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This document describes briefly how to use the class “mmctest”, included in the R-package “simctest”. It
implements the methods from “A Sequential Sampling Procedure for Multiple Testing Problems with Bounded
Risk of Classification Errors”, based on |Gandy and Hahn| [2013b].

The class can be used to evaluate the statistical significance of each hypothesis in a multiple testing problem.

1 Installation

The functions described in this document are included in the R-package “simctest”. Please see the documentation
of “simctest” on how to install the package.

2 Usage
The package is loaded by typing
> library(simctest)
This document can be accessed via
> vignette("simctest-mmctest-intro")
Documentation of the most useful commands can be obtained as follows:

> 7 simctest
? mcp
> 7 mmctest

v

2.1 Implementing a Monte Carlo multiple testing problem

The following is an artificial example. Implementing a Monte Carlo multiple testing problem consists of two
stages.

Firstly, an interface to draw samples has to be provided. This can be done in two ways, either by implementing
the generic class mmctSamplerGeneric or by directly providing the number m of hypotheses and a function f
which generates samples. Both ways are described in the next section.

Secondly, an object of type mmctest has to be created. It provides a “run” method which uses the mmctest-
object and an mmctSamplerGeneric-object to evaluate the multiple testing problem.

The algorithm used in class mmctest is the one introduced in|Gandy and Hahn| [2013b]. The multiple testing
problem is evaluated until at least one of four stopping criteria is satisfied, see below for a detailed description.

Stopped tests can be resumed with the “cont” function.

Printing an object of type mmctest or mmctestres will display the number of already rejected and non-
rejected hypotheses, the number of undecided hypotheses and the total number of samples drawn up to the
current stage.



2.1.1 Implementing the sampling interface

An interface for drawing new samples has to be provided for each multiple testing problem.

If new samples are simply generated by a function f, the derived class mmctSampler provided in simctest
can be used as a shortcut. It works as follows: Any function f used to draw new samples has to be able to accept
the arguments “ind”, a vector with indices of hypotheses and a vector “n” containing the number of samples to
be drawn for each hypothesis in vector “ind”.

The function f has to return a vector containing the number of significant test statistics for each hypothesis
specified in “ind”.

For instance, passing a vector “ind” of (2,5) and a vector “n” of (5,10) as arguments means that 5 more
samples are requested for the hypothesis with index 2 and 10 more for the hypothesis with index 5. The function
f might need further data to evaluate the tests. Such data can be passed on to f as third argument data.

For instance,

> fun <- function(ind,n,data)
+ sapply(1:length(ind), function(i) sum(runif(n[i])<=data[ind[i]]));

is a function which draws samples from hypotheses having p-values given in vector data.

The package mmctest provides a shortcut which can be used to easily specify the interface. Given a function
fun to draw samples and the number num of hypotheses, fun and num (and additional data data) can be passed
on to the class mmctSampler which returns a derived object of the generic class mmctSamplerGeneric. For
example,

> s <- mmctSampler (fun,num=500,data=c (rep(0,100),runif (400)));

returns an sampler interface s for the function fun defined above and 500 p-values used to draw new samples.
The class mmctSamplerGeneric can also directly be overwritten with an own sampler interface. Any sampler
has to implement the two generic functions getSamples and getNumber:

> # class mmctSamplerl, inherited from mmctSamplerGeneric
> setClass("mmctSamplerl", contains="mmctSamplerGeneric",
+ representation=representation(data="numeric"))

> # get n[i] new samples for every index i in ind

> setMethod("getSamples", signature(obj="mmctSamplerl"),
+  function(obj, ind, n) {

+ sapply(1:length(ind),

+ function(i) { return(sum(runif(n[i])<=

+ obj@datalind[i]1)); });

+ }

+)

[1] "getSamples"

> # get number of hypotheses

> setMethod ("getNumber", signature(obj="mmctSamplerl"),
+  function(obj) {

+ return(length(obj@data)) ;

+ F

+)

[1] "getNumber"

In this case, the sampler will be

> s <- new("mmctSamplerl", data=c(rep(0,100),runif (400)));



2.1.2 A simple run of the algorithm

After having specified the sampler, the main algorithm can be executed. This is done by creating an object of
type mmctest using the pseudo-constructor

mmctest (epsilon=0.01, threshold=0.1, r=10000, h, thompson=F),

where epsilon is the overall error on the classification being correct one is willing to spend (see|Gandy and Hahn
[2013b]) and threshold is the multiple testing threshold. The MMCTest algorithm uses a “spending sequence”
which controls how the overall error probability is spent on each of the m hypotheses in each iteration (see
Gandy and Hahn| [2013b]). The parameter r with default value » = 10000 controls after which number of
samples half the error probability has been spent and can be chosen arbitrarily. The function A is the multiple
testing procedure. Thompson sampling can be used to determine how many samples are to be drawn in each
iteration (switch thompson, default is false), see |Gandy and Hahn| [2013a].
Any function

h <- function(p, threshold)

can be used as a multiple testing procedure as long as it takes a vector p of p-values and a threshold threshold
as arguments and returns the indices of all rejected hypotheses as vector.

The Benjamini-Hochberg procedure hBH, its modification by|[Pounds and Cheng| [2006] hPC and the Bonferroni
correction hBonferroni are available by default:

> s <- mmctSampler (fun,num=500,data=c(rep(0,100),runif (400)));
> m <- mmctest (h=hBH) ;

The algorithm can now be started by calling
run(alg, gensample, maxsteps=list(maxit=0, maxnum=0, undecided=0, elapsedsec=0))

which takes an object alg of type mmctest, a sampler object gensample to generate samples and a list maxsteps
as stopping criterion. The list maxsteps can include a maximal number of iterations maxit after which the
algorithm stops, a maximal total number of samples maxnum drawn until stopping, a number undecided of
undecided hypotheses one is willing to tolerate or a time constraint elapsedsec in seconds.

Specifying other items in list maxsteps will lead to an error message and an empty list will be reset to the
default list

list(maxit=0, maxnum=0, undecided=0, elapsedsec=0).

As an example, the following lines evaluate the previously created multiple testing problem m using the Benjamini-
Hochberg procedure hBH and the previous sampler s. The algorithm stops before reaching more than a total of
1000000 samples or after all but 20 hypotheses are classified:

> m <- run(m, s, maxsteps=1list(maxnum=1000000,undecided=20)) ;
>m

Number of rejected hypotheses: 100
Number of non-rejected hypotheses: 389
Number of undecided hypotheses: 11
Total number of samples: 124198

Printing the object displays the number of already rejected and non-rejected hypotheses, the number of
undecided hypotheses and the total number of samples drawn up to the current stage.

A formatted summary of the indices belonging to rejected and undecided hypotheses can be printed via
summary .mmctestres. All indices not printed belong to non-rejected hypotheses.

> summary.mmctestres (m)



Number of hypotheses: 500

Indices of rejected hypotheses: 1 23456 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Indices of undecided hypotheses: 106 176 278 346 363 440 458 464 467
475 479

A1l hypotheses not listed are classified as not rejected.

2.1.3 Continuing a run of the algorithm
Each run can be continued with the cont function using a new stopping criterion:

> m <- cont(m, steps=list(undecided=10));
> m

Number of rejected hypotheses: 100
Number of non-rejected hypotheses: 390
Number of undecided hypotheses: 10
Total number of samples: 139059

Here, the algorithm has been applied again to the previously stopped multiple testing problem m. It has
been resumed until all but 10 hypotheses were classified.

As before, maxit, maxnum, undecided and elapsedsec are valid stopping criteria for parameter steps of
function cont.

2.1.4 Requesting the test result

The current test result can be requested from any mmctestres object. Calling testResult of class mmctestres
will return a list containing indices of rejected hypotheses (vector ‘Srejected’), nonrejected hypotheses (vector
‘$nonrejected’) and undecided hypotheses (vector ‘Sundecided’). For the previously continued run of object m,
the result of the computation can be requested as follows:

> res <- testResult(m);
> res$undecided

[1] 106 176 278 346 363 440 458 464 467 475
> length(res$rejected)
[1]1 100
> length(res$nonrejected)
[1]1 390

In the example above, the current computation result of object m is stored in variable res. For object m, the
algorithm has been run until all but (at least) 10 hypotheses have been classified. The indices of the undecided
hypotheses as well as the number of rejected and nonrejected hypotheses (i.e. the length of the vectors containing
their indices) are displayed.

2.1.5 Confidence intervals and estimates of p-values

At any stage, p-values can be estimated based on the total number of samples drawn for each hypothesis during
intial or continued runs:

> estimate <- pEstimate(m);
> lastindex <- length(estimate);
> estimate[lastindex]



[1] 0.9230769

The function pEstimate takes an object of type mmctest as argument and returns a vector containing
estimates of all p-values.
Similarly, the current confidence limits for the exact (Clopper-Pearson) confidence intervals can be requested:

> 1 <- confidenceLimits(m);
> 1$lowerLimits[lastindex]

[1] 0.154093
> 1$upperLimits[lastindex]
(11 1

The function confidenceLimits takes an object of type mmctest as argument and returns a list containing
lower confidence limits (vector ‘lowerLimits’) and upper confidence limits (vector ‘upperLimits’) for each p-value.

2.1.6 An extended example

In this extended example a permutation test is used to determine if two groups A and B have equal means.
This is done in ngroups = 20 cases. Each group has size 4 and both groups A and B are stored together in one
row of length n = 8 in a matrix G.

n <- 8;

ngroups <- 20;

G <- matrix(rep(0,n*ngroups), nrow=ngroups);

for(j in 1:(ngroups/2)) G[j,] <- c(rnorm(n/2,mean=0,sd=0.55),rnorm(n/2,mean=1,sd=0.55));
for(j in (ngroups/2+1) :ngroups) G[j,] <- rnorm(n,mean=0,sd=3);

vV V.V VvV

To implement this test as a Monte-Carlo test, we start by overwriting the generic class mmctSamplerGeneric
to specify the sampler. The data stored in an ExSampler object is the matrix G.

> # class ExSampler, inherited from mmctSamplerGeneric

> setClass("ExSampler", contains="mmctSamplerGeneric",

+ representation=representation(data="matrix"))

> setMethod("getSamples", signature(obj="ExSampler"),

+  function(obj, ind, n) {

+ sapply(1:length(ind), function(i) {

+ v <- obj@datalind[i]l,];

+ s <- matrix(rep(v,n[i]+1), byrow=T, ncol=length(v));
+ for(j in 1:n[i]) s[j+1,] <- sample(v);

+ means <- abs(rowMeans(s[,1:(length(v)/2)])-

+ rowMeans (s[, (length(v)/2+1) :1ength(v)]));

+ return (sum(means>means[1])) ;
+ P;
+ }
+)

[1] "getSamples"

> setMethod("getNumber", signature(obj="ExSampler"),
+  function(obj) {

+ return(length(obj@datal,1]));
+ }
+ )

[1] "getNumber"



The getSamples method generates n[i] permutations of each row i in the indices vector ind and counts
how many times the generated means exceeded the data mean (stored in row 1).
The sampler is then

> exsampler <- new("ExSampler", data=G);

As before, the multiple testing problem is set up by creating an object of type mmctest using hBH as multiple
testing procedure and the exsampler object as sampler interface. The constructor mmctest uses a default
threshold of 0.1.

> m <- mmctest (h=hBH) ;
> m <- run(m, exsampler, maxsteps=list(undecided=0));

Algorithm mmctest has been run until all hypotheses were classified. Based on this run, the following
hypotheses are rejected:

> testResult(m)$rejected
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Estimates for p-values are
> pEstimate (m)

[1] 0.0607111882 0.0272020725 0.0693842151 0.0546334716 0.1500000000
[6] 0.4642857143 0.0003521127 0.1001727116 0.0280656304 0.0273459988
[11] 0.0904109589 0.9230769231 0.9230769231 0.2736842105 0.3695652174
[16] 0.5000000000 0.2210526316 0.0751633987 0.5357142857 0.8461538462

To verify this result, exact p-values are computed by enumerating all permutations of each row. This is done
using algorithm QuickPerm.
Based on the exact p-values, given by

> pexact

[1] 0.05714286 0.02857143 0.05714286 0.05714286 0.17142857 0.65714286
[7] 0.00000000 0.08571429 0.02857143 0.02857143 0.08571429 0.94285714
[13] 0.82857143 0.22857143 0.34285714 0.65714286 0.17142857 0.08571429
[19] 0.48571429 0.85714286

the Benjamini-Hochberg procedure at threshold 0.1 will give the following set of rejections:
> which (hBH(pexact, threshold=0.1))

(11 7
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