personality profile is related to whether they
are neurotic or psychotic we may consider the following regression model:

CP = β0 + β1XPA + β2XPH + β3XPS + β4XPB (16)

where the βs correspond to the intercept and the regression weights and XPA . . . XPB corre-
spond to the predictor variables in Table 1. We can re-express this equation in terms of the
pattern and level effects.

CP = β0 +
∑
V

(βV − β.)(XPV −Xp.) +
∑
V

β.XP. (17)

where β0 again corresponds to the intercept, the first sum corresponds to a linear combination
of the elements in person p’s pattern vector which is defined as the difference between the
domain scores (i.e., A, H, S, and B) and the overall mean score for person p, (XPV − Xp.)
(the pattern effect), multiplied by the difference between the regression weight associated
with a domain from the personality inventory, βV , and the mean regression weight, β., and
the second summation term is a function of person p’s level, Xp., defined as 1/V

∑
V XPV ,

where V is the number of measured domains (i.e., 4 in this example), multiplied by the mean
regression weight. Further, Davison and Davenport (2002) show that this equation can be
expressed as:

CP = β0 + (V/k)Covpc + V β.Xp. (18)

where Covpc = (1/V )
∑

V (XPV −XP.)(kβV − kβ.) is the covariance between the pattern
effect and the scores in the criterion-pattern vector, xc = k(βV − β.), where k is some scalar
greater than 0 and βV and β. were defined above.
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Rewriting the multiple regression of the criterion variable onto the test scores in this fashion,
allows the calculation of the proportion of variability associated with the level and pattern
effects, respectively, and allows for the testing of several hypotheses which are described later.

2.6. Profile analysis via multidimensional scaling (PAMS)

One of the exploratory techniques that has been used to identify patterns in test score pro-
files is profile analysis via multidimensional scaling (PAMS) (Davison 1994). This approach
examines the major profile patterns by estimating latent profiles. The PAMS model is more
advantageous than other profile analytic methods because of the following reasons: 1) it can
be used with any sample size; 2) unlike typical factor analysis, it takes the person component
into consideration when estimating latent profiles; 3) it creates continuous person profile in-
dices, rather than discrete categories, that represent the extent that people possess a mixture
of the various measured abilities/constructs/domains; and 4) the latent person profile indices
can be used either as predictors or criterion variables to describe the relationships between
individual profile patterns and other variables such as treatment outcomes (Ding 2001).

In the PAMS analysis, latent person profiles and person profile indices corresponding to these
profiles are estimated simultaneously. Each person profile index represents the degree of
similarity between a person’s observed profile and each of their estimated latent profiles. A
Euclidean space is created to indicate the distance between each data point and the continuous
dimensions (i.e., latent profile indices). The PAMS model can be written as:

mij =

K∑
k=1

wikxjk + ci + eij , (19)

where mij is an observed score of person i on variable j (j = 1, . . . , J), wik is the person profile
index that indicates the distance between the observed profile of person i and the estimated
latent profile k, xjk is the scale value parameter that equals the scores of variables in latent
profile k (k = 1, . . . ,K), ci is the profile level (i.e., the average of J scores for person i), and eij
is an error term representing measurement error and systematic deviations from the model.
As described above, wik, xjk, ci, and eji define a latent profile pattern k that corresponds
to a multidimensional scaling dimension (Ding 2001). PAMS first finds the number of latent
profile dimensions (K), then estimates the scale value parameters (xjk) for each dimension,
and finally computes the person profile index (wik), and a measure of overall fit for the model.

The scale value parameters (xjk) represent a latent profile k with j scores. These parameters
indicate deviations from the profile level. The person profile index wik indicates how closely
a person reflects the latent profile k defined by the xjk values. The product of xjk and wik
leads to the profile patterns of persons that can be described as additional information above
and beyond what the profile level (ci) explains for each person. Unlike a typical ANOVA
model, the analysis of a group of persons on a set of variables via profile analysis provides
information that is not only based on the level but is also based on the pattern.

In order to estimate the parameters defined in Equation 19, PAMS requires several assump-
tions and restrictions (Davison 1996). First, the mean of the scores in each latent profile
should equal zero (i.e., x̄jk = 0 for each k). Therefore, latent profiles can reproduce observed
profile patterns, but not the level of the observed profiles which is reproduced by the level
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parameters. Second, the number of dimensions or latent profiles is user-defined based on
theory, previous research, or statistical methods such as choosing the solution with either a
badness-of-fit index of .05 or less or the smallest badness of fit index (Ding 2001).

Under these assumptions, the parameters in the PAMS model can be estimated by computing
the squared Euclidean distance matrix for all possible pairs of variables and one can then use
this distance matrix to perform multidimensional scaling analysis (which is available in many
major statistical programs). For instance, the cmdscale function in R can analyze such data.
This analysis produces one dimension for each latent profile k, in which the scale value, xjk,
for variable j is the estimate of the score for that variable in latent profile (Davison 1996;
Ding 2001).

2.7. Profile reliability

The aim of a test battery is to obtain reliable subscores that can be used to evaluate examinees’
skills for diagnostic, classification, or selection purposes. The higher the reliability of the
subscores, the more precisely examinees are able to be evaluated based on their test scores. If
the purpose of an assessment is to use each subscore to compare individuals, then traditional
reliability indices such as coefficient alpha (Cronbach 1951) and Kuder-Richardson 20 (Kuder
and Richardson 1937) can be used.

Examining an individual’s strengths and weaknesses from pattern scores has brought some
uncertainties due to lack of evidence for subscore reliability and validity (Watkins et al. 2005).
Profile reliability is conceived of as a multivariate analog to the traditional definition of uni-
variate reliability as the ratio of the variance of true scores to the variance of observed scores.
In order to estimate the precision of unique patterns of test score profiles, Bulut (2013) pro-
posed an approach for estimating the reliability of individual differences in test score profiles
based upon the total variation, the variation among individuals, and the variation among
the subscores. This approach is mainly an extension of canonical test reliability originally
proposed by Conger and Lipshitz (1973).

Conger and Lipshitz (1973) defined the observed difference vector as
−→
X i −

−→
X i.; where

−→
X i is

the vector of scores for person i and
−→
X i. is the average of person i’s scores. Using the observed

and true difference vectors, canonical reliability can be written for any distance function as:

ρp =
(
−→
T i −

−→
T i.)

>A(
−→
T i −

−→
T i.)

(
−→
X i −

−→
X i.)>A(

−→
X i −

−→
X i.)

, (20)

where (
−→
T i −

−→
T i.) is the true difference vector and A is a square matrix used for weighting

the reliability. The square matrix A can either be a correlation matrix of the subscores on
the test or an identity matrix if weighting is not desired (Conger and Lipshitz 1973).

Using the canonical reliability framework defined by Conger and Lipshitz (1973), Bulut (2013)
presented a profile reliability approach that made use of both the vector of difference scores
and the vector of the average score in a test score profile. For a given person, the level
represents the mean of the subscores in the profile which can be expressed as

X̄p =
1

v

∑
v
Xpv, (21)
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where Xpv is the score of person p (p = 1, . . . , P ) on domain v (v = 1, . . . , V ) and X̄p is the
average scores from V domains for person p. When Equation 21 is applied to each person in
the data, a level vector that consists of P level scores is obtained.

The pattern of a test score profile is a vector of the score differences (i.e., ipsatized scores)
between each score and the mean of the scores for a given person. A pattern vector of a test
score profile can be shown as (Xp1 − X̄p), . . . , (Xpv − X̄p); where Xpv is the score of person
p on test v and X̄p is the mean of the subscores that person p obtained from V tests. Using
the level and pattern components defined above, the total score variation (T ) of a test score
profile can be defined as the sum of the variances for the V tests:

T = B +W, (22)

where the total variation (T ) is the sum of two orthogonal components: between-person
variation (B) and within-person variation (W ) (Davison et al. 2009). The B corresponds to
the level effect and W is corresponds to the pattern effect. Essentially, B is the between-person
variation due to individual differences in profile level; and W is the within-person variation
due to individual differences in profile patterns (Bulut 2013; Davison et al. 2009).

To define reliability based on between-person variation and within-person variation, the rela-
tionship between observed and true test scores in the classical test theory (CTT) framework
can be used (Bulut 2013). In CTT, reliability is defined as the proportion of observed score
variation that is attributable to true scores. That is, the ratio of true score variation to
observed score variation leads to a reliability index ranging from 0 to 1 where higher values
indicate higher reliability.

If the total observed score variation is defined as the sum of the variances for V subtests, then
the observed total level variance becomes B = V ∗ σ2

X̄p
, where B is the observed total level

variance and V is the number of domains, subtests, variables, etc. Similarly, the true total
level variance based on the true level value becomes BT = V ∗ σ2

T̄p
; where σ2

T̄p
is the variance

of true level scores and BT is the total true level variance. Using the observed and true level
variances, between-person reliability (ρB) can be defined as the ratio of true level variation
to observed level variation:

ρB =
BT
B
. (23)

Within-person reliability can be defined in a similar fashion. In a test score profile, the total
observed pattern variance is:

W =
V∑
v=1

 1

P

P∑
p=1

(Xpv − X̄p)
2

 , (24)

where W represents the total observed within-person variation due to individual differences
in the subscores. Similarly, the total true pattern variance can be shown as:

WT =

V∑
v=1

 1

P

P∑
p=1

(Tpv − T̄p)2

 , (25)
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where WT is the total true within-person variation in the test score profile. By using the same
approach with the ratio of observed and true scores, within-person reliability can be defined
as the ratio of true pattern variation to observed pattern variation as follows:

ρB =
WT

W
. (26)

The within-person reliability coefficient can be interpreted as the proportion of variation in
observed profile patterns that can be attributed to true pattern variation in the test score
profile. Within-person reliability can also be interpreted as a weighted average of the within-
person reliability for each subtest and as a weighted average of the person profile reliabilities.

As explained above, within-person and between-person reliability coefficients are based on
the relationship between true and observed subscores in a test score profile. It is assumed
in CTT that true scores are unknown and observed scores are the approximations of true
scores. When there are parallel forms of a test, the covariance of the two forms provides an
estimate of the true score variation. If true scores from two tests are perfectly correlated (i.e.,
congeneric) and equally reliable, then the correlation between the observed scores provides
an estimate of the proportion of true score variance to observed score variance.

After obtaining an estimate of the covariance between every possible pair of parallel tests
v and v′ , the true score variation becomes equal to the average of all possible covariances
because the tests v and v′ are assumed to have equal variances. Based on the test scores from
parallel test forms, within-person and between-person reliability coefficients can be formulated
as follows (Bulut 2013):

ρ̂W =

∑P
p=1

(∑V
v=1(Xpv − X̄p)(Xpv′ − X̄p′)

)
∑P

p=1(
∑V

v=1(Xpv − X̄p)2
, (27)

and

ρ̂B =
σ̂(X̄pX̄p′)√
σ̂2(X̄p)σ̂2(X̄p′)

=
σ̄(X̄pX̄p′)

σ̂2(X̄p)
. (28)

Please note that the ′ refers to a parallel form of a test in Equations 27 and 28 and not a
transpose. The within-person reliability coefficient is a weighted average of within-person
reliability coefficients from all subtests. Without averaging over the subtests, within-person
reliability coefficients can also be computed to evaluate reliability for each subtest (for more
details, see Bulut (2013)).

3. Principal functions in the profileR package

The following is a brief description of the principal functions in the profileR package that
implements the aforementioned analyses and tests.

3.1. Profile analysis for one sample using Hotelling’s T2

The paos function implements profile analysis for a single sample using Hotelling’s T2 test
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and tests the two hypotheses described earlier. A call to the paos function proceeds as follows:

paos(data, scale = TRUE)

where data represents a data frame with persons (rows) with multiple variables (columns).
The argument of scale asks whether variables should be standardized (i.e., divided by their
respective standard deviations). This is a necessary step if the variables are not on the same
scale. The function returns a summary table that prints the results of the two hypothesis
tests.

3.2. Testing parallel, coincidental, and level profiles by groups

The pbg function (i.e., profile by group) implements three tests that correspond to testing
whether the profiles are parallel, coincidental, and level across two groups defined by the
grouping variable. The pbg function accepts the following arguments:

pbg(x, y, original.names = FALSE, profile.plot = FALSE, ...)

where x is a data frame with multiple subscores and y is a grouping variable which can be
either a character or numerical variable or a factor. The original.names asks whether the
original column names in the data frame should be used. If profile.plot = TRUE, then a
profile plot of scores for the groups is drawn.

The pbg function returns a summary of the means of the observed variables (e.g., subscores
on the tests or domains) by the grouping variable, a correlation table among the variables by
the grouping variable, and the results of F-tests for testing parallel, coincidental, and level
profiles across two groups.

3.3. Criterion-related profile analysis

Criterion-related profile analysis in the profileR package is performed using the cpa function.
The cpa function utilizes the same formula syntax as the familiar lm and glm functions but
utilizes slightly different arguments. The full default call to cpa is:

cpa(formula, data, k = 100, na.action = "na.fail", family = "gaussian",

weights = NULL)

where formula is an object of class “formula” (i.e., of the format Y ~ X1 + X2); data is a
data frame, list, or matrix containing the variables; k is the scalar constant which must be
greater than 0; na.action is how the missing data should be handled; family can be any
family defined in the stats package; and finally weights, an optional vector of weights to be
used in the regression.

The cpa function returns an object of S3 class critpat which has the following generic
functions defined: print, summary, plot, and anova.

A cross-validation technique for criterion-related profile analysis, described in Davison and
Davenport (2002), can be conducted using the pcv function which takes the following argu-
ments:
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pcv(formula, data, seed = NULL, na.action = "na.fail", family = "gaussian",

weights = NULL)

where formula is an object of class “formula” ; data is a data frame, list, or matrix containing
the variables; na.action is how the missing data should be handled; family can be any family
defined in the stats package; and finally weights, an optional vector of weights to be used in
the regression. In addition, a seed, for reproducibility, may be set using the seed argument.

3.4. Profile analysis via multidimensional scaling

The pams function implements profile analysis via multidimensional scaling as described by
Davison, Davenport, and Bielinski (1995) and Davenport, Ding, and Davison (1995). The
function computes similarity/dissimilarity indices based on Euclidean distances between the
scores provided in the data, and then extracts dimensional coordinates for each score using
multidimensional scaling. A weight matrix, level parameters, and fit measures are computed
for each subject in the data. The pams function takes the following arguments:

pams(x, dim)

where x is a data frame in which rows represent individuals and columns represent variables,
and dim is the desired number of dimensions to be extracted from the data. The pams function
returns a matrix that provides prototypical profiles of dimensions extracted from the data and
a weight matrix that includes the subject correspondence weights for all dimensions, level
parameters, and the subject fit measure which is the proportion of variance in the subject’s
actual profiles accounted for by the prototypical profiles.

3.5. Profile reliability

The pr function uses subscores from two parallel test forms and computes profile reliability
coefficients as described in Bulut (2013). A typical call to pr involves:

pr(form1, form2)

where form1 and form2 are matrices or data frames that include two or more subscores for each
examinee. Rows represent individuals and columns represent subscores. Both forms should
have the same individuals and subscores in identical order. Using the parallel test forms or
multiple administration of the same test form, within-person and between-person reliability
coefficients are computed. Within-person reliability is an indicator of variability between the
subscores of examinees and between-person reliability is an indicator of the average subscore
variation among all examinees.

4. Examples

4.1. Profile analysis of nutrient data with Hotelling’s T2

In this example, we analyze the nutrient data to test the two hypotheses that the ratio
of the variables are equal to 1 and that they are all equivalent, where failure to reject the
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former renders the second hypothesis unnecessary. The nutrient data come from a study
of women’s nutrition commissioned by the United States Department of Agriculture (USDA)
in 1985. Nutrient intake was measured on a random sample of 737 women aged 25-50 years.
Five nutrients were measured: calcium, iron, protein, vitamin A and vitamin C. The first six
rows of the nutrient data are shown below.

R> data("nutrient", package = "profileR")

R> head(nutrient)

calcium iron protein a c

1 522.29 10.188 42.561 349.13 54.141

2 343.32 4.113 67.793 266.99 24.839

3 858.26 13.741 59.933 667.90 155.455

4 575.98 13.245 42.215 792.23 224.688

5 1927.50 18.919 111.316 740.27 80.961

6 607.58 6.800 45.785 165.68 13.050

Using the nutrient data, we want to test whether the ratios of these variables are equal to
1 or each other in the sample. Because the variables in the data are not on the same scale,
scale=TRUE should be used to get the variables standardized. The following output shows
the results of two hypothesis tests:

R> paos(nutrient, scale = TRUE)

Profile Analysis for One Sample with Hotelling's T-Square:

T-Squared F df1 df2 p-value

Ho: Ratios of the means over Mu0=1 1392.347 276.9559 5 732 0

Ho: All of the ratios are equal 1278.073 318.2159 4 733 0

to each other

The results indicate that both hypotheses should be rejected for the nutrient data. The
first test rejects the null hypothesis that the ratio of the mean intake over the recommended
intake is equal to 1 each nutrients. The second test rejects the null hypothesis that the ratio
of the mean intake over the recommended intake is the same for each nutrients (i.e., that the
difference is 0).

4.2. Testing parallel, coincidental, and level profiles in the Spouse data

The spouse data set includes four rating scale items where 60 spouses (30 husbands and 30
wives) rate each other. The pbg function can be used to test whether the profiles of husbands
and wives are parallel, coincidental, or level.

R> data("spouse", package = "profileR")

R> head(spouse)



Journal of Statistical Software 17

item1 item2 item3 item4 spouse

1 2 3 5 5 Husband

2 5 5 4 4 Husband

3 4 5 5 5 Husband

4 4 3 4 4 Husband

5 3 3 5 5 Husband

6 3 3 4 5 Husband

The first four columns are the survey items and the last column in the data is the group
variable. We will run pbg on this data set and store it in an object called mod.

R> mod <- pbg(spouse[, 1:4], spouse[, 5], labels = FALSE,

profile.plot = TRUE)

R> print(mod)

Data Summary:

Husband Wife

v1 3.900000 3.833333

v2 3.966667 4.100000

v3 4.333333 4.633333

v4 4.400000 4.533333

The print function displays the average scores on the items for the husband and wife groups.
It can be seen that the means of the rating scale items are quite similar between the husbands
and wives. The summary function prints the findings of the three hypotheses corresponding
to whether the profiles are parallel, coincidental, or level. The output shows that assuming
α = .05, the first and third hypotheses were not rejected; however the second hypothesis was
rejected. The results suggest that the profiles of husbands and wives are parallel and level,
but not coincidental.

R> summary(mod)

Call:

pbg(x = spouse[, 1:4], y = spouse[, 5], profile.plot = TRUE,

labels = FALSE)

Hypothesis Tests:

F df1 df2 p-value

Ho: Profiles are parallel 8.016171 3 56 0.0625594505

Ho: Profiles are coincidental 1.532770 1 58 0.2206853266

Ho: Profiles are level 24.820709 3 57 0.0001554491

The pbg function returns a profile plot of the husbands’ and wives’ profiles because profile.plot
= TRUE. In Figure 3, the lines appear to be parallel across the four items although the direction
of the mean difference in the first question is different from the other three questions.
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Figure 3: Profile plot of husbands and wives on the four rating scale items.

In the following example, we create a pseudo data set where two groups (i.e., males and
females) have different profiles on three continuous variables. For both groups, the variables
have a multivariate normal distribution and the correlations among the variables are fixed to
ρ = .3. Although the variables have the same variance (σ2 = 1) for both groups, the means
of the variables for the male group are different from the female group. We use the mvrnorm

function from the MASS package to simulate pseudo data for this example.

R> library("MASS")

R> Sigma <- matrix(c(1, 0.3, 0.3,

0.3, 1, 0.3,

0.3, 0.3, 1), 3, 3)

R> set.seed(2015)

R> male <- mvrnorm(n = 500, rep(0, 3), Sigma)

R> female <- mvrnorm(n = 500, c(0.1, 0.2, 0.3), Sigma)

R> data <- as.data.frame(rbind(male, female))

R> gender <- c(rep("Male", 500), rep("Female", 500))

R> data <- cbind(data, gender)

The resulting data set has 1000 rows, three columns of variables for the profiles, and an
additional column of the group variable (i.e., gender). The first three rows of the simulated
data set are:

R> head(data,3)

V1 V2 V3 gender

1 0.7956448 1.2150803 1.3751826 Male

2 0.6166696 0.9726083 -0.4316263 Male

3 1.7023255 -0.1173691 0.7960128 Male
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If we use the pbg function to assess the profiles of the male and female groups, we obtain the
following results:

R> mod2 <- pbg(data[, 1:3], data[, 4], profile.plot = TRUE, labels = FALSE)

R> print(mod2)

Data Summary:

Female Male

v1 0.05149379 -0.04385813

v2 0.18629128 0.07732983

v3 0.29538716 0.03379842

R> summary(mod2)

Call:

pbg(x = data[, 1:3], y = data[, 4], profile.plot = TRUE, labels = FALSE)

Hypothesis Tests:

F df1 df2 p-value

Ho: Profiles are parallel 6.680799 2 997 3.593899e-02

Ho: Profiles are coincidental 11.654924 1 998 6.660775e-04

Ho: Profiles are level 20.608530 2 998 3.757353e-05

The results show that all three null hypotheses were rejected in this example. Figure 4 shows
the difference in the profiles of male and female groups based on the three variables and it is
clearly visible that the profiles are indeed not parallel.

Figure 4: Profile plot of male and females from the pseudo data set.
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4.3. Criterion-related profile analysis and cross-validation using the IPMMc
data set

A typical call to the cpa function using the data in Table 1, available in the IPMMc data set,
would involve:

R> data("IPMMc", package = "profileR")

R> mod <- cpa(R ~ A + H + S + B, data = IPMMc)

The cpa function will print the following by default:

R> print(mod)

Call:

cpa(formula = R ~ A + H + S + B, data = IPMMc)

Coefficients

Call: glm(formula = formula, family = family, data = data,

na.action = na.action)

Coefficients:

(Intercept) A H S B

0.500000 0.009231 0.023077 -0.009231 -0.023077

Degrees of Freedom: 5 Total (i.e., Null); 1 Residual

Null Deviance: 1.5

Residual Deviance: 0.04615 AIC: -0.1779

This output should look familiar to users of lm and glm. This output corresponds to estimates
of the parameters defined in Equation 16 and measures of model fit. Hypothesis testing can
then proceed by a call to the anova function.

R> anova(mod)

Call:

cpa(formula = R ~ A + H + S + B, data = IPMMc)

Analysis of Variance Table

df1 df2 F value Pr(>F)

R2.full = 0 4 1 7.87500e+00 0.2604188

R2.pat = 0 3 1 1.05000e+01 0.2221903

R2.lvl = 0 1 1 0.00000e+00 1.0000000

R2.full = R2.lvl 3 1 1.05000e+01 0.2221903

R2.full = R2.pat 1 1 -7.21645e-15 1.0000000
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This output corresponds to testing that the proportion of variability in the criterion variable
explained by the full model is zero; that the proportion of variability in the criterion variable
explained by the pattern effect is zero; that the proportion of variability in the criterion
variable explained by the level effect is zero; that the proportion of variability in the criterion
variable explained by by the full model is equal to the proportion explained by the level effect;
and finally that the proportion of variability in the criterion variable explained by the full
model is equal to the proportion explained by the pattern effect. These hypothesis tests are
summarized in Table 2.

We see in the example that none of the hypothesis tests were rejected and we can conclude
that the proportion of variability in the criterion variable that is explained by the full model
is not significantly different than 0. Do note that the strange F-values and small degrees of
freedom are a function of the sample size of the data set.

Table 2: Hypothesis tested reported from anova(mod).

R output Null hypothesis test

R2.full = 0 H0 : R2
Full = 0

R2.pat = 0 H0 : R2
Pattern = 0

R2.lvl = 0 H0 : R2
Level = 0

R2.full = R2.lvl H0 : R2
Full = R2

Level

R2.full = R2.pat H0 : R2
Full = R2

Pattern

Finally, the proportion of variability in the criterion variable explained by the full model,
pattern effect, and level effect can be extracted using the summary function. The summary

function also provides the level and the pattern components.

R> summary(mod)

Call:

cpa(formula = R ~ A + H + S + B, data = IPMMc)

Relability

R2

Full Model 0.969231

Pattern 0.969231

Level 0.000000

Level Component

1 2 3 4 5 6

58.75 58.75 55.00 58.75 58.75 55.00
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Pattern Component

A H S B

1 16.25 1.25 -8.75 -8.75

2 1.25 16.25 -13.75 -3.75

3 5.00 5.00 0.00 -10.00

4 -8.75 -8.75 16.25 1.25

5 -13.75 -3.75 1.25 16.25

6 0.00 -10.00 5.00 5.00

Other useful information from the criterion-related profile analysis is stored in the critpat

object and can be easily extracted. The contents of this object can be examined by running
str(mod).

To demonstrate the cross-validation technique, we’ll generate a data set sufficiently large
enough to do cross-validation, that is very loosely based on the IPMMc data set.

R> set.seed(13251)

R> dv <- rbinom(n = 100, size = 1, prob = mean(IPMMc$R))

R> A <- rnorm(n = 100, mean = mean(IPMMc$A))

R> H <- rnorm(n = 100, mean = mean(IPMMc$H))

R> S <- rnorm(n = 100, mean = mean(IPMMc$S))

R> B <- rnorm(n = 100, mean = mean(IPMMc$B))

R> dat0 <- data.frame(dv, A, H, S, B)

To perform cross-validation, we will call the pcv function and save the output in cv.model

(which is also a critpat object). The pcv uses the same syntax as a call to glm does and
regression coefficients can be obtained through printing cv.model. It is typically useful to
set the seed when doing cross-validation to have reproducible findings and this we will set
through the seed argument.

R> cv.model <- pcv(dv ~ A + H + S + B, data = dat0, seed = 4135)

R> cv.model

Call:

pcv(formula = dv ~ A + H + S + B, data = dat0, seed = 4135)

Coefficients

$`Random Sample 1`
A H S B

-0.03361991 0.04856235 -0.12887236 -0.01101022

$`Random Sample 2`
A H S B

0.029186708 -0.008203231 -0.029430924 -0.029546606

The proportion of variability associated with each effect can be obtained using summary and
the hypothesis tests (described in Table 2) can be obtained by using the anova method on
the cv.model object.
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R> summary(cv.model)

Call:

pcv(formula = dv ~ A + H + S + B, data = dat0, seed = 4135)

Relability

$`R2.full = 0`
Random Sample 1 Random Sample 2

0.015496 0.005036

$`R2.pat = 0`
Random Sample 1 Random Sample 2

0.000088 0.001244

$`R2.lvl = 0`
Random Sample 1 Random Sample 2

0.015489 0.004141

$`R2.full = R2.lvl`
Random Sample 1 Random Sample 2

0.000088 0.001244

$`R2.full = R2.pat`
Random Sample 1 Random Sample 2

0.015489 0.004141

R> anova(cv.model)

Call:

pcv(formula = dv ~ A + H + S + B, data = dat0, seed = 4135)

Analysis of Variance Table

$`R2.full = 0`
R2 df1 df2 F value Pr(>F)

Random Sample 1 0.015496 1 47 0.739768 0.394102

Random Sample 2 0.005036 1 47 0.237895 0.627998

$`R2.pat = 0`
R2 df1 df2 F value Pr(>F)

Random Sample 1 0.000088 1 48 0.004206 0.948561

Random Sample 2 0.001244 1 48 0.059785 0.807878

$`R2.lvl = 0`
R2 df1 df2 F value Pr(>F)

Random Sample 1 0.015489 1 48 0.755175 0.389167

Random Sample 2 0.004141 1 48 0.199594 0.657058
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$`R2.full = R2.lvl`
R2 F value df1 df2 Pr(>F)

Random Sample 1 0.000088 0.000327 1 48 0.98564

Random Sample 2 0.001244 0.043183 1 48 0.83626

$`R2.full = R2.pat`
R2 df1 df2 F value Pr(>F)

Random Sample 1 0.015489 1 48 0.751236 0.390397

Random Sample 2 0.004141 1 48 0.182944 0.670768

As with cpa, additional information can be examined and extracted using str(cv.model).

4.4. An example of profile analysis via multidimensional scaling

To demonstrate the use of the pams function, we will use a data set which contains score
profiles of six respondents to a hypothetical personality scale. Each score profile consists of
three scores from the neurotic, psychotic, and character disorder scales. The data include
three types of profile patterns: Linearly increasing, inverted V, and linearly decreasing. To
preview the PS data:

R> data("PS, package = "profileR"")

R> head(PS)

Person Neu Psy CD

1 1 60 70 80

2 2 30 40 50

3 3 65 80 65

4 4 35 50 35

5 5 80 70 60

6 6 50 40 30

The first column in the PS data is a person ID variable, and the remaining columns are scores
from the neurotic, psychotic, and character disorder scales. Assuming that there are two
latent dimensions that can be extracted from the PS data, pams is called by:

R> result <- pams(PS[, 2:4], dim = 2)

R> print(result)
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$weights.matrix

weight1 weight2 level R.sq

[1,] 1.5 0.00000 70 1

[2,] 1.5 0.00000 40 1

[3,] 0.0 2.12132 70 1

[4,] 0.0 2.12132 40 1

[5,] -1.5 0.00000 70 1

[6,] -1.5 0.00000 40 1

$dimensional.configuration

Dimension1 Dimension2

Neu -6.666667 -2.357023

Psy 0.000000 4.714045

CD 6.666667 -2.357023

The first part of the output shows a weight matrix that includes the subject correspondence
weights for all dimensions, level parameters, and the subject fit measure which is the propor-
tion of variance in the subject’s actual profiles accounted for by the prototypical profiles. The
second part of the output shows a matrix that provides prototypical profiles of two latent
dimensions extracted from the data.

4.5. Profile reliability using the EEGS data set

The pr function can be used to examine profile reliability of the subscores in the EEGS data set.
The EEGS data set includes three subtests for examinees: quantitative 1 (Q1), quantitative
2 (Q2), and verbal (V). For each subtest, there are two subscores that come from parallel
forms. To activate the EEGS data set and preview the first six rows of the data.

R> data("EEGS", package = "profileR")

R> head(EEGS)

Form1_Q1 Form2_Q1 Form1_Q2 Form2_Q2 Form1_V Form2_V

[1,] 2 0 2 0 0 0

[2,] 4 9 0 0 3 4

[3,] 4 3 8 6 27 27

[4,] 2 6 0 0 26 29

[5,] 7 4 3 2 8 6

[6,] 18 16 1 3 14 15

The returning output shows two columns for each subtest. These columns represent sub-
scores from parallel forms from each subtest. To compute between-person and within-person
subscore reliability of the three subscores in EEGS, the pr function can be called as:

R> result <- pr(EEGS[, c(1, 3, 5)], EEGS[, c(2, 4, 6)])

The print function returns the following output:
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R> print(result)

Subscore Reliability Estimates:

Estimate

Level 0.9245548

Pattern 0.9338338

Overall 0.9308374

In the output, level refers to between-person reliability, pattern refers to within-person re-
liability, and overall refers to the total profile reliability which is the weighted average of
between-person and within-person reliability coefficients. In this example, the three subtests
of EEGS indicate high levels of between-person and within-person reliability. plot(result)

returns a scatter plot of the level values from the two parallel forms each with three subtests.

5. Discussion

The profileR package has been developed to provide researchers and partitioners interested
in profile analysis with an intuitive syntax and framework for the R programming language.
Currently there is no specialized software for profile analysis, although popular matrix lan-
guages — such as PROC IML in the SAS software (SAS Institute Inc. 2011) and the Matrix
Command Language in SPSS (IBM Corp. 2013) — can be used for programming a profile
analysis procedure. Because profile analysis is a multivariate statistical technique, software
programs capable of running multivariate analyses can be also used for this purpose. How-
ever, such an approach would result in using several steps of data analysis across multiple
software programs. For instance, the pams function in the profileR package performs profile
analysis and multidimensional scaling together, whereas the same procedure would require
creating a dissimilarity matrix between variables using a matrix computation procedure and
analyzing this matrix using either the PROC MDS function in SAS, or the mds function in R, or
the ALSCAL function in SPSS. Similarly, the cpa and pbg functions are capable of testing mul-
tiple hypotheses simultaneously, without requiring the user to implement separate analyses
to reach the same outcome.

In addition to the functions described above, the profileR package includes functions for a
within-person factor model to derive a score profile (Davison et al. 2009) (using the engine
from the lavaan package (Rosseel, Oberski, Byrnes, Vanbrabant, Savalei, Merkle, Hallquist,
Rhemtulla, Katsikatsou, and Barendse 2015)) and experimental support for moderated pro-
file analysis (based on unpublished work by Davison and Davenport). In future versions of
profileR, we intend to expand the package to allow for multi-level profile analysis (i.e., cre-
ating score profiles for test takers and schools while controlling for the inherent nesting of
students within classrooms and testing these effects seperately), Bayesian profile analysis, and
the addition of increased graphical capabilities using the DiagrammeR package (Sveidqvist,
Bostock, Pettitt, Daines, Kashcha, and Iannone 2015). We welcome all contributions to the
profileR package and would like to encourage the community to open feature requests on the
GitHub website to help steer the direction of profileR.
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