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Abstract

R package sklarsomega provides tools for measuring agreement using

Sklar’s ω coefficient, which subsumes Krippendorff’s α coefficient, which

in turn subsumes a number of other well-known agreement coefficients.

The package permits users to apply the ω methodology to nominal, ordi-

nal, interval, or ratio scores; can accommodate any number of units, any

number of coders, and missingness; and can measure intra-coder agree-

ment, inter-coder agreement, and agreement relative to a gold standard.

Classical inference is available for all levels of measurement while Bayesian

inference is available for interval data and ratio data only.

Keywords: Agreement coefficient; Bayesian; Composite likelihood; Dis-

tributional transform; Gaussian copula; Markov chain Monte Carlo; R

1 Introduction: Measuring agreement in R

Sklar’s ω (Hughes, 2018) is a model-based alternative to Krippendorff’s α (Hayes
and Krippendorff, 2007), a well-known nonparametric measure of agreement.
Although Krippendorff’s α is intuitive, flexible, and subsumes a number of other
coefficients of agreement, Sklar’s ω improves upon α in (at least) the following
ways. Sklar’s ω

• permits practitioners to simultaneously assess intra-coder agreement, inter-
coder agreement, agreement with a gold standard, and, in the context of
multiple scoring methods, inter-method agreement;

• identifies the above mentioned types of agreement with intuitive, well-
defined population parameters;

• can accommodate any number of coders, any number of methods, any
number of replications (per coder and/or per method), and missing values;
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• allows practitioners to use regression analysis to reveal important pre-
dictors of agreement (e.g., coder experience level, or time effects such as
learning and fatigue);

• provides complete inference, i.e., point estimation, interval estimation,
diagnostics, model selection;

• performs more robustly in the presence of unusual coders, units, or scores;
and

• permits Bayesian inference for interval or ratio scores.

In R (Ihaka and Gentleman, 1996), Krippendorff’s α can be applied us-
ing function kripp.alpha() of package irr (Gamer et al., 2012) and function
kripp.boot() of package kripp.boot (Proutskova and Gruszczynski, 2017).

2 The agreement problem

The literature on agreement contains two broad classes of methods. Methods in
the first class seek to measure agreement while also explaining disagreement—by,
for example, assuming differences among coders (as in Aravind and Nawarathna
(2017)). Although our approach permits one to use regression to explain sys-
tematic variation away from a gold standard, we are not, in general, interested
in explaining disagreement. Our methodology is for measuring agreement, and
so we do not typically accommodate (i.e., model) disagreement. For example,
we assume that coders are exchangeable (unless multiple scoring methods are
being considered, in which case we assume coder exchangeability within each
method). This modeling orientation allows disagreement to count fully (up to
randomness) against agreement, as desired.

3 Models and software

The statistical model underpinning Sklar’s ω is a Gaussian copula model (Xue-
Kun Song, 2000). We begin by specifying the most general form of the model.
Then we consider special cases of the model that speak to the tasks, assumptions,
and levels of measurement presented in Section 1.

The stochastic form of the Gaussian copula model is given by

Z = (Z1, . . . , Zn)
⊤ ∼ N (0,Ω)

Ui = Φ(Zi) ∼ U(0, 1) (i = 1, . . . , n)

Yi = F−1
i (Ui) ∼ Fi, (1)

where Ω is a correlation matrix, Φ is the standard Gaussian cdf, and Fi is
the cdf for the ith outcome Yi. Note that U = (U1, . . . , Un)

⊤ is a realization
of the Gaussian copula, which is to say that the Ui are marginally standard
uniform and exhibit the Gaussian correlation structure defined by Ω. Since Ui
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is standard uniform, applying the inverse probability integral transform to Ui

produces outcome Yi having the desired marginal distribution Fi.
In the form of Sklar’s ω that most closely resembles Krippendorff’s α, we

assume that all of the outcomes share the same marginal distribution F . The
choice of F is then determined by the level of measurement.

While Krippendorff’s α typically employs two different metrics for nominal
and ordinal outcomes, we assume the categorical distribution

pk = P(Y = k) (k = 1, . . . ,K)
∑

k

pk = 1 (2)

for both levels of measurement, whereK is the number of categories. ForK = 2,
(2) is of course the Bernoulli distribution.

Note that when the marginal distributions are discrete (in our case, categor-
ical), the joint distribution corresponding to (1) is uniquely defined only on the
support of the marginals, and the dependence between a pair of random vari-
ables depends on the marginal distributions as well as on the copula. Genest
and Neslehova (2007) described the implications of this and warned that, for
discrete data, “modeling and interpreting dependence through copulas is subject
to caution.” But Genest and Neslehova go on to say that copula parameters
may still be interpreted as dependence parameters, and estimation of copula
parameters is often possible using fully parametric methods. It is precisely such
methods that we recommend, and support in package sklarsomega.

For interval outcomes F can be practically any continuous distribution. Our
package supports the Gaussian, Laplace, Student’s t, and gamma distributions,
which we denote as N (µ, σ), L(µ, σ), T (ν, µ), and G(α, β), respectively. The
Laplace and t distributions are useful for accommodating heavier-than-Gaussian
tails, and the t and gamma distributions can accommodate asymmetry.

Another possibility for continuous outcomes is to first estimate F nonpara-
metrically, and then estimate the copula parameters in a second stage. In Sec-
tion 3.2 we will provide details regarding this approach.

Finally, two natural choices for ratio outcomes are the beta and Kumaraswamy
distributions, the two-parameter versions of which are supported by our pack-
age. We denote these distributions as B(α, β) and K(a, b).

Now we turn to the copula correlation matrix Ω, the form of which is de-
termined by the question(s) we seek to answer. If we wish to measure only
inter-coder agreement, as is the case for Krippendorff’s α, our copula correla-
tion matrix has a very simple structure: block diagonal, where the ith block
corresponds to the ith unit (i = 1, . . . , nu) and has a compound symmetry
structure. That is,

Ω = diag(Ωi),
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where

Ωi =




c1 c2 . . . cnc

c1 1 ω . . . ω
c2 ω 1 . . . ω
...

...
...

. . .
...

cnc
ω ω . . . 1




On the scale of the outcomes, ω’s interpretation depends on the marginal
distribution. If the outcomes are Gaussian, ω is the Pearson correlation between
Yij and Yij′ , and so the outcomes carry exactly the correlation structure codified
in Ω. If the outcomes are non-Gaussian, the interpretation of ω (still on the
scale of the outcomes) is more complicated. For example, if the outcomes are
Bernoulli, ω is often called the tetrachoric correlation between those outcomes.
Tetrachoric correlation is constrained by the marginal distributions. Specifically,
the maximum correlation for two binary random variables is

min

{√
p1(1− p2)

p2(1− p1)
,

√
p2(1− p1)

p1(1− p2)

}
,

where p1 and p2 are the expectations (Prentice, 1988). More generally, the
marginal distributions impose bounds, called the Fréchet–Hoeffding bounds,
on the achievable correlation (Nelsen, 2006). For most scenarios, the Fréchet–
Hoeffding bounds do not pose a problem for Sklar’s ω because we typically
assume that our outcomes are identically distributed, in which case the bounds
are −1 and 1. (We do, however, impose our own lower bound of 0 on ω since
we aim to measure agreement.)

In any case, ω has a uniform and intuitive interpretation for suitably trans-
formed outcomes, irrespective of the marginal distribution. Specifically,

ω = ρ
[
Φ−1{F (Yij)}, Φ−1{F (Yij′)}

]
,

where ρ denotes Pearson’s correlation and the second subscripts index the scores
within the ith unit (j, j′ ∈ {1, . . . , nc} : j 6= j′).

By changing the structure of the blocks Ωi we can use Sklar’s ω to measure
not only inter-coder agreement but also a number of other types of agreement.
For example, should we wish to measure agreement with a gold standard, we
might employ

Ωi =




g c1 c2 . . . cnc

g 1 ωg ωg . . . ωg

c1 ωg 1 ωc . . . ωc

c2 ωg ωc 1 . . . ωc

...
...

...
...

. . .
...

cnc
ωg ωc ωc . . . 1



.

In this scheme ωg captures agreement with the gold standard, and ωc captures
inter-coder agreement.
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In a more elaborate form of this scenario, we could include a regression
component in an attempt to identify important predictors of agreement with
the gold standard. This could be accomplished by using a cdf to link coder-
specific covariates with ωg. Then the blocks in Ω might look like

Ωi =




g c1 c2 . . . cnc

g 1 ωg1 ωg2 . . . ωgnc

c1 ωg1 1 ωc . . . ωc

c2 ωg2 ωc 1 . . . ωc

...
...

...
...

. . .
...

cnc
ωgnc

ωc ωc . . . 1



,

where ωgj = H(x⊤
j β), H being a cdf, xj being a vector of covariates for coder

j, and β being regression coefficients.
For our final example we consider a complex study involving a gold standard,

multiple scoring methods, multiple coders, and multiple scores per coder. In the
interest of concision, suppose we have two methods, two coders per method, two
scores per coder for each method, and gold standard measurements for the first
method. Then Ωi is given by

Ωi =




g1 c111 c112 c121 c122 c211 c212 c221 c222
g1 1 ωg1 ωg1 ωg1 ωg1 0 0 0 0
c111 ωg1 1 ω11• ω1•• ω1•• ω••• ω••• ω••• ω•••

c112 ωg1 ω11• 1 ω1•• ω1•• ω••• ω••• ω••• ω•••

c121 ωg1 ω1•• ω1•• 1 ω12• ω••• ω••• ω••• ω•••

c122 ωg1 ω1•• ω1•• ω12• 1 ω••• ω••• ω••• ω•••

c211 0 ω••• ω••• ω••• ω••• 1 ω21• ω2•• ω2••

c212 0 ω••• ω••• ω••• ω••• ω21• 1 ω2•• ω2••

c221 0 ω••• ω••• ω••• ω••• ω2•• ω2•• 1 ω22•

c222 0 ω••• ω••• ω••• ω••• ω2•• ω2•• ω22• 1




,

where the subscript mcs denotes score s for coder c of method m. Thus ωg1

represents agreement with the gold standard for the first method, ω11• represents
intra-coder agreement for the first coder of the first method, ω12• represents
intra-coder agreement for the second coder of the first method, ω1•• represents
inter-coder agreement for the first method, and so on, with ω••• representing
inter-method agreement.

Note that, for a study involving multiple methods, it may be reasonable
to assume a different marginal distribution for each method. In this case, the
Fréchet–Hoeffding bounds may be relevant, and, if some marginal distributions
are continuous and some are discrete, maximum likelihood inference is infeasible
(see the next section for details).

3.1 Classical inference for all levels of measurement

When the response is continuous, i.e., when the level of measurement is interval
or ratio, we recommend maximum likelihood (ML) or Bayesian inference for
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Sklar’s ω. When the marginal distribution is a categorical distribution (for
nominal or ordinal level of measurement), likelihood-based inference is infeasible
because the log-likelihood, having Θ(2n) terms, is intractable for most datasets.
In this case we recommend the distributional transform (DT) approximation or
composite marginal likelihood (CML), depending on the number of categories. If
the response is binary, composite marginal likelihood is indicated even for large
samples since the DT approach tends to perform poorly for binary data. If there
are three or four categories, the DT approach may perform at least adequately
for larger samples, but we still favor CML for such data. For five or more
categories, the DT approach performs well and yields a more accurate estimator
than does the CML approach. The DT approach is also more computationally
efficient than the CML approach.

3.1.1 The method of maximum likelihood for Sklar’s ω

For correlation matrix Ω(ω), marginal cdf F (y | ψ), and marginal pdf f(y | ψ),
the log-likelihood of the parameters θ = (ω⊤,ψ⊤)⊤ given observations y is

ℓml(θ | y) = −1

2
log |Ω| − 1

2
z⊤(Ω−1 − I)z +

∑

i

log f(yi), (3)

where zi = Φ−1{F (yi)} and I denotes the n×n identity matrix. We obtain θ̂ml
by minimizing −ℓml. For all three approaches to inference—ML, DT, CML—we
use the optimization algorithm proposed by Byrd et al. (1995) so that ω, and
perhaps some elements of ψ, can be appropriately constrained. To estimate an
asymptotic confidence ellipsoid we of course use the observed Fisher information
matrix, i.e., the estimate of the Hessian matrix at θ̂ml:

{θ : (θ̂ml − θ)⊤ Îml (θ̂ml − θ) ≤ χ2
1−α,q},

where Îml denotes the observed information and q = dim(θ).
Optimization of ℓml is insensitive to the starting value for ω, but it can be

important to choose an initial value ψ0 for ψ carefully. For example, if the
assumed marginal family is t, we recommend ψ0 = (µ0, ν0)

⊤ = (medn,madn)
⊤

(Serfling and Mazumder, 2009), where µ is the noncentrality parameter, ν is the
degrees of freedom, medn is the sample median, and madn is the sample median
absolute deviation from the median. For the Gaussian and Laplace distributions
we use the sample mean and standard deviation. For the gamma distribution
we recommend ψ0 = (α0, β0)

⊤, where

α0 = Ȳ 2/S2

β0 = Ȳ /S2,
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for sample mean Ȳ and sample variance S2. Similarly, we provide initial values

α0 = Ȳ

{
Ȳ (1− Ȳ )

S2
− 1

}

β0 = (1− Ȳ )

{
Ȳ (1− Ȳ )

S2
− 1

}

when the marginal distribution is beta. For the Kumaraswamy distribution
we use a0 = 1 and b0 = 1. Finally, for a categorical distribution we use the
empirical probabilities.

3.1.2 The distributional transform method

When the marginal distribution is discrete (in our case, categorical), the log-
likelihood does not have the simple form given above because zi = Φ−1{F (yi)}
is not standard Gaussian (since F (yi) is not standard uniform if F has jumps).
In this case the true log-likelihood is intractable unless the sample is rather
small. An appealing alternative to the true log-likelihood is an approximation
based on the distributional transform.

It is well known that if Y ∼ F is continuous, F (Y ) has a standard uniform
distribution. But if Y is discrete, F (Y ) tends to be stochastically larger, and
F (Y −) = limxրY F (x) tends to be stochastically smaller, than a standard uni-
form random variable. This can be remedied by stochastically “smoothing” F ’s
discontinuities. This technique goes at least as far back as Ferguson (1967), who
used it in connection with hypothesis tests. More recently, the distributional
transform has been applied in a number of other settings—see, e.g., Rüschendorf
(1981), Burgert and Rüschendorf (2006), and Rüschendorf (2009).

Let W ∼ U(0, 1), and suppose that Y ∼ F and is independent of W . Then
the distributional transform

G(W,Y ) =WF (Y −) + (1−W )F (Y )

follows a standard uniform distribution, and F−1{G(W,Y )} follows the same
distribution as Y .

Kazianka and Pilz (2010) suggested approximating G(W,Y ) by replacing it
with its expectation with respect to W :

G(W,Y ) ≈ EWG(W,Y )

= EW {WF (Y −) + (1−W )F (Y )}
= EWWF (Y −) + EW (1−W )F (Y )

= F (Y −)EWW + F (Y )EW (1−W )

=
F (Y −) + F (Y )

2
.

To construct the approximate log-likelihood for Sklar’s ω, we replace F (yi) in
(3) with

F (y−i ) + F (yi)

2
.
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If the distribution has integer support, this becomes

F (yi − 1) + F (yi)

2
.

This approximation is crude, but it performs well as long as the discrete
distribution in question has a sufficiently large variance (Kazianka, 2013). For
Sklar’s ω, we recommend using the DT approach when the scores fall into five
or more categories.

Since the DT-based objective function is misspecified, using Îdt alone leads
to optimistic inference unless the number of categories is large. This can be over-
come by using a sandwich estimator (Godambe, 1960) or by doing a bootstrap
(Davison and Hinkley, 1997).

3.1.3 Composite marginal likelihood

For nominal or ordinal outcomes falling into a small number of categories, we rec-
ommend a composite marginal likelihood (Lindsay, 1988; Varin, 2008) approach
to inference. Our objective function comprises pairwise likelihoods (which im-
plies the assumption that any two pairs of outcomes are independent). Specifi-
cally, we work with log composite likelihood

ℓcml(θ | y) =
∑

i∈{1,...,n−1}

j∈{i+1,...,n}

Ωij 6=0

log





1∑

j1=0

1∑

j2=0

(−1)kΦΩij (zij1 , zjj2)



 ,

where k = j1 + j2, ΦΩij denotes the cdf for the bivariate Gaussian distribution
with mean zero and correlation matrix

Ωij =

(
1 Ωij

Ωij 1

)
,

z•0 = Φ−1{F (y•)}, and z•1 = Φ−1{F (y• −1)}. Since this objective function, too,
is misspecified, bootstrapping or sandwich estimation is necessary.

3.1.4 Sandwich estimation for the DT and CML procedures

As we mentioned above, the DT and CML objective functions are misspecified,
and so the asymptotic covariance matrices of θ̂dt and θ̂cml have sandwich forms
(Godambe, 1960; Geyer, 2013). Specifically, we have

√
n(θ̂cml − θ) ⇒n N{0, I−1

cml
(θ)J cml(θ)I

−1
cml

(θ)}
√
n(θ̂dt − θ) ⇒n N{0, I−1

dt
(θ)J dt(θ)I

−1
dt

(θ)},

where I • is the appropriate Fisher information matrix and J • is the variance
of the score:

J •(θ) = V∇ℓ•(θ | Y ).

8



We recommend that J • be estimated using a parametric bootstrap, i.e, our
estimator of J • is

Ĵ •(θ) =
1

nb

nb∑

j=1

∇∇′ℓ•(θ̂• | Y (j)),

where nb is the bootstrap sample size and the Y (j) are datasets simulated from
our model at θ = θ̂•. This approach performs well and is considerably more
efficient computationally than a “full” bootstrap (it is much faster to approxi-

mate the score than to optimize the objective function). What is more, Ĵ •(θ)
is accurate for small bootstrap sample sizes (100 in our simulations). Package
sklarsomega makes the procedure even more efficient through parallelization.

3.2 A two-stage semiparametric approach for continuous

measurements

If the sample size is large enough, a two-stage semiparametric method (SMP)
may be used. In the first stage one estimates F nonparametrically. The empir-
ical distribution function F̂n(y) = n−1

∑
i 1{Yi ≤ y} is a natural choice for our

estimator of F , but other sensible choices exist. For example, one might employ
the Winsorized estimator

F̃n(y) =





ǫn if F̂n(y) < ǫn

F̂n(y) if ǫn ≤ F̂n(y) ≤ 1− ǫn

1− ǫn if F̂n(y) > 1− ǫn,

where ǫn is a truncation parameter (Klaassen et al., 1997; Liu et al., 2009). A
third possibility is a smoothed empirical distribution function

F̆n(y) =
1

n

∑

i

Kn(y − Yi),

where Kn is a kernel (Fernholz, 1991).
Armed with an estimate of F—F̂n, say—we compute ẑ, where ẑi = Φ−1{F̂n(yi)},

and optimize

ℓml(ω | ẑ) = −1

2
log |Ω| − 1

2
ẑ
⊤
Ω−1ẑ

to obtain ω̂. This approach is advantageous when the marginal distribution is
complicated, but has the drawback that uncertainty regarding the marginal dis-
tribution is not reflected in the (ML) estimate of ω̂’s variance. This deficiency
can be avoided by using a bootstrap sample {ω̂∗

1, . . . , ω̂
∗
nb
}, the jth element of

which can be generated by (1) simulating U∗
j from the copula at ω = ω̂; (2)

computing a new response Y ∗
j as Y ∗

ji = F̂−1
n (U∗

ji) (i = 1, . . . , n), where F̂−1
n (p)

is the empirical quantile function; and (3) applying the estimation procedure
to Y ∗

j . We compute sample quantiles using the median-unbiased approach rec-
ommended by Hyndman and Fan (1996). It is best to compute the bootstrap
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interval using the Gaussian method since that interval tends to have the desired
coverage rate while the quantile method tends to produce an interval that is
too narrow. This is because the upper-quantile estimator is inaccurate while
the bootstrap estimator of Vω̂ is rather more accurate. To get adequate per-
formance using the quantile method, a much larger sample size is required.

Although this approach may be necessary when the marginal distribution
does not appear to take a familiar form, two-stage estimation does have a sig-
nificant drawback, even for larger samples. If agreement is at least fair (see the
introduction to Section 4 for information regarding interpretation of agreement
coefficients), dependence may be sufficient to pull the empirical marginal distri-
bution away from the true marginal distribution. In such cases, simultaneous
estimation of the marginal distribution and the copula should perform better.
Development of such a method will be the aim of a future project.

3.3 Bayesian inference for interval or ratio scores

Since the Sklar’s ω likelihood is not available in the case of nominal or ordinal
scores, true Bayesian inference is infeasible for those levels of measurement. It
is possible, however, to do pseudo-Bayesian inference for discrete scores. This
entails using the appropriate CML or DT-based objective function in place of
the likelihood. Although sound theory supports this approach (Ribatet et al.,
2012), package sklarsomega does not support pseudo-Bayesian inference, for
two reasons. First, pseudo-Bayesian inference requires a curvature correction
because both the CML and the DT-based objective functions have too large a
curvature relative to the true likelihood; unfortunately, the curvature adjust-
ment is based on a time-consuming frequentist procedure. Second, we have no
reason to suspect that the (curvature-adjusted) pseudo-posterior will have (at
least approximately) the same shape as the true posterior.

Via function sklars.omega.bayes(), package sklarsomega does support
Bayesian inference for interval or ratio scores. The function’s signature appears
below.

sklars.omega.bayes(data, level = c("interval", "ratio"), verbose = FALSE,

control = list())

As we mentioned above, package sklarsomega currently supports gamma,
Gaussian, Laplace, and t marginal distributions for interval outcomes; and beta
and Kumaraswamy marginals for ratio outcomes.

The Sklar’s ω posterior is given by

π(θ | y) ∝ L(θ | y)p(θ),

where p(·) denotes a prior distribution and

L(θ | y) =
1

|Ω|1/2
exp[− 1

2z
⊤{Ω(ω)−1 − I}z]

∏
i f(yi | ψ)

.
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In the interest of striking a sensible balance between flexibility and usability,
we do not permit the user to specify p(θ). Instead, we assign an indepen-
dent, noninformative prior to each element of θ—i.e., p(θ) = p(ω)p(ψ) =
{∏m

k=1 p(ωk)}p(ψ1)p(ψ2). The prior for ωk (k = 1, . . . ,m) is standard uni-
form. Each of α, β, σ, ν, a, and b is given a G(0.01, 0.01) prior distribution.
And the prior for µ is Gaussian with mean zero and standard deviation 1,000.

As for sampling, we use a Gaussian random walk for each parameter, and
transform when necessary. The user can control the acceptance rates by adjust-
ing the standard deviations of the perturbations, which can be supplied to func-
tion sklars.omega.bayes() via argument control. Consider parameter α, for
example. To generate a proposal for α, we begin by drawing η∗ = η+N (0, σ1),
where η was obtained during the previous iteration. Then we take α∗ = exp(η∗),
which of course yields a log-normal proposal (necessitating the inclusion of the
ratio LN{α; log(α∗), σ1}/LN{α∗; log(α), σ1} in the Metropolis–Hastings accep-
tance probability). The proposal standard deviation σ1 can be set using the
syntax control = list(sigma.1 = 0.2), for example. This proposal scheme
is employed for all of the non-negative parameters, with σ1 the tuning parame-
ter for α, ν, and a; and σ2 the tuning parameter for β, σ, and b. Again, these
standard deviations can be set straightforwardly in the function call: control
= list(sigma.1 = 0.2, sigma.2 = 0.3); or they can be omitted, in which
case they default to the value 0.1.

Updates for the µ chain take the form of a Gaussian random walk: µ∗ =
µ +N (0, σj), where j = 1 if the marginal distribution is Gaussian or Laplace,
or j = 2 if the marginal distribution is T (ν, µ). The acceptance rate can be
modulated via control parameter sigma.1 (for a N or L marginal) or sigma.2
(for a T marginal).

Although we propose values for the ωk independently, we accept or reject
those proposals jointly so that |Ω| andΩ−1 need not be computed too frequently.
Each proposal begins with a Gaussian random step, η∗k = ηk +N (0, σωk

). Then
we apply the logistic function to map into the unit interval: ω∗

k = exp(η∗k)/{1+
exp(η∗k)}. This of course requires us to include the Jacobian exp(η∗k)/{1 +
exp(η∗k)}2 in the Metropolis–Hastings acceptance probability. The acceptance
rates can be adjusted by passing a vector of proposal standard deviations to
sklars.omega.bayes(), e.g., control = list(sigma.omega = c(0.1, 0.1,

0.3)) (in the case of dim(ω) = 3).
The remaining control parameters are dist (for selecting the marginal dis-

tribution), minit, maxit, and tol. Function sklars.omega.bayes() draws
at least minit posterior samples. We use 1,000 as the default, and minimum,
value for minit. Similarly, sklars.omega.bayes() draws at most maxit sam-
ples, with 10,000 as the default value.

Since the Markov chain tends to mix well, between 1,000 and 10,000 samples
are usually sufficient for obtaining stable estimates (of posterior means and of
DIC (Spiegelhalter et al., 2002)). We recommend using the fixed-width method
(Flegal et al., 2008) for determining when to stop sampling, and we provide con-
trol parameter tol for this purpose. In the fixed-width approach, one chooses
a small positive threshold ǫ and terminates sampling when all estimated coeffi-
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cients of variation are smaller than said threshold, where the estimated coeffi-
cient of variation for parameter θj is ĉvj = mcse(θ̂j)/|θ̂j |, with ‘mcse’ denoting
Monte Carlo standard error. That is, sampling terminates when ĉvj < ǫ for all
j ∈ {1, . . . , dim(θ)}. The user can set the threshold value via control parameter
tol, which defaults to 0.1. In the interest of computational efficiency, function
sklars.omega.bayes() computes Monte Carlo standard errors (using package
mcmcse) only every minit samples.

4 Illustrations

Here we illustrate the use of sklarsomega by applying Sklar’s ω to a couple
of datasets. Although our understanding of the agreement problem aligns with
that of Krippendorff’s α and other related measures (e.g., Spearman’s ρ, Cohen’s
κ, Scott’s π (Spearman, 1904; Cohen, 1960; Scott, 1955)), we shall adopt a
subtler interpretation of the results. According to Krippendorff (2012), social
scientists often feel justified in relying on data for which agreement is at or
above 0.8, drawing tentative conclusions from data for which agreement is at
or above 2/3 but less than 0.8, and discarding data for which agreement is less
than 2/3. We use the following interpretations instead (Table 1), and suggest—
as do Krippendorff and others (Artstein and Poesio, 2008; Landis and Koch,
1977)—that an appropriate reliability threshold may be context dependent.

Range of Agreement Interpretation
ω ≤ 0.2 Slight Agreement

0.2 < ω ≤ 0.4 Fair Agreement
0.4 < ω ≤ 0.6 Moderate Agreement
0.6 < ω ≤ 0.8 Substantial Agreement

ω > 0.8 Near-Perfect Agreement

Table 1: Guidelines for interpreting values of an agreement coefficient.

4.1 Nominal data analyzed previously by Krippendorff

Consider the following data, which appear in (Krippendorff, 2013). These are
nominal values (in {1, . . . , 5}) for twelve units and four coders. The dots repre-
sent missing values.

Note that all columns save the sixth are constant or nearly so. This suggests
near-perfect agreement, yet a Krippendorff’s α analysis of these data leads to
a weaker conclusion. Specifically, using the discrete metric d(x, y) = 1{x 6= y}
yields α̂ = 0.74 and bootstrap 95% confidence interval (0.39, 1.00). (We used
a bootstrap sample size of nb = 1,000, which yielded Monte Carlo standard
errors (MCSE) (Flegal et al., 2008) smaller than 0.001.) This point estimate
indicates merely substantial agreement, and the interval implies that these data
are consistent with agreement ranging from moderate to nearly perfect.

Now we apply our methodology, first loading package sklarsomega.
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

c1 1 2 3 3 2 1 4 1 2 • • •

c2 1 2 3 3 2 2 4 1 2 5 • 3
c3 • 3 3 3 2 3 4 2 2 5 1 •

c4 1 2 3 3 2 4 4 1 2 5 1 •

Figure 1: Some example nominal outcomes for twelve units and four coders,
with seven missing values.

R> library(sklarsomega)

sklarsomega: Measuring Agreement Using Sklar’s Omega Coefficient

Version 2.0 created on 2018-06-18.

Copyright (c) 2018 John Hughes

For citation information, type citation("sklarsomega").

Type help(package = sklarsomega) to get started.

Now we create the dataset as a matrix. Then we supply appropriate column
names. This is a necessary step since package function build.R() uses the
column names to create the copula correlation matrix (which we denoted as Ω
above but is denoted as R in the package documentation).

R> data = matrix(c(1,2,3,3,2,1,4,1,2,NA,NA,NA,

+ 1,2,3,3,2,2,4,1,2,5,NA,3,

+ NA,3,3,3,2,3,4,2,2,5,1,NA,

+ 1,2,3,3,2,4,4,1,2,5,1,NA), 12, 4)

R> colnames(data) = c("c.1.1", "c.2.1", "c.3.1", "c.4.1")

R> data

c.1.1 c.2.1 c.3.1 c.4.1

[1,] 1 1 NA 1

[2,] 2 2 3 2

[3,] 3 3 3 3

[4,] 3 3 3 3

[5,] 2 2 2 2

[6,] 1 2 3 4

[7,] 4 4 4 4

[8,] 1 1 2 1

[9,] 2 2 2 2

[10,] NA 5 5 5

[11,] NA NA 1 1

[12,] NA 3 NA NA

Function check.colnames() can be used to perform a (rudimentary) check
of the column names. This function returns a list comprising exactly two el-
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ements, success and cols. The former is a boolean that indicates appropri-
ateness or inappropriateness of the column names. If the column names are
appropriate, element cols is equal to NULL. Otherwise, col contains the num-
bers of the columns that failed the check.

R> (check.colnames(data))

$success

[1] TRUE

$cols

NULL

In the next example we introduce errors for columns 1 and 4. Then we
provide column names that pass the check but are illogical. Finally, we revert
to the correct names.

R> colnames(data) = c("c.a.1", "c.2.1", "c.3.1", "C.4.1")

R> (check.colnames(data))

$success

[1] FALSE

$cols

[1] 1 4

R> colnames(data) = c("g", "c.2.1", "c.1.47", "c.2.1")

R> (check.colnames(data))

$success

[1] TRUE

$cols

NULL

R> colnames(data) = c("c.1.1", "c.2.1", "c.3.1", "c.4.1")

Now we create the copula correlation matrix, display the portion of the ma-
trix that corresponds to the first two units, and verify that the matrix contains
exactly one parameter, namely, the inter-coder agreement coefficient (which has
the dummy value 0.1).

R> temp = build.R(data)

R> names(temp)

[1] "R" "onames"
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R> R = temp$R

R> R[1:7, 1:7]

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.0 0.1 0.1 0.0 0.0 0.0 0.0

[2,] 0.1 1.0 0.1 0.0 0.0 0.0 0.0

[3,] 0.1 0.1 1.0 0.0 0.0 0.0 0.0

[4,] 0.0 0.0 0.0 1.0 0.1 0.1 0.1

[5,] 0.0 0.0 0.0 0.1 1.0 0.1 0.1

[6,] 0.0 0.0 0.0 0.1 0.1 1.0 0.1

[7,] 0.0 0.0 0.0 0.1 0.1 0.1 1.0

R> temp$onames

[1] "inter"

Next we apply Sklar’s ω for nominal data. Since there are five categories,
function sklars.omega() automatically selects the DT approach. We do a full
bootstrap with sample size nb = 1,000. We do the bootstrapping in embarrass-
ingly parallel fashion, using six CPU cores on the local machine (hence type is
equal to "SOCK"). Since we set verbose equal to TRUE, a progress bar is shown.
The computation took 19 minutes and 21 seconds.

R> set.seed(99)

R> fit = sklars.omega(data, level = "nominal", confint = "bootstrap",

+ verbose = TRUE, control = list(bootit = 1000,

+ parallel = TRUE, nodes = 6))

Control parameter ’type’ must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed = 19m 21s

One can view a summary by passing the fit object to function summary.sklarsomega().

R> summary(fit)

Call:

sklars.omega(data = data, level = "nominal", confint = "bootstrap",

verbose = TRUE, control = list(bootit = 1000, parallel = TRUE,

nodes = 6))

Convergence:

Optimization converged at -40.42 after 31 iterations.

Control parameters:
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bootit 1000

parallel TRUE

nodes 6

dist categorical

type SOCK

Coefficients:

Estimate Lower Upper

inter 0.89420 0.77530 1.0130

p1 0.25170 0.02420 0.4792

p2 0.24070 0.09078 0.3907

p3 0.22740 0.07583 0.3790

p4 0.18880 0.03522 0.3424

p5 0.09136 -0.06572 0.2484

Our method produced ω̂ = 0.89 and ω ∈ (0.78, 1.00), which indicate near-
perfect agreement and at least substantial agreement, respectively. And our
approach, being model based, furnishes us with estimated probabilities for the
marginal categorical distribution of the response:

p̂ = (p̂1, p̂2, p̂3, p̂4, p̂5)
⊤ = (0.25, 0.24, 0.23, 0.19, 0.09)⊤.

Because we estimated ω and p simultaneously, our estimate of p differs sub-
stantially from the empirical probabilities, which are 0.22, 0.32, 0.27, 0.12, and
0.07, respectively.

Now we compute asymptotic (sandwich) intervals. This requires a much
shorter running time.

R> set.seed(12)

R> fit = sklars.omega(data, level = "nominal", confint = "asymptotic",

+ verbose = TRUE, control = list(bootit = 1000,

+ parallel = TRUE, nodes = 6))

Control parameter ’type’ must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed = 02m 03s

R> summary(fit)

Call:

sklars.omega(data = data, level = "nominal", confint = "asymptotic",

verbose = TRUE, control = list(bootit = 1000, parallel = TRUE,

nodes = 6))
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Convergence:

Optimization converged at -40.42 after 31 iterations.

Control parameters:

bootit 1000

parallel TRUE

nodes 6

dist categorical

type SOCK

Coefficients:

Estimate Lower Upper

inter 0.89420 0.76270 1.0260

p1 0.25170 0.01703 0.4864

p2 0.24070 0.01796 0.4635

p3 0.22740 0.04792 0.4069

p4 0.18880 -0.06715 0.4447

p5 0.09136 -0.16860 0.3513

The marked difference between our results and those obtained for Krippen-
dorff’s α can be attributed largely to the codes for the sixth unit. The relevant
influence statistics are

δα(•,−6) =
|α̂•,−6 − α̂|

α̂
= 0.15

and

δω(•,−6) =
|ω̂•,−6 − ω̂|

ω̂
= 0.09,

where the notation “•,−6” indicates that all rows are retained and column 6 is
left out. And so we see that column 6 exerts 2/3 more influence on α̂ than it
does on ω̂. Since α̂•,−6 = 0.85, inclusion of column 6 draws us away from what
seems to be the correct conclusion for these data.

Influence (DFBETA (Young, 2017)) statistics can be obtained using the
package’s influence() function, as illustrated below. Here we investigate the
influence of units 6 and 11, and of coders 2 and 3.

R> (inf = influence(fit, units = c(6, 11), coders = c(2, 3)))

$dfbeta.units

inter p1 p2 p3 p4 p5

6 -0.07914843 0.03438538 0.052599491 -0.05540904 -0.05820757 0.026631732

11 0.01096758 0.04546670 -0.007630807 -0.01626192 -0.01514173 -0.006432246
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$dfbeta.coders

inter p1 p2 p3 p4 p5

2 0.0579843781 -0.002743713 0.002974195 -0.02730064 0.01105672 0.01601343

3 -0.0008664934 -0.006572821 -0.048168128 0.05659853 0.02149364 -0.02335122

We conclude this illustration by simulating a dataset from the fitted model
and then converting the resulting vector to matrix form for display. Note that
row 12 was removed since, having only one score, it carries no information about
ω.

R> sim = simulate(fit, seed = 42)

R> data.sim = t(fit$data)

R> data.sim[! is.na(data.sim)] = sim[, 1]

R> data.sim = t(data.sim)

R> data.sim

c.1.1 c.2.1 c.3.1 c.4.1

[1,] 3 4 NA 3

[2,] 3 2 2 2

[3,] 3 3 3 3

[4,] 1 1 1 2

[5,] 3 4 3 4

[6,] 5 4 4 4

[7,] 2 2 1 2

[8,] 4 4 4 4

[9,] 1 2 1 1

[10,] NA 1 2 2

[11,] NA NA 2 2

4.2 Interval data from an imaging study of hip cartilage

The data for this example, some of which appear in Figure 2, are 323 pairs
of T2* relaxation times (a magnetic resonance quantity) for femoral cartilage
(Nissi et al., 2015) in patients with femoroacetabular impingement (Figure 3),
a hip condition that can lead to osteoarthritis. One measurement was taken
when a contrast agent was present in the tissue, and the other measurement
was taken in the absence of the agent. The aim of the study was to determine
whether raw and contrast-enhanced T2* measurements agree closely enough to
be interchangeable for the purpose of quantitatively assessing cartilage health.

u1 u2 u3 u4 u5 . . . u319 u320 u321 u322 u323

c1 27.3 28.5 29.1 31.2 33.0 . . . 19.7 21.9 17.7 22.0 19.5
c2 27.8 25.9 19.5 27.8 26.6 . . . 18.3 23.1 18.0 25.7 21.7

Figure 2: Raw and contrast-enhanced T2* values for femoral cartilage.
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Figure 3: An illustration of femoroacetabular impingement (FAI). Top left:
normal hip joint. Top right: cam type FAI. Bottom left: pincer type FAI.
Bottom right: mixed type.

We will carry out both maximum likelihood and Bayesian analyses for (a
subset of) these data, assuming L(µ, σ) and T (ν, µ) marginal distributions.

First we load the cartilage data, which are included in the package, and
apply the method of maximum likelihood for a Laplace marginal distribution.
The running time is just over one second.

R> data(cartilage)

R> data = as.matrix(cartilage)[1:100, ]

R> colnames(data) = c("c.1.1", "c.2.1")

R> fit1 = sklars.omega(data, level = "interval", confint = "asymptotic",

+ control = list(dist = "laplace"))

R> summary(fit1)

Call:

sklars.omega(data = data, level = "interval", confint = "asymptotic",

control = list(dist = "laplace"))

Convergence:

Optimization converged at -593.5 after 18 iterations.

Control parameters:
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dist laplace

Coefficients:

Estimate Lower Upper

inter 0.8077 0.7379 0.8776

mu 26.5100 26.3500 26.6700

sigma 4.7090 3.8630 5.5550

AIC: 1193

BIC: 1203

We see that θ̂ = (ω̂, µ̂, σ̂)⊤ = (0.81, 26.51, 4.71)⊤. This suggests that the
contrast-enhanced T2* values agree nearly perfectly with their raw counterparts.

Now we repeat the analysis for a t marginal distribution.

R> fit2 = sklars.omega(data, level = "interval", confint = "asymptotic",

+ control = list(dist = "t"))

R> summary(fit2)

Call:

sklars.omega(data = data, level = "interval", confint = "asymptotic",

control = list(dist = "t"))

Convergence:

Optimization converged at -608.7 after 18 iterations.

Control parameters:

dist t

Coefficients:

Estimate Lower Upper

inter 0.8701 0.8224 0.9179

nu 7.0280 5.2130 8.8430

mu 23.4400 22.2400 24.6400

AIC: 1223

BIC: 1233

This led to a considerably larger value for ω̂ and, given the two confidence
intervals, a stronger conclusion for these data. But we must select the Laplace
model since that model yielded much smaller values of AIC and BIC. In fact,
the model probability (Burnham et al., 2011) is near zero.

20



R> aic = c(AIC(fit1), AIC(fit2))

R> (pr = exp((min(aic) - max(aic)) / 2))

[1] 2.516706e-07

Finally, we apply the Bayesian methodology described in Section 3.3. We
begin by assuming a Laplace marginal model once again.

R> set.seed(111111)

R> fit1 = sklars.omega.bayes(data, verbose = FALSE,

+ control = list(dist = "laplace", minit = 1000,

+ maxit = 5000, tol = 0.01, sigma.1 = 1, sigma.2 = 0.1,

+ sigma.omega = 0.2))

R> summary(fit1)

Call:

sklars.omega.bayes(data = data, verbose = FALSE, control = list(dist = "laplace",

minit = 1000, maxit = 5000, tol = 0.01, sigma.1 = 1, sigma.2 = 0.1,

sigma.omega = 0.2))

Number of posterior samples: 4000

Control parameters:

dist laplace

minit 1000

maxit 5000

tol 0.01

sigma.1 1

sigma.2 0.1

sigma.omega 0.2

Coefficients:

Estimate Lower Upper MCSE

inter 0.8079 0.7366 0.8695 0.002111

mu 26.4600 25.7100 27.1400 0.011310

sigma 4.7990 3.9730 5.6970 0.025410

DIC: 1193

We see that sampling terminated when 4,000 samples had been drawn, since
that sample size yielded ĉvj < 0.01 for j ∈ {1, 2, 3}. As a second check we exam-
ine the plot given in Figure 4, which shows the estimated posterior mean for ω as
a function of sample size. The estimate evidently stabilized after approximately
2,500 samples had been drawn.
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Figure 4: A plot of estimated posterior mean versus sample size for ω, having
assumed a Laplace marginal distribution.

The proposal standard deviations (1 for µ, 0.1 for σ, and 0.2 for ω) led to
sensible acceptance rates of 40%, 60%, and 67%.

R> fit1$accept

inter mu sigma

0.6694174 0.4013503 0.5951488

For a t marginal distribution only 3,000 samples were required.

R> set.seed(4565)

R> fit2 = sklars.omega.bayes(data, verbose = FALSE,

+ control = list(dist = "t", minit = 1000,

+ maxit = 5000, tol = 0.01, sigma.1 = 0.2,

+ sigma.2 = 2, sigma.omega = 0.2))

R> summary(fit2)

Call:

sklars.omega.bayes(data = data, verbose = FALSE, control = list(dist = "t",

minit = 1000, maxit = 5000, tol = 0.01, sigma.1 = 0.2, sigma.2 = 2,

sigma.omega = 0.2))
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Number of posterior samples: 3000

Control parameters:

dist t

minit 1000

maxit 5000

tol 0.01

sigma.1 0.2

sigma.2 2

sigma.omega 0.2

Coefficients:

Estimate Lower Upper MCSE

inter 0.874 0.8283 0.919 0.002054

nu 6.720 5.0210 8.424 0.053200

mu 23.450 22.2600 24.690 0.028070

DIC: 1224

Note that the Laplace model yielded a much smaller value of DIC, and hence
a very small relative likelihood for the t model.

R> dic = c(fit1$DIC, fit2$DIC)

R> (pr = exp((min(dic) - max(dic)) / 2))

[1] 1.852924e-07

5 Summary and discussion

Sklar’s ω offers a flexible, principled, complete framework for doing statistical
inference regarding agreement. In this article we described three frequentist ap-
proaches to inference for Sklar’s ω as well as a Bayesian methodology for interval
or ratio outcomes. All of these approaches are supported by R package sklar-

somega, version 2.0 of which is available from the Comprehensive R Archive
Network. As illustrated in the preceding section, package sklarsomega also
offers much useful related functionality.

Computational details

The results in this paper were obtained using R 3.3.3 with the extraDistr 1.8.9
package, the hash 2.2.6 package, the LaplacesDemon 16.0.1 package, the
Matrix 1.2.8 package, the mcmcse 1.3.2 package, the numDeriv 2014.2.1
package, the spam 1.3.0 package, and the pbapply 1.3.2 package. R itself
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and all packages used are available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org.
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