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Abstract

A wealth of open source information is available that points to building usage including floor area of
building size and likely occupancy. In the case of residential structures, census data provides a number of
attributes including two values important to interior density estimation: household size (hhs) and area.
If a national census revealed the raw data or provided a full uncensored contingency table (hhs x area),
computing interior density as people/area would be straightforward. However, agencies rarely report
this contingency table. Rather hhs and area are often decoupled and reported as separate univariate
frequency tables, average values, or a combination of the two. In addition, the decoupled or contingency
tables provided are typically left (<, ≤), right (>, ≥), and interval (-) censored. This type of information
becomes problematic in estimating interior residential occupancy for numerous reasons. How can the
people/area ratio be calculated when no affiliation between the variables exist? If a census reports an hhs
average of 5.3, then how many houses are there with 1 person, 2 people,.., 10 people? If a census reports
that there are 100 houses in an area of 26-50 square meters, then how many houses are in 26, 27,...,
50 square meters? The challenge therefore is to infer the people/area ratio when given decoupled and
summarized data. The statistical package revengc was designed to reverse engineer censored, decou-
pled census data into a likely hhs x area uncensored contingency table for estimating interior residential
occupancy.

Keywords: census, residential, building, occupancy, bivariate Poisson distribution, censored, decoupled,
contingency table

1 Introduction

The interest in open source population density data continues to grow. Modeled population densities can
be implemented to associate buildings with sociocultural activities, to distinguish between daytime and
nighttime occupancy levels, to approximate natural hazard loss analytics, and to minimize building energy
consumption [15]. The main desire of most population studies is to determine the ratio of people/area for
a facility (museums, hospitals, schools, etc.). This statistical approach focuses on residential information
containing specific types of uncertainty. The concentrate on residential data was chosen primarily because
it is the most dominant population data in the open source environment. It encompasses a wide spectrum
including urban, rural, multi-family, refugee Settlements, tents, and etc. [15]. Furthermore, residential data
is recognized as being notorious for reporting key variables used in interior density estimation. A majority
of the time household size (hhs) and area are found in any national census.

The issue occurs when national census authors may have privy too but normally do not reveal the clear
information of people/area. Reoccurring problems are decoupled variables (e.g. separate averages and fre-
quency tables) and numeric censoring (e.g. area is between 50-100 m2 or hhs is listed as > 8 people).
Decoupled variables provides no availability for a cross tabulation between hhs and area (people/area) while
censoring obscures the true underlying values. If a census reports an hhs average of 5.3, then we know
that average was calculated based off some houses being above and below 5.3. However, we don't know the
exact amount of houses that are above or below 5.3. Censoring distorts data the same way. If a census
reports that there are 100 houses in an area of 26-50 m2, then we don't know how many houses are in 26m2,
27m2,.., 50m2. This decoupled and summarized information is misleading, thus this model reverse engineers
censored, decoupled census data into a likely hhs x area contingency table that more accurately describes
interior residential occupancy. The following summarizes the four scenarios that can be reverse engineered
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by the revengc package.

Case I: Averages for both hhs and area
Case II: Decoupled hhs and area frequency tables
Case III: Combination of hhs (area) average and area (hhs) frequency table
Case IV: hhs x area contingency table (censored)

2 Method

The reverse engineering techniques relies on the Poisson and bivariate Poisson distribution. For the decoupled
information (averages, tables, or combination of the two), separate Poisson distributions are calculated for hhs
and area. These distributions are generated with a λ that is found with two possibilities. A given average will
represent the λ value while a frequency table can use a custom maximum likelihood function to estimate the
needed λ value. The separate Poisson distributions will then be used to represent the marginals in Iterative
Proportional Fitting (IPF). IPF is a generalized method that estimates cross tabulations between decoupled
variables. For the case of the censored contingency table, another customized maximum likelihood function
will be implemented to approximate λ3, which subsequently provides the necessary λ1 and λ2 parameters.
The estimated λ1, λ2, and λ3 values can then be used to generate cross tabulations with a bivariate Poisson
distribution. For all cases, the model outputs an uncensored cross tabulation of probabilities (contingency
table) relating hhs and area. The final contingency table is also subject to right shifts and right truncation
for representation of lower and upper bounds existing in both variables. Using actual census reports, we
present a methodology workflow of all cases in section 4.6.

2.1 Poisson

The Poisson distribution has interesting and convenient properties that allow a common solution across all
case studies considered here. Jennings [5] showed that the hhs size follows a univariate Poisson distribution
across a number of countries. However, the area variable is more problematic, and no formal peer reviewed
area studies available seem equivalent to the hhs analysis by Jennings. A review of open source information
suggests that area varies. For example, Klaiber [8] reports a lognormal “appearance” to area data. Some
even show data that come close to a normal distribution, such as Shuman [13]. Also, Ohnishi [10] unusually
fit house size to an exponential distribution in Tokyo in an unpublished work. Within this context, there
is a practical engineering solution to the problem. Specifically it was decided to model area as a Poisson
distribution while fully aware that area is a continuous property. It is convenient to model it as a Poisson
distribution of “counted” units of measure for several reasons. First, census data rarely reports area with
precision greater than simple integer values for any unit of measure. Considering this a practical matter, it
is therefore not unreasonable to think of these data as unit of measure “counts.” It is also known that for
large values of the Poisson parameter (e.g. λ > 20) the Poisson and the Normal distribution are roughly
equivalent. If the underlying continuous distribution for area is Gaussian, the Poisson solution here will
still provide a very close approximation. Furthermore, the Poisson distribution has the convenient property
that it's only parameter (λ) is equal to the mean of the count data, a commonly encountered value in the
open source. This allows availability to reverse engineer Cases I, II, III under a common and consistent
statistical model. Finally, by treating square meters as integer counts, the results given by Kawamura [7]
can be utilized. Kawamura showed that fitting the three parameters of the bivariate Poisson distribution
(BP) can be reduced to fitting only the 3rd parameter when the univariate Poisson marginals (hhs, area)
are known (or estimated). This provides a practical and consistent approach to reverse engineering Case IV
that continues to rely on the Poisson as a common underlying distribution.

Let's now recall the probability mass functions for Poisson and bivariate Poisson. Equation (1) shows
the formula for the Poisson probability mass function

P (X = x) = e−λ
λx

x!
(x = 0, 1, 2, ...) (1)
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A way to calculate a bivariate Poisson distribution (X,Y) is to let Zi ∼ Poission (λi) where i = 1, 2, 3
and set

X = Z1 + Z3

Y = Z2 + Z3

(X,Y) ∼ BP(λ1, λ2, λ3)

The probability function of the bivariate Poisson distribution (X, Y) then can be generated by Equation
(2).

P (X = x, Y = y) = e−(λ1+λ2+λ3)
λx1
x!

λy2
y!

min(x,y)∑
i=0

i!

(
x

i

)(
y

i

)( λ3
λ1λ2

)i
(2)

2.2 Lower and Upper Bounds

It can be concluded that a certain amount of people in a small area (e.g. 1 person per 0 m2) is impossible. It
can also be assumed that a given number of people in a large residential area (e.g. 2 people per 1,000,000 m2)
would be a minuscule probability worth refining to zero. Thus, this model incorporates bounds to narrow
infinite ranges. The final contingency table will have rows ranging from a selected lower and upper hhs
bound along with columns ranging from a lower to upper area bound. Ideally, the four bounds should be
chosen based off prior knowledge and expert elicitation, but they can also be selected intuitively with a brute
force method. If the reverse engineering tool outputs a final contingency table with higher probabilities near
the edge(s) of the table, then it would make sense to increase the range of the bound(s). For both the hhs
and area variables, this would just involve making the lower bound less, making the upper bound more, or
doing a combination of the two. The opposite holds true as well. If the final contingency table has very
low probabilities near the edge(s) of the table, then a person should decrease the range of the particular
bound(s).

The use of these bounds in the censored contingency tables (Case IV) is simple. Bivariate Poisson proba-
bilities are only calculated for the ranges provided by the lower and upper bounds for hhs and area. For the
other three cases, decoupled right shifted and right truncated Poisson distributions have to be calculated. A
right shift indicates the probabilities below a lower bound do not exist. A right-truncation differs because
the values above an upper bound do exist but are omitted in the final contingency table. Focusing on the
implantation of a right shift first, it should be remembered that for a univariate Poisson distribution the λ
parameter is just an average. Below shows how a right shift affects a λ value for a particular data set.

Proof. Consider the data set X = x1, x2, ..., xn with an average x̄. For 1 ≤ i ≤ n set yi = xi − l (where l is
a representation of a lower bound). Below shows show µy = µx - l.

µy =

∑
yi
n

=

∑
xi − l
n

=
1

n

∑
xi −

1

n

∑
l = µx −

1

n
(l ∗ n) = µx − l

Therefore, a right shift is executed when a lower bound (l) is subtracted from a corresponding average
(λ value). This computation is simple when we are given an average, but now consider the cases with the
frequency table(s) and censored contingency table. Here we conducted a right shift by easily adjusting the
categories of the tables. The count values will stay while each category value (ci) in a given table is altered
by ci - l. Giving the altered frequency table(s) to a customized likelihood function will then provide the
desired µx - l. Lastly, to complete the right shifts for all cases, the model respectfully adds back the hhs
and area lower bound values to the row and column category values of the final contingency table. This
last step signifies the lower bounds representing the new zero values, and will be completed after Iterative
Proportional Fitting.

Now let's bring in the upper bounds and right-truncation Poisson probabilities. In Equation (3), we show
how Saffari [12] displayed a Poisson distribution for a right truncated variable Yi. Note ti is the truncation
point for yi.
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PT (Yi = yi) =
e−λiλi

yi

(yi)!
(

1−
∑∞
yi=ti+1 P (Yi = yi|xi)

) (3)

Arbitrarily using Equation (3) for hhs, λi would be the right shifted λ (calculated by µx-l) while the
right truncated value (t i) is the hhs upper bound. The area variable will have the same format. Hence, the
right shifted and right truncated Poisson distributions for hhs and area can easily be calculated. For hhs
(rows) the original probabilities of i = 0,1,...,ti change to i = hhs lower bound, hhs lower bound + 1,..., (hhs
upper bound - hhs lower bound) , while for area (columns) the original probabilities change to i = area lower
bound, area lower bound + 1,..., (area upper bound - area lowerbound).

2.3 Iterative Proportional Fitting (IPF)

No affiliation of hhs to area can be developed with decoupled information. So for Cases I, II, and III, the right
shifted and right truncated Poisson distributions of hhs and area represent the marginals in the Iterative
Proportional Fitting (IPF) algorithm. IPF, introduced by Deming and Stephan [3], is an iterative least
square adjustment method that can use known marginals to estimate joint probabilities. So in our case, the
joint probabilities are the hhs x area cross tabulations. We will implement the original IPF algorithm because
it is still the most common approach and standard population synthesizer and the Alaska Department of
Labor [1] developed an IPF program in R that could simply be add to this package.

Fienberg [4] gave an easy to follow summarization involving the mathematics for the IPF procedure. The
goal now is to replicate Fienberg's IPF explanation with our parameters. Let hhsr represent the last numeric
row value (hhs upper bound - hhs lower bound) and areac be the last numeric column value (area upper
bound - area lower bound). Then in the following equations, we can denote this model's fixed row (Equation
(4)) and column (Equation (5)) marginal totals for IPF.

pi• =

areac∑
j=0

pij (i = 0, 1, ..., hhsr) (4)

p•j =

hhsr∑
i=0

pij (j = 0, 1, ..., areac) (5)

IPF acts as a weighting system. Each row in a fabricated matrix, known as a seed matrix, is proportionally
adjusted to fit its corresponding row marginal. After the rows have converged to their row marginal (within
a specified closure amount), the process is repeated for the columns. If assuming nij>0, IPF will eventually
estimate individual cell probabilities in the hhs x area contingency table by minimizing Equation (6).

hhsr∑
i=0

areac∑
j=0

(nij − npij)2

nij
(subject to equation 4 and 5) (6)

2.4 Censored Frequency Tables

Cases where a direct average is given easily represent the λ parameter needed for any further calculation in
the model (right shift, right truncation poisson probabilities and then IPF). However, censored frequency
tables are not as straightforward. Censored frequency tables have to be fit to a truncated Poisson distribution
using a maximum likelihood function customized to handle left (<, ≤), right (>, ≥), and interval (-) censored
data. The primary interested is to find the value for λ that maximizes the log likelihood of a univariate
truncated Poisson distribution. To see an example function, Equation (7) represents the log-likelihood for
uncensored (y), left censored (y < c), interval censored (a ≤ y ≤ b), and right censored (y > d) where a, b,
c, and d represent censoring limits. The right shift is represented by letting x = y - lower bound. Also note,
l signifies the lower bound quantity and u is the notation for an established upper bound value.
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L(λ|x)log =∑
x

ln
(
P (x|λ)

)
+
∑
x<c

ln
(
P (x < c|λ)

)
+
∑
a≤x≤b

ln
(
P (a ≤ x ≤ |λ)

)

+

(∑
x>d

ln
(
P (x > d|λ)

)
−

∑
x>(u−l)

ln
(
P (x > (u− l)|λ)

))
(7)

A validation test to check the customized formula was also performed. First an arbitrary λ parameter
computed a large randomized sample (10,000) of Poisson deviates. An uncensored univariate table was then
produced by calculating the frequency of each unique deviate. The next step took this frequency table, and
made adjustments to represent all types of censoring. The newly assembled censored frequency table could
then be given to this log likelihood formula. The output returned the approximate λ value that was selected
to make the table, thus validating the function. If the arbitrary λ = 4, then the method behind this test
involves the R code of

table(rpois(10000, lambda = 4))

2.5 Censored Contingency Tables

With decoupled data (Case I, II, and III), IPF made estimation from completely unknown cross tabulations.
The censored contingency case follows a different approach. There is already a cross tabulation provided
in the table, but the values are distorted from censoring. The goal now becomes taking concealed values
and estimating what these values would have been before censoring. To complete this reverse engineering
technique, Kawamura's method [7] of reducing three parameters to a single parameter optimization problem
can be implemented. Kawamura showed that for BP(X, Y) with corresponding Poisson marginals P(X|y)
and P(Y|x) that the following relationships hold

λx= E(X) = λ1 + λ3
λy= E(Y) = λ2 + λ3

Where by definition of univariate Poisson, the marginal parameters λx and λy are given by the E(X|y)
and E(Y|x) and the parameter selection problem is reduced to

λ1= E(X) - λ3
λ2= E(Y) - λ3

Or equivalently

λ1 = λx - λ3
λ2 = λy - λ3

Kawamura then applied a simple numerical approach to find λ3 that maximizes the log likelihood function
along the line

0 ≤ λ3 ≤ min (λx,λy)

By building on this result, to find λ3 let

L

(
λ3|(X,Y ), λx, λy

)
=
∏
i,j

Lij

(
λ3|(X,Y ), λx, λy

)
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where Lij represents the likelihood component of the (i, j) type of censoring and is defined as

Lij

(
λ3|(X,Y ), λx, λy

)
=

M∏
k=1

Lk

(
λ3|(X,Y ), λx, λy

)

and Lk

(
λ3|(X,Y ), λx, λy

)
, k=1, M represents each likelihood components sharing a common censoring

type (i, j). All possibilities of the (i, j) censoring types are given in Table 1. Resembling the univariate case,
notice the two forms of left and right censoring.

Table 1. Censoring types and corresponding likelihood forms. Here X will represent household size variable
while Y will be area.

Again by assuming hhs and area follow a Poisson distribution, this implies a bivariate Poisson distribu-
tion with corresponding Poisson marginal exist. Continuing with Kawamura methodology, the maximum
likelihood function for censored frequency tables allows the estimation of the needed λx and λy. These two
parameters are then used to approximate an optimal λ3. Subsequently, λ1 and λ2 values are calculated by
simple arithmetic. Using λ1, λ2, and λ3 a Bivariate Poisson distribution can be used to model the censor-
uncensored data mixtures and produce an uncensored contingency table. The bivariate Poisson probability
distribution R functions of pbivpois and bivpois.table [6] were implemented for this methodology.

Again, just as in the univariate case, another test to validate the λ bivariate parameters was performed.
Random λ1, λ2, and λ3 values were selected to compute probabilities for a bivariate Poisson distribution.
These joint probabilities were put in matrix format to produce an uncensored contingency table. The
contingency table was then subjected to censoring by adjusting the category values with their corresponding
probabilities for both rows and columns. When given to our formula, the new censored bivariate table did
return the approximate λ values that were originally selected. If λ1 = 1, λ2 =2, and λ3=3 values were
selected values, then the method behind this test involves the R code [6] of

bivpois.table(100, 100, c(1,2,3))

3 Data Entry

It is impossible to satisfy all formats found in census information. Trying to be as robust as possible, this
revengc package still has specific requirements. First, there has to be hhs and area bounds meaning the
input for the four cases will be the following:

Case I: hhs average, area average, hhs lower bound, hhs upper bound, area lower bound, and area up-
per bound
Case II: hhs frequency table, area frequency table, hhs lower bound, hhs upper bound, area lower bound,
and area upper bound
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Case III: hhs average or frequency table, area average or frequency table, hhs lower bound, hhs upper
bound, area lower bound and area upper bound
Case IV: contingency table (hhs, area) or (area, hhs), hhs lower bound, hhs upper bound, area lower bound,
and area upper bound

The tables also have to be formatted. The univariate frequency table found in Case I, Case II, and Case
III must be formatted where there are two columns with n number of rows. The categories must be in the
first column and the frequencies must be in the second column. Row names should never be placed in this
table, the default name should always be 1:n where n is number of rows in the table. Both columns should
not have a header (header=FALSE) and no words are allowed for censoring. The only censoring symbols
accepted are < and ≤(left censoring), - (interval censoring), > and ≥ and + (right censoring). Table 2 shows
a formatted table example for these cases.

≤ 6 11800
7-12 57100
13-19 14800
20+ 3900

Table 2. Example of a formatted table for Case I, II, and III.

The table for Case IV also has restrictions. Again, no words are allowed for censoring. Only the censored
values of < and ≤(left censoring), - (interval censoring), > and ≥ and + (right censoring) are permitted.
This table works when there is a column header present or absent. However, the only column header that
is allowed has to be the hhs or area category values. Row names should never be placed in this table, the
default name should always be 1:n where n is number of rows in the table. The inside of this table is the
cross tabulation of hhs x area which are either positive frequency values or percentages. The row and column
total marginals have to placed in this table. The top left, top right, and bottom left corners of this table
have to be NA or blank, but the bottom right corner can be a total sum value, NA, or blank. This code
will transpose a contingency table if given a table with area as the rows and hhs as the columns, but the
output will always be hhs as the rows and area as the columns. This transpose will only occur under the
assumption that the sum of area category value is greater than the sum of household size category value.
Table 3 is a formatted example with percentages as the cross-tabulations, the bottom right corner as a total
sum, and the column header as the area category values.

NA <20 20-30 >30 NA
<5 0.18 0.19 0.08 0.45
5-9 0.13 0.08 0.12 0.33
≥10 0.06 0.05 0.10 0.21
NA 0.38 0.32 0.31 1.00

Table 3. Example of a formatted table for Case IV.

3.1 Sample Datasets

Since the format for the tables is strict, we will now show how to format these tables properly using actual
census data. If a user wants to read in a file, the format must look like the following sample datasets:
nepal hhs, hongkong hhs, hongkong area, iran hhs, and indonesia contingency. Creating tables with R code
is possible too. The following code shows how these sample datasets can be created in R.

hhsdata_nepal<-cbind(as.character(c("1-2", "3-4", "5-6", "7-8", ">=9")),

c(16.2, 41.7, 29.0, 9.0, 4.1))
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hhsdata_hongkong<-cbind(as.character(c("1", "2", "3", ">3")),

c(27600,25600,20900,13500))

areadata_hongkong<-cbind(as.character(c("<7", "7-12", "13-19", ">19")),

c(11800,57100,14800,3900))

hhsdata_iran<-cbind(as.character(c("1", "2", "3", "4", ">=5")),

c(7.08,18.29,29.64,27.95,17.04))

contingencytable<-matrix(c(6185,9797,16809,11126,6156,3637,908,147,69,4,

5408,12748,26506,21486,14018,9165,2658,567,196,78,

7403,20444,44370,36285,23576,15750,4715,994,364,136,

4793,17376,44065,40751,28900,20404,6557,1296,555,228,

2354,11143,32837,33910,26203,19301,6835,1438,618,245,

1060,6038,19256,21298,17774,13864,4656,1039,430,178,

273,2521,9110,11188,9626,7433,2608,578,196,112,

119,1130,4183,5566,5053,3938,1367,318,119,66,

33,388,1707,2367,2328,1972,719,171,68,37,

38,178,1047,1672,1740,1666,757,193,158,164),

nrow=10,ncol=10, byrow=TRUE)

rowmarginal<-apply(contingencytable,1,sum)

contingencytable<-cbind(contingencytable, rowmarginal)

colmarginal<-apply(contingencytable,2,sum)

contingencytable<-rbind(contingencytable, colmarginal)

row.names(contingencytable)[row.names(contingencytable)=="colmarginal"]<-""

contingencytable<-data.frame(c("1","2","3","4","5","6", "7", "8","9","10+", NA),

contingencytable)

colnames(contingencytable)<-c(NA,"<20","20-29","30-39","40-49","50-69","70-99",

"100-149","150-199","200-299","300+", NA)

4 Examples of Applying revengc to Census Data

4.1 Usage

First note that the main function in revengc is called rec. rec has the following format with a description
of each argument directly below

rec(hhsdata, areadata, hhslowerbound, hhsupperbound, arealowerbound, areaupperbound)

hhsdata: This household size value can be a univariate frequency table or numeric value that represents an
average. This input could also be a contingency table, but only if the areadata = 0.

areadata: This area (size of house) value can be a univariate frequency table or numeric value that rep-
resents an average. This input could also be a contingency table, but only if the hhsdata = 0. The areadata
can be any unit of measure.

hhslowerbound: This is a numeric value to represent the household size lower bound. This lower bound
variable needs to be numeric value ≥ 0.

hhsupperbound: This is a numeric value to represent the household size upper bound. This upper bound
variable cannot be less than the highest category value (e.g. if a table has ’>100’ then the upper bound
cannot be 90).

arealowerbound: This is a numeric value to represent the area lower bound. This lower bound variable
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needs to be numeric values ≥ 0.

areaupperbound: This is a numeric value to represent the area upper bound. This upper bound vari-
able cannot be less than the highest category value (e.g. if a table has ’>100’ then the upper bound cannot
be 90).

4.2 Nepal

The Nepal Living Standards Survey [9] provides averages and censored tables for household size and also
averages for area of dwelling. This census data provides an example for Case I and Case III. To produce a
final hhs x area contingency table (rows ranging from 1 to 20 people and columns ranging from 520 to 620
square feet) for urban Nepal you would run

#Case I

rec(4.4,571.3,1,20,520,620)

#Case II

rec(nepal_hhs,571.3,1,20,520,620)

4.3 Hong Kong

The Census and Statistics Department of Hong Kong [2] provides censored frequency tables for hhs and area
as well as medians for both variables. This census data provides an example for Case I, Case II, and Case
III. To produce a final hhs x area contingency table (rows ranging from 1 to 15 people and columns ranging
from 1 to 30 square meters) for sub-divided units in Hong Kong you would run

#Case I

rec(2.0,10.3,1,15,1,30)

#Case II

rec(hongkong_hhs,hongkong_area,1,15,1,30)

#Case III

rec(2.0,hongkong_area,1,15,1,30)

rec(hongkong_hhs,10.3,1,15,1,30)

4.4 Iran

For different provinces, The Statistical Centre of Iran [14] reports averages and censored tables for household
size as well as averages for floor area. This census data provides an example for Case I and Case III. To
produce a final hhs x area contingency table (rows ranging from 1 to 10 people and columns ranging from
80 to 130 square meters) for East Azerbayejan (Azerbaijan), Iran you would run

#Case I

rec(3.4,100.5,1,10,80,130)

#Case III

rec(iran_hhs,100.5,1,10,80,130)

4.5 Indonesia

The Population Census Data - Statistics Indonesia [11] provides over 60 censored contingency tables of Floor
Area of Dwelling Unit (m2) x Household Member Size separated by province, urban, and rural. This census
data provides a Case IV example. To produce a final hhs x area contingency table (rows ranging from 1
to 15 people and columns ranging from 10 to 310 square meters) for Indonesia 's rural Aceh Province you
would run

#Case IV

rec(indonesia_contingency,0,1,15,10,310)

rec(0,indonesia_contingency,1,15,10,310)
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4.6 Methodology Workflows Behind the rec Function

Workflow of Case I. We are only focus on household size and size of dwelling averages for urban Nepal
[9] to illustrate a Case I methodology workflow. However, note that when the censored univariate table
provided for household size (nepal hhs) is adjusted to represent a right shift (selecting a lower bound of 1
person) this produces a comparable right shifted hhs average of 3.41 people.
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Workflow of Case II. For the provided 87,600 Hong Kong households in sub-divided units [2], we will
focus on the frequency tables for household size and area (m2) to illustrate a Case II methodology workflow.
Keeping the same lower bound values of 1, notice how the estimated right shifted averages (λhhs ≈ 1.29
people and λarea ≈ 9.35 m2) are comparable to the right shifted averages provided in the census (median
household size = 2-1=1 and median area = 10 -1= 9.3 m2).
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Workflow of Case III. For East Azerbayejan, Iran [14] we will use the household size table and the average
floor area to illustrate a Case III worked example. With the same lower bound hhs value of 1 person, notice
that the model's estimated right shifted hhs λ (2.41 people) is comparable to the right shifted hhs average
value provided in the documentation (3.4 - 1 = 2.4 people).
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Workflow of Case IV. Indonesia's rural Aceh Province [11] is used to illustrate a Case IV worked example.
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5 Conclusion

Census data frequently provides residential household size and area values. These are key attributes when
estimating interior density, but the problem is when these variables are reported as summarized information.
Averages, decoupled variables, and censored tables do not provide clear results and overall obscures the
original data. The statistical revengc package was designed to reverse engineer this censored, decoupled
census data. The final result is an uncensored hhs x area contingency table that can be used more accurately
for estimating interior residential occupancy. All efforts go towards improving residential occupancy found
in census data.
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