tadaa_aov
tadaa_aov(deutsch ~ jahrgang, data = ngo, type = 1, print = "markdown")
Table 5: One-Way ANOVA: Using Type I Sum of Squares
Term | df | SS | MS | F | p | \(\eta^2\) | Cohen’s f | Power |
---|---|---|---|---|---|---|---|---|
jahrgang | 2 | 52.57 | 26.28 | 6.54 | < 0.01 | 0.05 | 0.23 | 0.91 |
Residuals | 247 | 993.23 | 4.02 | |||||
Total | 249 | 1045.8 | 30.3 |
tadaa_aov(deutsch ~ jahrgang, data = ngo, type = 2, print = "markdown")
Table 6: One-Way ANOVA: Using Type II Sum of Squares
Term | df | SS | MS | F | p | \(\eta^2\) | Cohen’s f | Power |
---|---|---|---|---|---|---|---|---|
jahrgang | 2 | 52.57 | 26.28 | 6.54 | < 0.01 | 0.05 | 0.23 | 0.91 |
Residuals | 247 | 993.23 | 4.02 | |||||
Total | 249 | 1045.8 | 30.3 |
tadaa_aov(deutsch ~ jahrgang, data = ngo, type = 3, print = "markdown")
Table 7: One-Way ANOVA: Using Type III Sum of Squares
Term | df | SS | MS | F | p | \(\eta^2\) | Cohen’s f | Power |
---|---|---|---|---|---|---|---|---|
jahrgang | 2 | 52.57 | 26.28 | 6.54 | < 0.01 | 0.05 | 0.23 | 0.91 |
Residuals | 247 | 993.23 | 4.02 | |||||
Total | 249 | 1045.8 | 30.3 |
tadaa_aov(deutsch ~ jahrgang * geschl, data = ngo, type = 1, print = "markdown")
Table 8: Two-Way ANOVA: Using Type I Sum of Squares
Term | df | SS | MS | F | p | \(\eta_\text{part}^2\) | Cohen’s f | Power |
---|---|---|---|---|---|---|---|---|
geschl | 1 | 66.56 | 66.56 | 18.09 | < 0.001 | 0.07 | 0.27 | 0.99 |
jahrgang | 2 | 52.57 | 26.28 | 7.14 | < 0.001 | 0.06 | 0.24 | 0.93 |
jahrgang:geschl | 2 | 28.85 | 14.42 | 3.92 | < 0.05 | 0.03 | 0.18 | 0.71 |
Residuals | 244 | 897.82 | 3.68 | |||||
Total | 249 | 1045.8 | 110.95 |
tadaa_aov(deutsch ~ jahrgang * geschl, data = ngo, type = 2, print = "markdown")
Table 9: Two-Way ANOVA: Using Type II Sum of Squares
Term | df | SS | MS | F | p | \(\eta_\text{part}^2\) | Cohen’s f | Power |
---|---|---|---|---|---|---|---|---|
geschl | 1 | 66.56 | 66.56 | 18.09 | < 0.001 | 0.07 | 0.27 | 0.99 |
jahrgang | 2 | 52.57 | 26.28 | 7.14 | < 0.001 | 0.06 | 0.24 | 0.93 |
jahrgang:geschl | 2 | 28.85 | 14.42 | 3.92 | < 0.05 | 0.03 | 0.18 | 0.71 |
Residuals | 244 | 897.82 | 3.68 | |||||
Total | 249 | 1045.8 | 110.95 |
tadaa_aov(deutsch ~ jahrgang * geschl, data = ngo, type = 3, print = "markdown")
Table 10: Two-Way ANOVA: Using Type III Sum of Squares
Term | df | SS | MS | F | p | \(\eta_\text{part}^2\) | Cohen’s f | Power |
---|---|---|---|---|---|---|---|---|
geschl | 1 | 71.4 | 71.4 | 19.41 | < 0.001 | 0.07 | 0.28 | 0.99 |
jahrgang | 2 | 52.57 | 26.28 | 7.14 | < 0.001 | 0.06 | 0.24 | 0.93 |
jahrgang:geschl | 2 | 28.85 | 14.42 | 3.92 | < 0.05 | 0.03 | 0.18 | 0.71 |
Residuals | 244 | 897.82 | 3.68 | |||||
Total | 249 | 1050.63 | 115.79 |
data.frame(A = rnorm(100, mean = c(25, 30, 45)),
G = c(rep("a", 50), rep("b", 50)),
R = sample(letters[3:6], size = 100, TRUE),
Z = sample(letters[7:8], size = 100, TRUE)) %>%
tadaa_aov(data = ., formula = A ~ G * R * Z, type = 3, print = "markdown")
Table 11: Factorial ANOVA: Using Type III Sum of Squares
Term | df | SS | MS | F | p | \(\eta_\text{part}^2\) | Cohen’s f | Power |
---|---|---|---|---|---|---|---|---|
G | 1 | 21.03 | 21.03 | 0.26 | 0.61 | 0 | 0.06 | 0.08 |
G:R | 3 | 212.76 | 70.92 | 0.87 | 0.46 | 0.03 | 0.18 | 0.24 |
G:R:Z | 3 | 129.97 | 43.32 | 0.53 | 0.66 | 0.02 | 0.14 | 0.16 |
G:Z | 1 | 28.6 | 28.6 | 0.35 | 0.55 | 0 | 0.06 | 0.09 |
R | 3 | 53.26 | 17.75 | 0.22 | 0.88 | 0.01 | 0.09 | 0.09 |
R:Z | 3 | 11 | 3.67 | 0.05 | 0.99 | 0 | 0.04 | 0.06 |
Z | 1 | 59.27 | 59.27 | 0.73 | 0.4 | 0.01 | 0.09 | 0.14 |
Residuals | 84 | 6819 | 81.18 | |||||
Total | 99 | 7334.9 | 325.75 |
tadaa_kruskal(stunzahl ~ jahrgang, data = ngo, print = "markdown")
Table 12: Kruskal-Wallis Rank Sum Test
\(\chi^2\) | df | p |
---|---|---|
20.89 | 2 | < 0.001 |
tadaa_chisq
tadaa_chisq(ngo, abschalt, geschl, print = "markdown")
Table 13: Pearson’s Chi-squared test with Yates’ continuity correction
\(\chi^2\) | p | df | Odds Ratio | \(\phi\) |
---|---|---|---|---|
4.77 | < 0.05 | 1 | 0.55 | 0.15 |
tadaa_t.test
tadaa_t.test(data = ngo, response = deutsch, group = geschl, print = "markdown")
Table 14: Two Sample t-test with alternative hypothesis: \(\mu_1 \neq \mu_2\)
Diff | \(\mu_1\) Männlich | \(\mu_2\) Weiblich | t | SE | df | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|---|---|
-1.03 | 7.09 | 8.12 | -4.11 | 0.25 | 248 | (-1.53 - -0.54) | < 0.001 | -0.52 | 0.98 |
tadaa_t.test(data = ngo, response = deutsch, group = geschl, paired = TRUE,
print = "markdown")
Table 15: Paired t-test with alternative hypothesis: \(\mu_1 \neq \mu_2\)
Diff | \(\mu_1\) Männlich | \(\mu_2\) Weiblich | t | SE | df | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|---|---|
-1.03 | 7.09 | 8.12 | -4.21 | 0.25 | 124 | (-1.52 - -0.55) | < 0.001 | -0.38 | 0.99 |
tadaa_t.test(data = ngo, response = deutsch, group = geschl, var.equal = FALSE,
print = "markdown")
Table 16: Welch Two Sample t-test with alternative hypothesis: \(\mu_1 \neq \mu_2\)
Diff | \(\mu_1\) Männlich | \(\mu_2\) Weiblich | t | SE | df | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|---|---|
-1.03 | 7.09 | 8.12 | -4.11 | 0.25 | 247.43 | (-1.53 - -0.54) | < 0.001 | -0.52 | 0.98 |
tadaa_t.test(data = ngo, response = deutsch, group = geschl,
direction = "less", print = "markdown")
Table 17: Two Sample t-test with alternative hypothesis: \(\mu_1 < \mu_2\)
Diff | \(\mu_1\) Männlich | \(\mu_2\) Weiblich | t | SE | df | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|---|---|
-1.03 | 7.09 | 8.12 | -4.11 | 0.25 | 248 | (-Inf - -0.62) | < 0.001 | -0.52 | 0.99 |
tadaa_t.test(data = ngo, response = deutsch, group = geschl,
direction = "greater", print = "markdown")
Table 18: Two Sample t-test with alternative hypothesis: \(\mu_1 > \mu_2\)
Diff | \(\mu_1\) Männlich | \(\mu_2\) Weiblich | t | SE | df | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|---|---|
-1.03 | 7.09 | 8.12 | -4.11 | 0.25 | 248 | (-1.45 - Inf) | > 0.99 | -0.52 | 0 |
tadaa_wilcoxon
tadaa_wilcoxon(ngo, deutsch, geschl, print = "markdown")
Table 19: Wilcoxon rank sum test with continuity correction with alternative hypothesis: \(M_1 \neq M_2\)
Difference | \(M_1\) Männlich | \(M_2\) Weiblich | W | p |
---|---|---|---|---|
-1 | 7 | 8 | 5620.5 | < 0.001 |
tadaa_wilcoxon(ngo, deutsch, geschl,
direction = "less", print = "markdown")
Table 20: Wilcoxon rank sum test with continuity correction with alternative hypothesis: \(M_1 < M_2\)
Difference | \(M_1\) Männlich | \(M_2\) Weiblich | W | p |
---|---|---|---|---|
-1 | 7 | 8 | 5620.5 | < 0.001 |
tadaa_wilcoxon(ngo, deutsch, geschl, paired = TRUE, print = "markdown")
Table 21: Wilcoxon signed rank test with continuity correction with alternative hypothesis: \(M_1 \neq M_2\)
Difference | \(M_1\) Männlich | \(M_2\) Weiblich | W | p |
---|---|---|---|---|
-1 | 7 | 8 | 1527 | < 0.001 |
tadaa_wilcoxon(ngo, deutsch, geschl, paired = TRUE,
direction = "less", print = "markdown")
Table 22: Wilcoxon signed rank test with continuity correction with alternative hypothesis: \(M_1 < M_2\)
Difference | \(M_1\) Männlich | \(M_2\) Weiblich | W | p |
---|---|---|---|---|
-1 | 7 | 8 | 1527 | < 0.001 |
# z: known sigma
tadaa_one_sample(data = ngo, x = deutsch, mu = 7.5, sigma = 2, print = "markdown")
Table 23: z-Test with alternative hypothesis: \(\mu_1 \neq\) 7.5
\(\mu_1\) deutsch | SE | z | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|
7.6 | 0.13 | 0.82 | (6.59 - 8.62) | 0.41 | 0.05 | 0.13 |
tadaa_one_sample(data = ngo, x = deutsch, mu = 8, sigma = 2,
direction = "less", print = "markdown")
Table 24: z-Test with alternative hypothesis: \(\mu_1 <\) 8
\(\mu_1\) deutsch | SE | z | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|
7.6 | 0.13 | -3.13 | (6.59 - 8.62) | < 0.001 | -0.2 | 0.93 |
tadaa_one_sample(data = ngo, x = deutsch, mu = 7, sigma = 2,
direction = "greater", print = "markdown")
Table 25: z-Test with alternative hypothesis: \(\mu_1 >\) 7
\(\mu_1\) deutsch | SE | z | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|
7.6 | 0.13 | 4.78 | (6.59 - 8.62) | < 0.001 | 0.3 | 1 |
tadaa_one_sample(data = ngo, x = deutsch, mu = 7.5, print = "markdown")
Table 26: One Sample t-test with alternative hypothesis: \(\mu_1 \neq\) 7.5
\(\mu_1\) deutsch | df | SE | t | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|
7.6 | 249 | 9.48 | 0.8 | (7.35 - 7.86) | 0.42 | 0.05 | 0.13 |
tadaa_one_sample(data = ngo, x = deutsch, mu = 8,
direction = "less", print = "markdown")
Table 27: One Sample t-test with alternative hypothesis: \(\mu_1 <\) 8
\(\mu_1\) deutsch | df | SE | t | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|
7.6 | 249 | -2.49 | -3.06 | (7.35 - 7.86) | < 0.01 | -0.19 | 0.92 |
tadaa_one_sample(data = ngo, x = deutsch, mu = 7,
direction = "greater", print = "markdown")
Table 28: One Sample t-test with alternative hypothesis: \(\mu_1 >\) 7
\(\mu_1\) deutsch | df | SE | t | \(CI_{95\%}\) | p | Cohen's d | Power |
---|---|---|---|---|---|---|---|
7.6 | 249 | 1.63 | 4.66 | (7.35 - 7.86) | < 0.001 | 0.29 | 1 |
tadaa_levene(ngo, deutsch ~ jahrgang, print = "markdown")
Table 29: Levene's Test for Homogeneity of Variance (Brown-Forsythe Adaption)
Term | df | F | p |
---|---|---|---|
jahrgang | 2 | 0.41 | 0.66 |
Residuals | 247 |
tadaa_levene(ngo, deutsch ~ jahrgang, center = "mean", print = "markdown")
Table 30: Levene's Test for Homogeneity of Variance
Term | df | F | p |
---|---|---|---|
jahrgang | 2 | 0.27 | 0.76 |
Residuals | 247 |
tadaa_levene(ngo, deutsch ~ jahrgang * geschl, print = "markdown")
Table 31: Levene's Test for Homogeneity of Variance (Brown-Forsythe Adaption)
Term | df | F | p |
---|---|---|---|
jahrgang:geschl | 5 | 0.61 | 0.69 |
Residuals | 244 |