Package ‘stevedore’

January 2, 2019
Title Docker Client
Version 0.9.1

Description Work with containers over the Docker API. Rather than
using system calls to interact with a docker client, using the
API directly means that we can receive richer information from
docker. The interface in the package is automatically generated
using the 'OpenAPI' (a.k.a., 'swagger') specification, and all
return values are checked in order to make them type stable.

License MIT + file LICENSE
URL https://github.com/richfitz/stevedore

BugReports https://github.com/richfitz/stevedore/issues

Imports crayon,
curl (>=2.3.0),
jsonlite,
yaml (>= 2.1.18)

Suggests knitr,
openssl,
redux,
reticulate,
rmarkdown,
testthat,
withr

SystemRequirements docker
RoxygenNote 6.1.1
VignetteBuilder knitr
Encoding UTF-8
ByteCompile TRUE
Language en-GB

https://github.com/richfitz/stevedore
https://github.com/richfitz/stevedore/issues

2

docker_available

R topics documented:

docker_available e 2
docker_client e e e e 3
docker_config _collection L 6
docker_container e e e e 6
docker_container_collection e 7
docker_€Xec e 7
docker_image 8
docker_image_collection L 8
docker_network e 8
docker_network_collection e e 9
docker_node e e 9
docker_node_collection 10
docker_plugin L 10
docker_plugin_collection 10
docker_secret_collection e e 11
docker_ServiCe e 11
docker_service_collection e 12
docker_swarm_collection e e 12
docker_task e e e 12
docker_task_collection 13
docker_types e e e 13
docker_volume e 14
docker_volume_collection e e 14
stevedore L e e e 15
Index 16
docker_available Test if docker available
Description

Test if we can construct a docker client and confirm that we can communicate with it. This is
intended to help in debug connection issues, and also for use in tests. For example, you might
implement a testthat skip test that skips if stevedore: :docker_available() returns FALSE to
conditionally use stevedore/docker within tests.

Usage

docker_available(..., verbose = FALSE)

Arguments

Passed through to docker_client (e.g., api_version, host).

verbose Logical, indicating if information should be printed about failures to connect. If

FALSE (the default) the function runs silently.

docker_client 3

Details

Reasons for failure to connect might include:

* You do not have a docker daemon running

* You have docker installed but the socket in a non-standard place and have not adjusted envi-
ronment variables accordingly

* You do not have permission to write to the docker socket

* You are on windows and the required python packages to get everything working there are not
present or configured correctly

» There are problems arranging verification over https/tls.

If versose is TRUE then some diagnostic information will be printed.

Value

Logical scalar, TRUE if docker_client(...) would succeed.

Examples

Is docker available on your system?
stevedore: :docker_available()

docker_client Create docker client

Description

Create a docker client object, which allows you to interact with docker from R. The object has
several methods that allow interaction with the docker daemon (for this object they are all "system"
commands) and collections, which contains further methods. The client is structured similarly to
the docker command line client, such that docker container create <args> in the command
line becomes docker$container$create(...) in R (if the client is called R).

Usage

docker_client(..., api_version = NULL, host = NULL, cert_path = NULL,
tls_verify = NULL, machine = NULL, http_client_type = NULL,
data_frame = NULL, quiet = FALSE, debug = NULL,
ignore_environment = FALSE)

4 docker_client

Arguments

Reserved for future use. Passing in any unrecognised argument will throw an
error. Part of the role of this argument is to force use of named arguments until
the API is stabilised.

api_version Version of the API to use when communicating with the docker daemon. The
default value, NULL, detects the docker server API version and attempts to match
it (this mirrors the default behaviour of the docker command line client). Alter-
natively, provide an API version number as a string or numeric_version object
(supported between 1.25 and 1.39). The version 1.29 is the version used in most
automated tests, and if problems are encountered, consider forcing this version).

host The URL for the docker daemon. This can be a unix socket (e.g., unix:///var/run/docker.sock)
on macOS/Linux, a named pipe (e.g., npipe:////./pipe/docker_engine) on
Windows, or an http or https url (e.g., https://localhost:2376). If not given,
we use the environment variable DOCKER_HOST, falling back on the default socket
or named pipe (for macOS/unix and windows respectively).

cert_path The path to a directory containing certificate files. If using an https url this
is required. If not given, we use the environment variable DOCKER_CERT_PATH.
This is ignored without warning if used with a socket or named pipe connection.

tls_verify Logical, indicating if TLS should be verified. This is only used if using an https
connection (i.e., host is a tcp/http/https url andcert_path is given). If not given,
we use the environment variable DOCKER_TLS_VERIFY.

machine Scalar character (if provided) indicating the name of a "docker machine" in-
stance to use. If this is provided then docker-machine must be installed and the
machine must exist and be running. stevedore will run docker-machine env machine
to determine the environment variables to contact this machine and use these
values for host, cert_path and tls_verify (silently ignoring any provided
values). Carl Boettiger is working on a docker machine package for R that
would make managing docker machines from R easier. As an alternative to
this option, one can set docker-machine environment variables as described in
docker-machine env before running R and they would be picked up as de-
scribed above.

http_client_type
HTTP client type to use. The options are (currently) "curl", which uses the curl
package (works over unix sockets and over TCP) and httppipe which works
over unix sockets and windows named pipes, using the Docker SDK’s pipe code
via the httppipe package. Not all functionality is supported with the httppipe
client. This option may eventually be moved into the ... argument as is not
intended for end-user use; it is primarily intended for debugging in develop-
ment (forcing the httppipe client where the curl client would ordinarily be
preferred).

data_frame Function, used to wrap data.frames returned. This may make output easier to
consume. You mightuse tibble::as_tibbletoreturna tbl_df ordatatable::as.data.table
to return data. table objects. This will be applied to all data.frames after they
are constructed, and so must take a single argument (the newly constructed
data.frame) and return a new object that is largely compatible with data.frame.
Another use for this would be to define a function data_frame = function(x)

https://github.com/cboettig/dockermachine

docker_client 5

structure(x, class = c("foo”, "data.frame")) to set the class of all
returned data.frame objects to be "foo" as well and then defining a custom S3
print method for "foo" that limited the output.

quiet Suppress informational messages.

debug Enable http debugging (supported by the curl http driver only). Provide a con-
nection object and http headers and content will be sent to it. Using debug = TRUE
is equivalent to code = stdout(), while debug = FALSE is equivalent to

debug = NULL (the default) which prevents debugging information being printed.
This option can be used to write to a file by opening a writeable connection but
care must be made not to close this connection because otherwise the curl re-
quests may fail.

ignore_environment
Logical, indicating if environment variables (DOCKER_HOST, DOCKER_CERT_PATH,
DOCKER_TLS_VERIFY and DOCKER_API_VERSION) should be ignored (this has no
effect if machine is specified).

Details

(automatic help generation has failed)

Connection options

stevedore can connect to the docker daemon via a unix socket (this is the default set-up on Linux
and macOS), over a named pipe (Windows 10 - see below) and https over a normal tcp connection
(this is especially useful with docker-machine.

1. If the machine argument is given then stevedore queries docker-machine for settings. If that
command fails (e.g., there is no machine, docker-machine not installed) then that will cause
an error. (Note that the docker-machine output does not include API version information so
the api_version argument is relevant, but host, cert_path and t1s_verify will be silently
ignored if provided).

2. The arguments host overrides the environment variable DOCKER_HOST, cert_path overrides
DOCKER_CERT_PATH and t1s_verify overrides DOCKER_TLS_VERIFY.If ignore_environment
is TRUE then the environment variables are not used at all.

3. if code is not provided by any of the above methods (machine, argument or environment
variable) it will fall back on the default unix socket (var/run/docker. sock) on Linux/macOS
or the default windows named pipe (npipe:////./pipe/docker_engine) on windows.

The API version is set by the api_version argument, which falls back on the environment variable
DOCKER_API_VERSION (this is the same as the docker command line client and the python SDK).
If neither are provided then stevedore will detect the API version being used by the daemon and
match that (provided it falls within the range of versions supported by the package).

Examples

if (stevedore::docker_available()) {
Create a new client object:
client <- stevedore::docker_client()

https://docs.docker.com/machine/

6 docker_container

Version information for your docker daemon:
client$version()

General information about your daemon:
client$info()

Most of the interesting methods are within the collections.
For example, to see a summary of running containers:

client$container$list()

(see ?docker_container) for more information.

docker_config_collection
Management commands for working with swarm configs

Description
Methods for managing docker swarm configurations. This objectis $config within a docker_client
object.

Details

(automatic help generation has failed)

See Also

docker_swarm_collection for management commands for the swarm itself, and docker_secret_collection
for a similar interface for configuring sensitive configurations.

docker_container Management commands for working with a particular docker con-
tainer

Description
Methods for working with a particular docker container. Container objects are returned by creating
or running a docker container, or by using $container$get to fetch an existing container by name
or id.

Details

(automatic help generation has failed)

See Also

docker_container_collection for other container management methods.

docker_container_collection 7

docker_container_collection
Management commands for working with docker containers

Description

Methods for working with docker containers. This object is $container within a docker_client
object.

Details

(automatic help generation has failed)

See Also

docker_container for information on container objects.

docker_exec Commands for working with a docker exec instance

Description

Methods for working with docker "exec" instances, which are returned by running exec on a run-
ning container

Details

(automatic help generation has failed)

See Also

docker_container

8 docker network

docker_image Management commands for working with a particular docker image

Description

Methods for working with a particular docker image. Image objects are returned by building or
pulling a docker image, or by using $image$get to fetch an existing image by name or id.

Details

(automatic help generation has failed)

See Also

docker_image_collection for other image management methods.

docker_image_collection
Management commands for working with docker images

Description

Methods for working with docker images. This object is $image within a docker_client object.

Details

(automatic help generation has failed)

See Also

docker_image for information on image objects.

docker_network Management commands for working with a particular docker network

Description

Methods for working with a particular docker network. Network objects are returned by creating a
docker network, or by using $networks$get to fetch an existing network by name or id.

Details

(automatic help generation has failed)

See Also

docker_network_collection for other network management methods.

docker_network_collection 9

docker_network_collection
Management commands for working with docker networks

Description

Methods for working with docker networks. This object is $network within a docker_client
object.

Details

(automatic help generation has failed)

See Also

docker_network for information on network objects.

docker_node Management commands for working with a particular docker node

Description

Methods for working with a particular docker node. Node objects are by using $node$get to fetch
an existing node by name or id.

Details

(automatic help generation has failed)

See Also

docker_node_collection for other node management methods.

10 docker_plugin_collection

docker_node_collection
Management commands for working with swarm nodes

Description

Methods for managing docker swarm nodes. This object is $node within a docker_client object.

Details

(automatic help generation has failed)

See Also

docker_swarm_collection for management commands for the swarm itself.

docker_plugin Management commands for working with a particular docker plugin

Description

Methods for working with a particular docker plugin. Plugin objects are returned by installing or
building a docker plugin, or by using $pluginsget to fetch an existing plugin by name or id.

Details

(automatic help generation has failed)

See Also

docker_plugin_collection for other plugin management methods.

docker_plugin_collection
Management commands for working with docker plugins

Description

Methods for working with docker plugins. This object is $plugin within a docker_client object.

Details

(automatic help generation has failed)

See Also

docker_plugin for information on plugin objects.

docker_secret_collection 11

docker_secret_collection
Management commands for working with swarm secrets

Description

Methods for managing docker swarm secrets. This object is $secret within a docker_client
object.

Details

(automatic help generation has failed)

See Also

docker_swarm_collection for management commands for the swarm itself, and docker_config_collection
for a similar interface for configuring non-sensitive configurations.

docker_service Management commands for working with a particular docker service

Description

Methods for working with a particular docker service. Service objects are returned by creating a
docker service, or by using $service$get to fetch an existing service by name or id.

Details

(automatic help generation has failed)

See Also

docker_service_collection for other service management methods.

12 docker task

docker_service_collection
Management commands for working with docker services

Description

Methods for working with docker services. This object is $service within a docker_client ob-
ject.

Details

(automatic help generation has failed)

See Also

docker_service for information on service objects.

docker_swarm_collection
Management commands for working with docker swarm

Description

Methods for managing the docker swarm. This object is $swarm within a docker_client object.

Details

(automatic help generation has failed)

docker_task Management commands for working with a particular docker task

Description

Methods for working with a particular docker task. Task objects are returned by using $task$get
to fetch an existing task by name or id, or $tasks from a docker_service object representing a
docker service.

Details

(automatic help generation has failed)

See Also

docker_task_collection for other task management methods.

docker_task_collection 13

docker_task_collection
Management commands for working with docker tasks

Description

Methods for working with docker tasks. This object is $task within a docker_client object.

Details

(automatic help generation has failed)

See Also

docker_task for information on task objects.

docker_types Constructors for complex types

Description

Methods for building complex docker types. This is most objects more complicated than R’s atomic
types. Most functions will indicate if they require one of these objects in their help. None of these
functions do anything interesting in their own regard - they just validate inputs.

Details

The functions here will all depend on the API versions - some of the most fluid parts of the docker
API are the different options that are supported via things like host_config.

These functions are needed because stevedore aims to be a fairly direct wrapping around the
docker API. For most of the single host methods the types here are not really used (with the notable
exception of host_config which is used by $container$create and $container$update). But
for the swarm endpoints the function definitions would be impossibly complex if we did not reflect
the types. So rather than one function call with a hundred arguments, we can build up the required

types.

(automatic help generation has failed)

14 docker_volume_collection

docker_volume Management commands for working with a particular docker volume

Description

Methods for working with a particular docker volume. Volume objects are returned by creating a
docker volume, or by using $volume$get to fetch an existing volume by name or id.

Details

(automatic help generation has failed)

See Also

docker_volume_collection for other volume management methods.

docker_volume_collection
Management commands for working with docker volumes

Description

Methods for working with docker volumes. This object is $volume within a docker_client object.

Details

(automatic help generation has failed)

See Also

docker_volume for information on volume objects.

stevedore 15

stevedore Docker Client For R

Description

stevedore implements a docker client for R. Docker is a framework for "containerisation" - ab-
stracting the details of how software is installed and run. It is conceptually similar to virtualisation
but much lighter weight.

Details

Within the R space containers have been discussed for:

Reproducible research: collecting all dependencies for an analysis into an image that can be run by
other people without installation headaches.

Testing packages: Collect all the requirements of a package together and run your tests in an isolated
environment.

Containers can also be used to construct larger applications with multiple processes that need to
talk to each other - for example a database, API server and proxy server. One might also implement
something like a set of shiny servers that are load balanced through a proxy!

This package provides a complete interface to docker allowing you to basically everything that can
be done from the command line from within R. All communication happens over docker’s HTTP
API and does not use system commands. As a result, the information returned back to R is richer and
the interface is likely to be reliable than parsing the command line output. stevedore’s interface is
largely automatically generated so will track new features available in the docker daemon closely.

The interface is designed to be similar to docker’s command link API - the command for creating a
network on the command line is

docker network create mynetwork
and in stevedore can be done as

docker <- stevedore::docker_client()
docker$network$create("mynetwork™)

Familiarity with the command line interface will be helpful but probably as much because of the
concepts as the details.

To get started, please see the package vignette - running vignette("stevedore”) will work if the
package was installed with the vignettes, or see https://richfitz.github.io/stevedore. A
good place to get started with the reference documentation is the docker_client function.

https://richfitz.github.io/stevedore

Index

docker_available, 2
docker_client, 3, 3, 615
docker_config_collection, 6, 11
docker_container, 6, 7
docker_container_collection, 6,7
docker_exec, 7

docker_image, 8, 8
docker_image_collection, 8, 8
docker_network, 8, 9
docker_network_collection, 8,9
docker_node, 9
docker_node_collection, 9, 10
docker_plugin, 10, 10
docker_plugin_collection, 10, 10
docker_secret_collection, 6, 11
docker_service, 11, 12
docker_service_collection, 11,12
docker_swarm_collection, 6, 10, 11, 12
docker_task, 12, 13
docker_task_collection, /2, 13
docker_types, 13
docker_volume, /4, 14
docker_volume_collection, /4, 14

numeric_version, 4

stevedore, 15
stevedore-package (stevedore), 15

16

	docker_available
	docker_client
	docker_config_collection
	docker_container
	docker_container_collection
	docker_exec
	docker_image
	docker_image_collection
	docker_network
	docker_network_collection
	docker_node
	docker_node_collection
	docker_plugin
	docker_plugin_collection
	docker_secret_collection
	docker_service
	docker_service_collection
	docker_swarm_collection
	docker_task
	docker_task_collection
	docker_types
	docker_volume
	docker_volume_collection
	stevedore
	Index

