
sybil – Efficient Constrained Based
Modelling in R

Gabriel Gelius-Dietrich

October 10, 2012

Contents

1 Introduction 2

2 Installation 2

3 Input files 2
3.1 Tabular form . 2

3.1.1 Field and entry delimiter . 3
3.1.2 Model description . 3
3.1.3 Metabolite list . 4
3.1.4 Reaction list . 4
3.1.5 How to write a reaction equation string 5

3.2 SBML . 8

4 Usage 8
4.1 Documentation . 8
4.2 Reading a model in tabular form . 8
4.3 Flux-balance analysis . 9
4.4 Minimize total flux . 13
4.5 Genetic perturbations . 14
4.6 Flux variablility analysis . 18
4.7 Robustness analysis . 19
4.8 Parallel computing . 20
4.9 Optimization software . 21
4.10 Setting parameters to the optimization software 22

4.10.1 GLPK . 22
4.10.2 IBM ILOG CPLEX . 22
4.10.3 COIN-OR Clp . 22
4.10.4 lpSolveAPI . 22

1

4.11 Setting parameters in sybil . 23
4.11.1 Solver software specific . 23
4.11.2 Analysis specific . 24

5 Central data structures 24
5.1 Class modelorg . 24
5.2 Class optsol . 26
5.3 Class optObj . 28
5.4 Class sysBiolAlg . 31

5.4.1 Constructor methods . 32
5.4.2 New algorithms . 32

1 Introduction

The R-package SyBiL is a Systems Biology Library for R, implementing algorithms for
constraint based analysis of metabolic networks. Among other functions, SyBiL currently
provides efficient methods for flux-balance analysis (FBA), minimization of metabolic
adjustment (MOMA) and regulatory on/off minimization (ROOM).

The package SyBiL makes use of the sparse matrix implementation in the R-package
Matrix available from CRAN1, or, from R version 2.14.0 on, is already included in your
R installation.

2 Installation

The package SyBiL itself depends on an existing installation of the package Matrix. In
order to run optimizations, at least one of the following additional R-packages and the
corresponding libraries are required: glpkAPI, cplexAPI, clpAPI or lpSolveAPI. These
packages are also available from CRAN1.

3 Input files

Input files for SyBiL are text files containing a description of the metabolic model to
analyse. These descriptions are basically lists of reactions. Two fundamentally different
types of text files are supported: i) in tabular form (section 3.1), or ii) in SBML format
(section 3.2).

3.1 Tabular form

Models in tabular form can be read using the function readTSVmod and written using
the function modelorg2tsv. Each metabolic model description consits of three tables:

1. A model description, containing a model name, the compartments of the model
and so on (section 3.1.2).

1http://www.r-project.org/

2

http://www.r-project.org/

2. A list of all metabolites (section 3.1.3).

3. A list of all reactions (section 3.1.4).

A model must contain at least a list of all reactions. All other tables are optional. The
tables contain columns storing the required data. Some of these columns are optional,
but if a certain table exists, there must be a minimal set of columns. The column names
(the first line in each file) are used as keywords and cannot be changed.

3.1.1 Field and entry delimiter

There are two important variables in connection with text based tables: The fields
(columns) of the tables are separated by a variable fielddelim. If a single entry of a
field contains a list of entries, they are separated by a variable entrydelim. The default
values are given in the table below.

fielddelim \t

entrydelim ,

The default behavior is, that the columns of each table are separated by a single tab

character. If a column entry helds more than one entry, they are separated by a comma
folowed by a single whitespace (not a tab!).

3.1.2 Model description

Every column in this table can have at most one entry, meaning each entry will be a
single character string. If a model description file is used, there should be at least the two
columns name and id. If they are missing—or if no model description file is used—they
will be set to the file name of the reaction list, which must be there (any file name
extension and the string _react at the end of the file name, will be removed).

name A single character string giving the model name. If this field is empty, the filename
of the reaction list is used.

id A single character string giving the model id. If this field is empty, the filename of
the reaction list is used.

description A single character string giving a model description (optional).

compartment A single character string containing the compartment names. The names
must be separated by fielddelim (optional).

abbreviation A single character string containing the compartment abbreviations. The
abbreviations must be in square brackets and separated by fielddelim as mentioned
above (optional).

Nmetabolites A single integer giving the number of metabolites in the model (optional).

Nreactions A single integer giving the number of reactions in the model (optional).

3

Ngenes A single integer giving the number of independent genes in the model (optional).

Nnnz A single integer giving the number of non-zero elements in the stoichiometric
matrix of the model (optional).

The file Ec_core_desc.tsv (in extdata/) contains an exemplarily table for the core
energy metabolism of E. coli [Palsson, 2006, Orth et al., 2010a].

3.1.3 Metabolite list

This table is used in order to match metabolite id’s given in the list of reactions to long
metabolite names. This table is optional, but if it is used, the columns abbreviation

and name should not be empty.

abbreviation A list of single character strings containing the metabolite abbreviations.

name A list of single character strings containing the metabolite names.

compartment A list of character strings containing the metabolite compartment names.
Each entry can contain more than one compartment name, separated by fielddelim

(optional, currently unused).

The file Ec_core_met.tsv (in extdata/) contains an exemplarily table for the core
energy metabolism of E. coli [Palsson, 2006, Orth et al., 2010a].

3.1.4 Reaction list

This table contains the reaction equations used in the metabolic network.

abbreviation A list of single character strings containing the reaction abbreviations
(optional, if empty, a warning will be produced). Entries in the field abbreviation
are used as reaction id’s, so they must be unique. If they are missing, they will be
set to vi, i ∈ {1, . . . , n} ∀i with n beeing the total number of reactions).

name A list of single character strings containing the reaction names (optional, if empty,
the reaction id’s (abbreviations) are used as reaction names.

equation A list of single character strings containing the reaction equation. See sec-
tion 3.1.5 for a description of reaction equation strings.

reversible A list of single character strings making a particular reaction reversible or
not. If the entry is Reversible or TRUE, the reaction is considered as reversible,
otherwise not. If this column is not used, the arrow symbol of the reaction string is
used (optional).

compartment A list of character strings containing the compartment names in which
the current reaction takes place. Each entry can contain more than one name,
separated by fielddelim (optional, currently unused).

4

lowbnd A list of numeric values containing the lower bounds of the reaction rates. If
not set, zero is used for an irreversible reaction and the value of def_bnd * -1

for a reversible reaction. See documentation of the function readTSVmod for the
argument def_bnd (optional).

uppbnd A list of numeric values containing the upper bounds of the reaction rates. If not
set, the value of def_bnd is used. See documentation of the function readTSVmod

for the argument def_bnd (optional).

obj coef A list of numeric values containing objective values for each reaction (optional,
if missing, zero is used).

rule A list of single character strings containing the gene to reaction associations (op-
tional).

subsystem A list of character strings containing the reaction subsystems. Each reaction
can belong to more than one subsystem. The entries are separated by fielddelim

(optional).

The file Ec_core_react.tsv (in extdata/) contains an exemplarily table for the core
energy metabolism of E. coli [Palsson, 2006, Orth et al., 2010a].

3.1.5 How to write a reaction equation string

Any reaction string can be written without whitespaces. They are not required but
showed here, in order to make the string more human readable.

Compartment Flag Each reaction string can start with a compartment flag in square
brackets followed by a colon. The compartment flag here gives the location of all
metabolites appearing in the reaction.

[c] :

The compartment flag can consist of more than one letter and—if used—must be an
element of the field abbreviation in the model description. The letter b is reserved for
boundary metabolites, which can be transported inside the system (those metabolites
are only used in closed systems and will be removed during file parsing).

If the reaction string does not start with a compartment flag, the flag can be appended
(without whitespace) to each metabolite id (e. g. for transport reactions):

h2o[e] <==> h2o[c]

If no compartment flag is found, it is set to [unknown].

5

Ab Ae Ac Bc

Dc

Cc

Ec

Ce

Ee

Cb

Eb

b1 v1 v2

v3

v6

v4 v5

v7

b2

b3organism’s membrane

system boundary

closed networkA

Ab Ae Ac Bc

Dc

Cc

Ec

Ce

Ee

Cb

Eb

b1 v1 v2

v3

v6

v4 v5

v7

b2

b3organism’s membrane

system boundary

open networkB

Figure 1: Simple example network. A) showing a closed network, B) an open network.
Capital letters are used as metabolite id’s, lower case letters are used as
compartment id’s: b: boundary metabolite, c: cytosol and e: external metabolite.
Internal reactions are named v1:7, transport reactions b1:3. Reactions v3 and v4
are reversible, all others are irreversible.

Reaction Arrow All reactions must be written in the direction educt to product, so
that all metabolites left of the reaction arrow are considered as educts, all metabolites on
the right of the reaction arrow are products.

The reaction arrow itself consits of one or more = or - symbols. The last symbol must
be a >. If a reaction arrow starts with <, it is taken as reversible, if the field reversible

in the reaction list is empty. Each reaction must contain exactly one reaction arrow.

Stoichiometric Coefficients Stoichiometric coefficients must be in round brackets in
front of the corresponding metabolite:

(2) h[c] + (0.5) o2[c] + q8h2[c] --> h2o[c] + (2) h[e] + q8[c]

Putting the stoichiometric coefficient in brackets makes it possible for the metabolite id
to start with a number.

6

Examples A minimal reaction list without compartment flags for figure 1B (open
network):

equation

A --> B

B <==> D

D <==> E

B --> C

--> A

C -->

E -->

The same as above including compartment flags and external metabolites and all transport
reactions for figure 1A (closed network). The reactions which take place in only one
compartment (do not include a transport of metabolites accross membranes) have their
compartment flag at the beginning of the line ([c] in this example). For transport
reactions all metabolites have their own compartment flag, e. g. in line 5 metabolite A is
transported from compartment [e] (external) to compartment [c] (cytosol):

equation

[c]: A --> B

[c]: B <==> D

[c]: D <==> E

[c]: B --> C

A[e] --> A[c]

C[c] --> C[e]

E[c] --> E[e]

A[b] --> A[e]

C[e] --> C[b]

E[e] --> E[b]

The same as above including reaction id’s for figure 1 (fields are separated by tabulators):

abbreviation equation

v2 [c]: A --> B

v3 [c]: B <==> D

v4 [c]: D <==> E

v6 [c]: B --> C

v1 A[e] --> A[c]

v7 C[c] --> C[e]

v5 E[c] --> E[e]

b1 A[b] --> A[e]

b3 C[e] --> C[b]

b2 E[e] --> E[b]

7

3.2 SBML

In order to read model files written in SBML, the package sybilSBML is required (which
is also available from available from the SyBiL homepage2.

4 Usage

Load SyBiL in a running R session:

> library(sybil)

4.1 Documentation

Get a list of all functions provided with SyBiL:

> library(help = "sybil")

Get details of the usage of a particular function in SyBiL (e. g. doubleGeneDel()):

> help(doubleGeneDel)

Search through help files for a specific topic (e. g. “flux variablilty analysis”):

> help.search("flux variablilty analysis")

Open this vignette:

> vignette("sybil")

In the following, it is assumed, that package glpkAPI is installed additionally to SyBiL,
thus GLPK is used as optimization software.

4.2 Reading a model in tabular form

The package SyBiL can read metabolic network models written in tabular form as
described in section 3.1. A reconstruction of the central metabolism of E. coli [Orth
et al., 2010a, Palsson, 2006] is included as an example dataset. The example dataset
consists of three files:

1. Ec_core_desc.tsv containing the model description,

2. Ec_core_met.tsv containing the metabolite list and

3. Ec_core_react.tsv containing the reaction list.

These files are located in the directory extdata/ in the package SyBiL. The exact location
of the files can be retrieved with the system.file() command:

2http://www.cs.uni-duesseldorf.de/AG/BI/Software/SyBiL

8

http://www.cs.uni-duesseldorf.de/AG/BI/Software/SyBiL

> mp <- system.file(package = "sybil", "extdata")

Now the model files und can be read in by using the comand readTSVmod:

> mod <- readTSVmod(prefix = "Ec_core", fpath = mp, quoteChar = "\"")

> mod

model name: Ecoli_core_model

number of compartments 2

C_c

C_e

number of reactions: 95

number of metabolites: 72

number of unique genes: 137

objective function: 1 * Biomass_Ecoli_core_w_GAM

If the fields in the input files for readTSVmod are quoted, use the argument quoteChar

The value of quoteChar is passed to the argument quote of the function read.table.
Models (instances of class modelorg, see section 5.1) can be converted to files in tabular
form with the command modelorg2tsv:

> modelorg2tsv(mod, prefix = "Ec_core")

Load the example dataset included in SyBiL.

> data(Ec_core)

The example model is a ‘ready to use’ model, it contains a biomass objective function
and an uptake of glucose [Orth et al., 2010a, Palsson, 2006]. It is the same model as used
in the text files before.

4.3 Flux-balance analysis

Perform flux-balance analysis (FBA).

> optimizeProb(Ec_core, alg = "fba")

$ok

[1] 0

$obj

[1] 0.8739215

$stat

[1] 5

$fluxes

9

[1] 0.000000e+00 0.000000e+00 0.000000e+00 6.007250e+00 6.007250e+00

[6] 0.000000e+00 0.000000e+00 5.064376e+00 0.000000e+00 0.000000e+00

[11] 8.390000e+00 4.551401e+01 8.739215e-01 -2.280983e+01 6.007250e+00

[16] 4.359899e+01 0.000000e+00 1.471614e+01 0.000000e+00 0.000000e+00

[21] 0.000000e+00 0.000000e+00 2.280983e+01 0.000000e+00 0.000000e+00

[26] 0.000000e+00 0.000000e+00 -1.000000e+01 0.000000e+00 0.000000e+00

[31] 1.753087e+01 2.917583e+01 0.000000e+00 0.000000e+00 -4.765319e+00

[36] -2.179949e+01 -3.214895e+00 0.000000e+00 0.000000e+00 7.477382e+00

[41] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

[46] 5.064376e+00 0.000000e+00 4.959985e+00 1.602353e+01 1.000000e+01

[51] 2.234617e-01 0.000000e+00 -4.541857e+00 0.000000e+00 0.000000e+00

[56] 0.000000e+00 4.959985e+00 -2.917583e+01 6.007250e+00 0.000000e+00

[61] 0.000000e+00 0.000000e+00 0.000000e+00 5.064376e+00 0.000000e+00

[66] 0.000000e+00 3.853461e+01 0.000000e+00 4.765319e+00 2.179949e+01

[71] 9.282533e+00 7.477382e+00 0.000000e+00 4.860861e+00 -1.602353e+01

[76] 4.959985e+00 -1.471614e+01 3.214895e+00 2.504309e+00 0.000000e+00

[81] 0.000000e+00 0.000000e+00 1.758177e+00 -1.419950e-29 2.678482e+00

[86] -2.281503e+00 0.000000e+00 0.000000e+00 5.064376e+00 -5.064376e+00

[91] 1.496984e+00 0.000000e+00 1.496984e+00 1.181498e+00 7.477382e+00

$preP

[1] NA

$postP

[1] NA

$fldind

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

[51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

[76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

The function optimizeProb performs flux-balance analysis [Edwards et al., 2002, Orth
et al., 2010b]. It returns a list containing the return value of the optimization pro-
cess ("ok"), the solution status ("stat"), the value of the objective function after
optimization ("obj"), the resulting flux distribution—the phenotype of the metabolic
network—("fluxes"; argument fld has to be TRUE)—and results of pre- and postpro-
cessing commands if indicated ("preP" and $postP). Additionally, a vector of integers is
returned ("fldind"). The flux value fluxes[fldind[i]] is the flux value of reaction i

in the model (see section 4.4).
Perform FBA, return an object of class optsol_optimizeProb (extends class optsol,

see section 5.2).

> (opt <- optimizeProb(Ec_core, alg = "fba", retOptSol = TRUE))

10

solver: glpkAPI

method: simplex

algorithm: fba

number of variables: 95

number of constraints: 72

number of problems to solve: 1

number of successful solution processes: 1

The variable opt contains an object of class optsol_optimizeProb, a data structure
storing all results of the optimization and providing methods to access the data. Retrieve
the value of the objective function after optimization.

> lp_obj(opt)

[1] 0.8739215

Translate the return and status codes of the optimization software into human readable
strings.

> checkOptSol(opt)

Return code:

Code # meaning

0 1 solution process was successful

Solution status:

Code # meaning

5 1 solution is optimal

Retrieve reduced costs after optimization.

> optimizeProb(Ec_core, MoreArgs = list(poCmd = list("getRedCosts")))

$ok

[1] 0

$obj

[1] 0.8739215

$stat

[1] 5

$fluxes

11

[1] 0.000000e+00 0.000000e+00 0.000000e+00 6.007250e+00 6.007250e+00

[6] 0.000000e+00 0.000000e+00 5.064376e+00 0.000000e+00 0.000000e+00

[11] 8.390000e+00 4.551401e+01 8.739215e-01 -2.280983e+01 6.007250e+00

[16] 4.359899e+01 0.000000e+00 1.471614e+01 0.000000e+00 0.000000e+00

[21] 0.000000e+00 0.000000e+00 2.280983e+01 0.000000e+00 0.000000e+00

[26] 0.000000e+00 0.000000e+00 -1.000000e+01 0.000000e+00 0.000000e+00

[31] 1.753087e+01 2.917583e+01 0.000000e+00 0.000000e+00 -4.765319e+00

[36] -2.179949e+01 -3.214895e+00 0.000000e+00 0.000000e+00 7.477382e+00

[41] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

[46] 5.064376e+00 0.000000e+00 4.959985e+00 1.602353e+01 1.000000e+01

[51] 2.234617e-01 0.000000e+00 -4.541857e+00 0.000000e+00 0.000000e+00

[56] 0.000000e+00 4.959985e+00 -2.917583e+01 6.007250e+00 0.000000e+00

[61] 0.000000e+00 0.000000e+00 0.000000e+00 5.064376e+00 0.000000e+00

[66] 0.000000e+00 3.853461e+01 0.000000e+00 4.765319e+00 2.179949e+01

[71] 9.282533e+00 7.477382e+00 0.000000e+00 4.860861e+00 -1.602353e+01

[76] 4.959985e+00 -1.471614e+01 3.214895e+00 2.504309e+00 0.000000e+00

[81] 0.000000e+00 0.000000e+00 1.758177e+00 -1.419950e-29 2.678482e+00

[86] -2.281503e+00 0.000000e+00 0.000000e+00 5.064376e+00 -5.064376e+00

[91] 1.496984e+00 0.000000e+00 1.496984e+00 1.181498e+00 7.477382e+00

$preP

[1] NA

$postP

An object of class "ppProc"

Slot "cmd":

[[1]]

[1] "getRedCosts(LP_PROB)"

Slot "pa":

[[1]]

[1] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

[6] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

[11] -0.005092486 0.000000000 0.000000000 0.000000000 0.000000000

[16] 0.000000000 0.000000000 0.000000000 0.000000000 -0.022916187

[21] -0.034374280 -0.061109831 0.000000000 -0.039466766 0.000000000

[26] -0.091664746 -0.045832373 -0.091664746 -0.070021681 -0.068748560

[31] 0.000000000 0.000000000 -0.040739887 -0.045832373 0.000000000

[36] 0.000000000 0.000000000 -0.034374280 -0.048378616 0.000000000

[41] -0.005092486 -0.001273121 0.000000000 0.000000000 0.000000000

[46] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

[51] 0.000000000 0.000000000 0.000000000 -0.005092486 -0.005092486

[56] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

12

[61] 0.000000000 -0.001273121 0.000000000 0.000000000 -0.005092486

[66] -0.003819364 0.000000000 -0.001273121 0.000000000 0.000000000

[71] 0.000000000 0.000000000 -0.007638729 0.000000000 0.000000000

[76] 0.000000000 0.000000000 0.000000000 0.000000000 -0.005092486

[81] -0.005092486 0.000000000 0.000000000 0.000000000 0.000000000

[86] 0.000000000 0.000000000 -0.003819364 0.000000000 0.000000000

[91] 0.000000000 -0.001273121 0.000000000 0.000000000 0.000000000

Slot "ind":

integer(0)

$fldind

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

[51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

[76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

4.4 Minimize total flux

Usually, a FBA solution is one solution out of many equivalent solutions. One to choose
one is to compute the flux distribution minimizing the absolute flux (MTF) but still
supporting the objective value of the FBA solution. At first, a “wild type” solution is
required, which is the FBA solution:

> fba <- optimizeProb(Ec_core, alg = "fba")

Now, the objective value of the solution in fba is used to compute a flux distribution
with a minimized absolute flux:

> mtf <- optimizeProb(Ec_core, alg = "mtf", wtobj = fba$obj)

The value of the objective function now is

> mtf$obj

[1] 518.4221

which is the minimized sum of all absolute flux values. The flux distribution of the MTF
soliution is much longer than the one of the FBA solution

> length(fba$fluxes)

[1] 95

> length(mtf$fluxes)

13

[1] 285

which is due to the different formulations of the two optimization problems. Consult the
documentation of class sysBiolAlg (section 5.4) for more detailed information.

> help("sysBiolAlg_fba-class")

> help("sysBiolAlg_mtf-class")

The element fldind can now be used to get the flux values for the reactions in the model.

> mtf$fluxes[mtf$fldind]

[1] 0.000000e+00 0.000000e+00 -1.259623e-15 6.007250e+00 6.007250e+00

[6] -1.259623e-15 0.000000e+00 5.064376e+00 0.000000e+00 0.000000e+00

[11] 8.390000e+00 4.551401e+01 8.739215e-01 -2.280983e+01 6.007250e+00

[16] 4.359899e+01 0.000000e+00 1.471614e+01 0.000000e+00 1.259623e-15

[21] 0.000000e+00 0.000000e+00 2.280983e+01 0.000000e+00 0.000000e+00

[26] 0.000000e+00 0.000000e+00 -1.000000e+01 0.000000e+00 0.000000e+00

[31] 1.753087e+01 2.917583e+01 0.000000e+00 0.000000e+00 -4.765319e+00

[36] -2.179949e+01 -3.214895e+00 0.000000e+00 0.000000e+00 7.477382e+00

[41] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

[46] 5.064376e+00 0.000000e+00 4.959985e+00 1.602353e+01 1.000000e+01

[51] 2.234617e-01 0.000000e+00 -4.541857e+00 0.000000e+00 0.000000e+00

[56] 0.000000e+00 4.959985e+00 -2.917583e+01 6.007250e+00 0.000000e+00

[61] 0.000000e+00 0.000000e+00 0.000000e+00 5.064376e+00 0.000000e+00

[66] 0.000000e+00 3.853461e+01 0.000000e+00 4.765319e+00 2.179949e+01

[71] 9.282533e+00 7.477382e+00 0.000000e+00 4.860861e+00 -1.602353e+01

[76] 4.959985e+00 -1.471614e+01 3.214895e+00 2.504309e+00 0.000000e+00

[81] 0.000000e+00 1.259623e-15 1.758177e+00 -2.524355e-29 2.678482e+00

[86] -2.281503e+00 0.000000e+00 0.000000e+00 5.064376e+00 -5.064376e+00

[91] 1.496984e+00 0.000000e+00 1.496984e+00 1.181498e+00 7.477382e+00

4.5 Genetic perturbations

In order to compute the metabolic phenotype of in silico knock-out mutants, the function
oneGeneDel can be used.

> opt <- oneGeneDel(Ec_core)

| : | : | 100 %

|===| :-)

> checkOptSol(opt)

Return code:

14

Code # meaning

0 137 solution process was successful

Solution status:

Code # meaning

4 2 no feasible solution exists

5 135 solution is optimal

137 optimizations were performed.

The function oneGeneDel gets an argument geneList, a character vector containing the
gene id’s to knock out. If geneList is missing, all genes are taken into account. The
example model contains 137 independent genes. The first optimization is for the wild
type—no gene is knocked out—followed by one optimization for each gene.

The result in opt is an object of class optsol_geneDel, extending class optsol_optimizeProb.
Class optsol contains a method histogram, plotting the vaules of the objective function
(section 5.2).

> histogram(opt, col = "lightgray", nint = 20)

15

value of objective function

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

0.0 0.2 0.4 0.6 0.8

The default algorithm used is FBA [Edwards et al., 2002, Orth et al., 2010b], with the
assumption, that the phenotype of the mutant metabolic network is independent of
the wild-type phenotype. An alternative is the MOMA algorithm described in Segrè
et al. [2002] minimizing the hammiltonian distance of the wild-type phenotype and
the mutant phenotype (argument alg = "lmoma" computes a linearized version of the
MOMA algorithm; alg = "moma" runs the quadratic formulation).

> opt <- oneGeneDel(Ec_core, alg = "lmoma")

| : | : | 100 %

|===| :-)

> checkOptSol(opt)

Return code:

Code # meaning

0 137 solution process was successful

16

Solution status:

Code # meaning

4 2 no feasible solution exists

5 135 solution is optimal

137 optimizations were performed.

> histogram(opt, col = "lightgray", nint = 20)

value of objective function

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

0.0 0.2 0.4 0.6 0.8

Another alterna-
tive is the ROOM algorithm (regulatory on/off minimization) described in Shlomi et al.
[2005]. Set argument alg to room in order to run ROOM.
In order to perform all possible double-knock-out mutants, or n-knock-out mutants, the
function geneDeletion can be used. Perform single gene deletions (in principle the same
as before with oneGeneDel).

> opt <- geneDeletion(Ec_core)

| : | : | 100 %

|===| :-)

17

Compute all double-knock-out mutants and all triple-knock-out mutants

> opt2 <- geneDeletion(Ec_core, combinations = 2)

> opt3 <- geneDeletion(Ec_core, combinations = 3)

which will result in 9317 optimizations for double-knock-outs and 419 221 Optimizations
for triple-knock-outs using the metabolic model of the core energy metabolism of E. coli.
This model contains 137 genes.

4.6 Flux variablility analysis

The function fluxVar performs a flux variability analysis with a given model [Mahadevan
and Schilling, 2003]. The minimum and maximum flux values for each reaction in the
model are calculated, which still support a given optimal functional state Zopt. The
example below is based upon the metabolic model of the human red blood cell by Palsson
[2006] and Price et al. [2004].

> rbc <- readTSVmod(reactList = "rbc.tsv", fpath = mp, quoteChar = "\"")

Perform flux variablilty analysis.

> opt <- fluxVar(rbc, verboseMode = 1)

> plot(opt)

18

●

●

● ●

●
●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ●

●

●
●

●

●

●
● ●

●

● ●

●

● ● ●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●
●

●

●

0 10 20 30 40

−
2

0
2

4
6

8

V
al

ue

4.7 Robustness analysis

The function robAna performs a robustness analysis with a given model. The flux of a
control reaction will be varied stepwise between the maximum and minimum value the
flux of the control reaction can reach [Palsson, 2006]. The example below shows a flux
variability ananlyis based upon the metabolic model of the core energy metabolism of
E. coli using the exchange flux of Oxygen as control reaction.

> opt <- robAna(Ec_core, "Ex_o2", verboseMode = 1)

> plot(opt)

19

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

Control Flux

O
bj

ec
tiv

e
F

un
ct

io
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.8 Parallel computing

The package SyBiL provides basic support for the R-package parallel (multicore for
R version prior 2.14.0) in the function multidel. The following example shows the
computation of all possible triple-knock-out mutants using the model of the core energy
metabolism of E. coli. The set of genes included in the analysis will be reduced to genes,
which are not lethal. A gene i is considered as “lethal”, if in a single-gene-knockout the
deletion of gene i results in a maximum groth ratio of zero.

> ref <- optimizeProb(Ec_core)

> opt <- oneGeneDel(Ec_core, geneList = allGenes(Ec_core))

| : | : | 100 %

|===| :-)

> let <- lethal(opt, wt = ref$obj)

> nletid <- c(1:length(allGenes(Ec_core)))[! let]

At first, a wild-type maximum groth value is computed. Then, all single-gene-knock-outs
are computed. The variable let contains pointers to the gene id’s of genes, who’s deletion

20

is lethal. The variable nletid contains pointers to the gene id’s of all genes, except for
the lethal ones.

> gmat <- combn(nletid, 3)

The variable gmat now contains a matrix with three rows, each column is one combination
of three values in nletid; one set of genes to knock-out in one step.

> opt <- multiDel(Ec_core, nProc = 4, todo = "geneDeletion", del1 = gmat)

The function multiDel performs a geneDeletion with the model Ec_core on four CPU’s
(argument nProc) on a shared memory machine. Argument del1 is the matrix containing
the sets of genes to delete. This matrix will be split up in smaller submatrices all having
about the same number of columns and three rows. The submatrices are passed to
geneDeletion and are processed on separate cores in parallel. The resulting variable
opt now contains a list of four objects of class optsol_genedel.

> mapply(checkOptSol, opt)

4.9 Optimization software

For optimizations, GLPK3, IBM ILOG CPLEX4, COIN-OR Clp5 or lp solve6 can be used.
All functions performing optimizations, get the arguments solver and method. The
first setting the desired solver and the latter setting the desired optimization algorithm.
Possible values for the argument solver are:

• "glpkAPI", which is the default,

• "cplexAPI",

• "clpAPI" or

• "lpSolveAPI".

Perform FBA, using GLPK as solver and “simplex exact” as algorithm.

> optimizeProb(Ec_core, method = "exact")

Perform FBA, using IBM ILOG CPLEX as solver and “dualopt” as algorithm.

> optimizeProb(Ec_core, solver = "cplexAPI", method = "dualopt")

The R-packages glpkAPI, clpAPI and cplexAPI provide access to the C-API of the
corresponding optimization software. They are also available from CRAN1.

3Andrew Makhorin: GNU Linear Programming Kit, version 4.42 or higher
http://www.gnu.org/software/glpk/glpk.html

4IBM ILOG CPLEX version 12.2 (or higher) from the IBM Academic Initiative
https://www.ibm.com/developerworks/university/academicinitiative/

5COIN-OR linear programming version 1.12.0 or higher https://projects.coin-or.org/Clp
6lp solve via R-package lpSolveAPI version 5.5.2.0-5 or higer

http://lpsolve.sourceforge.net/5.5/index.htm

21

http://www.gnu.org/software/glpk/glpk.html
https://www.ibm.com/developerworks/university/academicinitiative/
https://projects.coin-or.org/Clp
http://lpsolve.sourceforge.net/5.5/index.htm

4.10 Setting parameters to the optimization software

All functions performing optimizations can handle the argument solverParm getting a
list or data frame containing parameters used by the optimization software.

4.10.1 GLPK

For available parameters used by GLPK, see the GLPK and the glpkAPI documentation.

> opt <- oneGeneDel(Ec_core,

+ solverParm = list(TM_LIM = 1000,

+ PRESOLVE = GLP_ON))

The above command performs a one gene deletion experiment, sets the time limit for
each optimization to one second and does presolving in each optimization.

4.10.2 IBM ILOG CPLEX

For available parameters used by IBM ILOG CPLEX, see the IBM ILOG CPLEX and
the cplexAPI documentation.

> opt <- optimizeProb(Ec_core,

+ solverParm = list(CPX_PARAM_SCRIND = CPX_ON,

+ CPX_PARAM_EPRHS = 1E-09),

+ solver = "cplexAPI")

The above command performs FBA, sets the messages to screen switch to “on” and sets
the feasibility tolerance to 10−9.

4.10.3 COIN-OR Clp

At the time of writing, it is not possible to set any parameters when using COIN-OR Clp.

4.10.4 lpSolveAPI

See the lpSolveAPI documentation for parameters for lp_solve.

> opt <- optimizeProb(Ec_core,

+ solverParm = list(verbose = "full",

+ timeout = 10),

+ solver = "lpSolveAPI")

The above command performs FBA, sets the verbose mode to “full” and sets the timeout
to ten seconds.

22

parameter name default value

SOLVER glpkAPI

METHOD simplex

SOLVER_CTRL_PARM as.data.frame(NA)

ALGORITHM fba

TOLERANCE 1E-6

MAXIMUM 1000

OPT_DIRECTION max

PATH_TO_MODEL .

Table 1: Available parameters in SyBiL and their default values.

4.11 Setting parameters in sybil

Parameters to SyBiL can be set using the function SYBIL_SETTINGS. Parameter names
and their default values are shown in table 1, all possible values are described in the
SYBIL_SETTINGS documentation.

> help(SYBIL_SETTINGS)

The function SYBIL_SETTINGS gets at most two arguments:

> SYBIL_SETTINGS("parameter name", value)

the first one giving the name of the parameter to set (as character string) and the second
one giving the desired value. If SYBIL_SETTINGS is called with only one argument

> SYBIL_SETTINGS("parameter name")

the current setting of "parameter name" will be returned. All parameters and their
values can be achieved by calling SYBIL_SETTINGS without any argument.

> SYBIL_SETTINGS()

4.11.1 Solver software specific

The two parameters SOLVER and METHOD depend on each other, e. g. the method called
simplex is only available when glpkAPI is used as solver software. Each solver has
its own specific set of methods available in order to solve optimization problems. If
one changes the parameter SOLVER to, let’s say cplexAPI, the parameter METHOD will
automatically be adjusted to the default method used by cplexAPI. Set parameter solver
to IBM ILOG CPLEX for every optimization:

> SYBIL_SETTINGS("SOLVER", "cplexAPI", loadPackage = FALSE)

Now, IBM ILOG CPLEX is used as default solver e. g. in optimizeProb or oneGeneDel,
and parameter METHOD has changed to the default method in cplexAPI. Setting argument
loadPackage to FALSE prevents loading the API package. Get the current setting for
Method:

23

> SYBIL_SETTINGS("METHOD")

[1] "lpopt"

Reset the solver to glpkAPI:

> SYBIL_SETTINGS("SOLVER", "glpkAPI")

Now, the default method again is simplex

> SYBIL_SETTINGS("METHOD")

[1] "simplex"

It is not possible to set a wrong method for a given solver. If the desired method is
not available, allways the default method is used. Parameters to the solver software
(parameter SOLVER_CTRL_PARM) must be set as list or data.frame as described in
section 4.10.

4.11.2 Analysis specific

The parameter ALGORITHM controls the way gene deletion anslysis will be performed.
The default setting "fba" will use flux-balance analysis (FBA) as described in Edwards
et al. [2002] and Orth et al. [2010b]. Setting this parameter to "lmoma", results in a
linearized version of the MOMA algorithm described in Segrè et al. [2002] (”moma” will
run the original version). The linearized version of MOMA, like it is implemented in
the COBRA Toolbox [Becker et al., 2007, Schellenberger et al., 2011], can be used in
functions like oneGeneDel() via the boolean argument COBRAflag. Setting the parameter
"ALGORITHM" to "room" will run a regulatory on/off minimization as described in Shlomi
et al. [2005]. See also section 4.5 for details on gene deletion analysis.

5 Central data structures

5.1 Class modelorg

The class modelorg is the core datastructure to represent a metabolic network, in
particular the stoichiometric matrix S. An example (E. coli core flux by [Palsson, 2006])
is shipped within SyBiL and can be loaded this way:

> data(Ec_core)

> Ec_core

model name: Ecoli_core_model

number of compartments 2

C_c

C_e

number of reactions: 95

24

number of metabolites: 72

number of unique genes: 137

objective function: 1 * Biomass_Ecoli_core_w_GAM

The generic method show displays a short summary of the network. See

> help("modelorg")

for the list of available methods. All slots of an object of class modelorg are accessible
via setter and getter methods having the same name as the slot. For example, slot
react_num contains the number of reactions in the model (equals the number of columns
in S). Access the number of reactions in the E. coli model.

> react_num(Ec_core)

[1] 95

Get all reaction is’s:

> id <- react_id(Ec_core)

Change a reaction id:

> react_id(Ec_core)[13] <- "biomass"

Plot an image of the stoichiometric matrix S:

> image(S(Ec_core))

25

Dimensions: 72 x 95
Column

R
ow

20

40

60

20 40 60 80

−60

−40

−20

0

20

40

60

Matrices in objects of class modelorg are stored in formats provided by the Matrix -
package.

Objects of class modelorg can easily be created. Sources are common file formats like
tab delimited files from the BiGG database [Schellenberger et al., 2010]7 or SBML files
(with package sybilSBML2). See section 3 on page 2 about supported file formats and
their description. Read a reaction list generated from the BiGG database:

> mod <- readTSVmod(reactList = "reactionList.txt")

Here, "reactionList.txt" is an from BiGG database exported reaction list. Usually,
these files do neither contain an objective function, nor upper and lower bounds on the
reaction rates. They need to be added to the returned object of class modelorg using
the methods obj_coef<-, lowbnd<- and uppbnd<-, or by adding the columns obj_coef,
lowbnd and uppbnd to the input file.

5.2 Class optsol

The derived classes of class optsol (optimization solution) are used to store information
and results from various optimisation problems and their biological relation. See

7http://bigg.ucsd.edu

26

http://bigg.ucsd.edu

show()
mod_obj()
checkStat()
!uxes()
n!uxes()
length()
histogram()

mod_id: character 1
solver: character 1
method: character 1
algorithm: character 1
num_of_prob: integer 1
lp_num_cols: integer 1
lp_num_rows: integer 1
lp_obj: numeric 1..*
lp_ok: integer 1..*
lp_stat: integer 1..*
lp_dir: character 1..*
obj_coef: numeric 1..*
!dind: integer 1..*
!uxdist: !uxDistribution 1

optsol (VIRTUAL)

maxSol()
minSol()

blocked: logical 1..*
react: reactId 1..*

blockedReact

lethal()
deleted()
[

chlb: numeric 1..*
chub: numeric 1..*
dels: matrix 1

!uxdel

plot()

ctrlr: reactId 1
ctrl!: numeric 1..*

robAna

plot()
plotRangeVar()
minSol()
maxSol()

react: reactId 1
!uxVar

deleted()

!uxdels: list 1..*
hasE"ect: logical 1..*

genedeloptimizeProb
preProc: ppProc 1
postProc: ppProc 1

Figure 2: UML representation of class optsol.

> help("optsol")

for the list of available methods to access data (figure 2). A simple demonstration would
be:

> data(Ec_core)

> os <- optimizeProb(Ec_core, retOptSol = TRUE)

> os

solver: glpkAPI

method: simplex

algorithm: fba

number of variables: 95

number of constraints: 72

number of problems to solve: 1

number of successful solution processes: 1

> class(os)

[1] "optsol_optimizeProb"

attr(,"package")

[1] "sybil"

Retrieve objective value.

> lp_obj(os)

[1] 0.8739215

27

initialize()
dim()
...

oobj: pointerToProb 1
solver: character 1
method: character 1
probType: character 1

optObj (VIRTUAL)

initProb()
setSolverParm()
loadLPprob()
solveLp()
getObjVal()
getSolStat()
...

glpk
initProb()
setSolverParm()
loadLPprob()
solveLp()
getObjVal()
getSolStat()
...

cplex
initProb()
setSolverParm()
loadLPprob()
solveLp()
getObjVal()
getSolStat()
...

clp
initProb()
setSolverParm()
loadLPprob()
solveLp()
getObjVal()
getSolStat()
...

lpSolveAPI
initProb()
setSolverParm()
loadLPprob()
solveLp()
getObjVal()
getSolStat()
...

gurobi

Figure 3: UML representation of class optObj.

5.3 Class optObj

The class optObj is SyBiL’s internal representation of a linear programming problem
(figure 3). Objects of this class harbor four slots: a pointer to the C-structure of the
problem, the name of the solver, the name of the optimization method used by the solver
and a single character string, describing the problemtype (e. g. lp [linear programming]).

The package SyBiL provides several functions to alter the linear programming model.
Each function takes care of the special needs of every supported solver for you. The
following example should illustrate the purpose of class optObj. Consider a linear
programming problem, here written in lp file format:

Maximize

obj: + x_1 + x_2

Subject To

r_1: + 0.5 x_1 + x_2 <= 4.5

r_2: + 2 x_1 + x_2 <= 9

Bounds

0 <= x_1 <= 1000

0 <= x_2 <= 1000

In order to solve this lp problem with SyBiL, an onject of class optObj has to be created.
The constructor function has the same name as the class it builds.

> lp <- optObj(solver = "glpkAPI", method = "exact")

> lp

linear programming problem object

solver: glpkAPI

28

start
solver: character

method: character
pType: character

new("solver", solver,
method, pType)result: optObjstop

checkDefaultMethod(solver,
method, pType)

Figure 4: Work flow of the constructor function optObj().

method: exact

problem is not initialized

The first argument is the used solver software, in this case it is GLPK. The second
optional argument gives the method, how the solver software has to solve the problem.
Here, it is the simplex exact algorithm of GLPK. The constructor functon optObj()

(figure 4) returns an object of class optObj_glpkAPI in this case. This class enables
SyBiL to communicate with the GLPK software. The constructor function optObj()

calls the function checkDefaultMethod() which tries to load the specified solver package
and also checks if all other arguments (method and pType) are valid arguments. Each
solver package has its own set of methods for specific types of optimization (e. g. linear
programming or quadratic programming) and is thus availabe maybe not for all problem
types.

Initialize the new problem object. Each solver software needs to create specific data
structures to hold the problem and solution data.

> lp <- initProb(lp)

> lp

linear programming problem object

solver: glpkAPI

method: exact

problem is currently empty

Slot oobj holds a pointer to the problem object of GLPK. Now, we need to allocate
space for the problem data and load the data into the problem object.

> cm <- Matrix(c(0.5, 2, 1, 1), nrow = 2)

> loadLPprob(lp, nCols = 2, nRows = 2, mat = cm,

+ lb = c(0, 0), ub = rep(1000, 2), obj = c(1, 1),

+ rlb = c(0, 0), rub = c(4.5, 9), rtype = c("U", "U"),

+ lpdir = "max")

29

The first command generates the constraint matrix in sparse format (see also documenta-
tion in package Matrix). The second command loads the problem data into the problem
object.

> lp

linear programming problem object

solver: glpkAPI

method: exact

problem has 2 variables and 2 constraints

All data are now set in the problem object, so it can be solved.

> status <- solveLp(lp)

> status

[1] 0

Translate the status code in a text string.

> getMeanReturn(code = status, solver = solver(lp))

[1] "solution process was successful"

Check the solution status.

> status <- getSolStat(lp)

> getMeanStatus(code = status, solver = solver(lp))

[1] "solution is optimal"

Retrieve the value of the objective function and the values of the variables after opti-
mization.

> getObjVal(lp)

[1] 6

> getFluxDist(lp)

[1] 3 3

Get the reduced costs.

> getRedCosts(lp)

[1] 0 0

Delete problem object and free all memory allocated by the solver software.

> delProb(lp)

> lp

linear programming problem object

solver: glpkAPI

method: exact

problem is not initialized

30

initialize()
optimizeProb()
...

problem: optObj 1
algorithm: character 1
nr: integer 1
nc: integer 1
!dind: integer 1..*

sysBiolAlg (VIRTUAL)

initialize()
fba (LP)

initialize()
mtf (LP)

initialize()
lmoma (LP)

initialize()
moma (QP)

initialize()
optimizeProb()

wu: numeric 1
wl: numeric 1
fnr: integer 1
fnc: integer 1

room (MILP)
initialize()
...

???

Figure 5: UML representation of class sysBiolAlg.

5.4 Class sysBiolAlg

The class sysBiolAlg holds objects of class optObj which are prepared for a particular
kind of algorithm, e. g. FBA, MOMA or ROOM (figure 5). Class optObj takes care of
the communication between SyBiL and the solver software. Class sysBiolAlg instead
is responsible for the algorithm used to analyse a metabolic network. The constructor
function sysBiolalg() (figure 6) gets at least two arguments: 1. an object of class
modelorg (section 5.1) and 2. a single character string indicating the name of the desired
algorithm. Further arguments are passed through argument ... to the corresponding
constructor of the class extending class sysBiolAlg. The base class sysBiolAlg is
virtual, no objects can be created from that class directly. The constructor function
builds an instance of a class extending the base class:

> data(Ec_core)

> ec <- sysBiolAlg(Ec_core, alg = "fba")

> is(ec)

[1] "sysBiolAlg_fba" "sysBiolAlg"

Now, the variable ec contains an object of class sysBiolAlg_fba. Slot problem of that
object is of class optObj and is prepared for FBA. The optimization can be performed
with method optimizeProb():

> opt <- optimizeProb(ec)

The return value of optimizeProb() is discussed in section 4.3. In order to run a ROOM
analysis create an object of class sysBiolAlg_room:

31

start
model: modelorg

algorithm:character
...

tryCatch(new("algorithm",
model, …))

result: sysBiolAlgstop

Figure 6: Work flow of the constructor function sysBiolAlg().

> ecr <- sysBiolAlg(Ec_core, alg = "room", wtflux = opt$fluxes)

> is(ecr)

[1] "sysBiolAlg_room" "sysBiolAlg"

Argument wtflux gets the optimal flux distribution computed via FBA earlier. It is used
by the constructor method of class sysBiolAlg_room.

5.4.1 Constructor methods

The base class sysBiolAlg contains a constructor method initialize which is called
by the constructor methods of the subclasses via callNextMethod() (figure 7). Every
subclass has its own constructor method prepareing all necessary data structures in
order to call the constructor of the base class. For example, for the ROOM algorithm, a
“wild type” flux distribution is required (argument wtflux in the example above). The
constructor of sysBiolAlg_room generates all data structures to build the optimization
problem, e. g. the constraint matrix, objective coefficients, right hand side, . . . It passes
all these data to the constructor of sysBiolAlg via a call to callNextMethod(). This
constructor generates the object of class optObj while taking care on solver software
specific details.

5.4.2 New algorithms

In order to extend the functionality of SyBiL with new algorithms, a new class describing
that algorithm is required. The function promptSysBiolAlg() generates a skeletal
structure of a new class definition and a corresponding constructor method. To implement
an algorithm named “foo”, run

> promptSysBiolAlg(algorithm = "foo")

which generates a file sysBiolAlg_fooClass.R containing the new class definition. The
class sysBiolAlg_foo will extend class sysBiolAlg directly and will not add any slots
to the class. Additionally, an unfinished method initialize is included. Here it is
necessary to generate the data structures required by the new algorithm. There are
comments in the skeletal structure guiding through the process.

32

initialize, sysBiolAlg-method

start

.Object,
model: modelorg

...

stop

generate data structures corresponding to
the used algorithm (constraint matrix,

right hand side, ...)

generate an empty problem object:
lp ← optObj(solver, method, pType)

initialize problem object:
initProb(lp, nRows, nCols)

set solver parameters
setSolverParm(lp, list of parameters)

load data into the problem object
loadLPprob(lp, further data structures)

set data part of .Object
.Object@problem ← lp

.Object@problem ← "algorithm"
...

additional modi"cations if required

validate problem object

result: sysBiolAlg

Figure 7: Work flow of the constructor methods of classes extending class sysBiolAlg.
The gray shaded part is done by the constructor method or the base class.

References

S. A. Becker et al. Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox. Nat Protoc, 2(3):727–738, 2007. doi: 10.1038/nprot.
2007.99.

J. S. Edwards, M. Covert, and B. Ø. Palsson. Metabolic modelling of microbes: the
flux-balance approach. Environ Microbiol, 4(3):133–140, Mar 2002.

R. Mahadevan and C. H. Schilling. The effects of alternate optimal solutions in constraint-
based genome-scale metabolic models. Metab Eng, 5(4):264–276, Oct 2003.

J. D. Orth, R. M. T. Fleming, and B. Ø. Palsson. Reconstruction and use of microbial
metabolic networks: the core Escherichia coli metabolic model as an educational guide.
EcoSal Chapter 10.2.1, 2010a.

J. D. Orth, I. Thiele, and B. Ø. Palsson. What is flux balance analysis? Nat Biotechnol,
28(3):245–248, Mar 2010b. doi: 10.1038/nbt.1614.

B. Ø. Palsson. Systems Biology: Properties of Recontructed Networks. Cambridge
University Press, 2006.

33

N. D. Price, J. Schellenberger, and B. Ø. Palsson. Uniform sampling of steady-state flux
spaces: means to design experiments and to interpret enzymopathies. Biophys J, 87
(4):2172–2186, Oct 2004. doi: 10.1529/biophysj.104.043000.

J. Schellenberger, J. O. Park, T. M. Conrad, and B. Ø. Palsson. BiGG: a biochemical
genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC
Bioinformatics, 11:213, 2010. doi: 10.1186/1471-2105-11-213.

J. Schellenberger, R. Que, R. M. T. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C.
Zielinski, A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke, and B. Ø.
Palsson. Quantitative prediction of cellular metabolism with constraint-based models:
the COBRA Toolbox v2.0. Nat Protoc, 6(9):1290–1307, 2011. doi: 10.1038/nprot.2011.
308.

D. Segrè et al. Analysis of optimality in natural and perturbed metabolic networks. Proc
Natl Acad Sci U S A, 99(23):15112–15117, Nov 2002. doi: 10.1073/pnas.232349399.

T. Shlomi, O. Berkman, and E. Ruppin. Regulatory on/off minimization of metabolic
flux changes after genetic perturbations. Proc Natl Acad Sci U S A, 102(21):7695–7700,
May 2005. doi: 10.1073/pnas.0406346102.

34

	Introduction
	Installation
	Input files
	Tabular form
	Field and entry delimiter
	Model description
	Metabolite list
	Reaction list
	How to write a reaction equation string

	SBML

	Usage
	Documentation
	Reading a model in tabular form
	Flux-balance analysis
	Minimize total flux
	Genetic perturbations
	Flux variablility analysis
	Robustness analysis
	Parallel computing
	Optimization software
	Setting parameters to the optimization software
	GLPK
	IBM ILOG CPLEX
	COIN-OR Clp
	lpSolveAPI

	Setting parameters in sybil
	Solver software specific
	Analysis specific

	Central data structures
	Class modelorg
	Class optsol
	Class optObj
	Class sysBiolAlg
	Constructor methods
	New algorithms

