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The vegan package has two major components: multivariate analysis (mainly ordi-
nation), and methods for diversity analysis of ecological communities. This docu-
ment gives an introduction to the latter. Ordination methods are covered in other
documents. Many of the diversity functions were written by Roeland Kindt and
Bob O’Hara.

Most diversity methods assume that data are counts of individuals. The methods
are used with other data types, and some people argue that biomass or cover are
more adequate than counts of individuals of variable sizes. However, this document
mainly uses a data set with counts: stem counts of trees on 1ha plots in the Barro
Colorado Island. The following steps make these data available for the document:

> library(vegan)

> data(BCI)

Date: Id: diversity-vegan.Rnw 1036 2009-10-07 07:06:36Z jarioksa processed with vegan 1.17-3
in R version 2.11.1 (2010-05-31) on June 16, 2010.
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1. Diversity indices

Function diversity finds the most commonly used diversity indices:

H = −
S∑
i=1

pi logb pi Shannon–Weaver(1)

D1 = 1−
S∑
i=1

p2
i Simpson(2)

D2 =
1∑S
i=1 p

2
i

inverse Simpson(3)

where pi is the proportion of species i, and S is the number of species so that∑S
i=1 pi = 1, and b is the base of the logarithm. It is most common to use natural

logarithms (and then we mark index as H ′), but b = 2 has theoretical justification.
The default is to use natural logarithms. Shannon index is calculated with:
> H <- diversity(BCI)

which finds diversity indices for all sites.
Vegan does not have indices for evenness (equitability), but the most common

of these, Pielou’s evenness J = H ′/ log(S) is easily found as:
> J <- H/log(specnumber(BCI))

where specnumber is a simple vegan function to find the numbers of species.
Vegan also can estimate Rényi diversities of order a:

(4) Ha =
1

1− a
log

S∑
i=1

pai

or the corresponding Hill numbers Na = exp(Ha). Many common diversity indices
are special cases of Hill numbers: N0 = S, N1 = exp(H ′), N2 = D2, and N∞ =
1/(max pi). The corresponding Rényi diversities are H0 = log(S), H1 = H ′, H2 =
− log(

∑
p2
i ), and H∞ = − log(max pi). We select a random subset of five sites for

Rényi diversities:
> k <- sample(nrow(BCI), 6)

> R <- renyi(BCI[k, ])

We can really regard a site more diverse if all of its Rényi diversities are higher than
in another site. We can inspect this graphically using the standard plot function
for the renyi result (Fig. 1).

Finally, the α parameter of Fisher’s log-series can be used as a diversity index:
> alpha <- fisher.alpha(BCI)

2. Rarefaction

Species richness increases with sample size, and differences in richness actually
may be caused by differences in sample size. To solve this problem, we may try
to rarefy species richness to the same number of individuals. Expected number of
species in a community rarefied from N to n individuals is:

(5) Ŝn =
S∑
i=1

(1− pi), where pi =
(
N − xi
n

) / (N
n

)
where xi is the count of species i, and

(
N
n

)
is the binomial coefficient, or the number

of ways we can choose n from N , and pi give the probabilities that species i does
not occur in a sample of size n. This is defined only when N −xi > n, but for other
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Figure 1. Rényi diversities in six
randomly selected plots. The plot
uses Trellis graphics with a sepa-
rate panel for each site. The dots
show the values for sites, and the
lines the extremes and median in
the data set.

cases pi = 0 or the species is sure to occur in the sample. The variance of rarefied
richness is:

(6) s2 = pi(1− pi) + 2
S∑
i=1

∑
j>i

[(
N − xi − xj

n

) / (N
n

)
− pipj

]
Equation 6 actually is of the same form as the variance of sum of correlated vari-
ables:

(7) var
(∑

xi

)
=
∑

var(xi)− 2
S∑
i=1

∑
j>i

cov(xi, xj)

The number of stems per hectare varies in our data set:
> quantile(rowSums(BCI))

0% 25% 50% 75% 100%
340.0 409.0 428.0 443.5 601.0

To express richness for the same number of individuals, we can use:
> Srar <- rarefy(BCI, min(rowSums(BCI)))

Rarefaction curves often are seen as an objective solution for comparing species
richness with different sample sizes. However, rank orders typically differ among
different rarefaction sample sizes.

As an extreme case we may rarefy sample size to two individuals:
> S2 <- rarefy(BCI, 2)

This will not give equal rank order with the previous rarefaction richness:
> all(rank(Srar) == rank(S2))

[1] FALSE

Moreover, the rarefied richness for two individuals is a finite sample variant of
Simpson’s diversity index (or, more precisely of D1 + 1), and these two are almost
identical in BCI:
> range(diversity(BCI, "simp") - (S2 - 1))

[1] -0.002868298 -0.001330663

Rarefaction is sometimes presented as an ecologically meaningful alternative to
dubious diversity indices, but the differences really seem to be small.
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3. Taxonomic and functional diversity

Simple diversity indices only consider species identity: all different species are
equally different. In contrast, taxonomic and functional diversity indices see how
different two different species are. Taxonomic and functional diversities are used
in different fields of science, but they really have very similar reasoning, and either
could be used either with taxonomic or functional properties of species.

3.1. Taxonomic diversity: average distance of properties. The two basic
indices are called taxonomic diversity (∆) and taxonomic distinctness (∆∗):

∆ =

∑∑
i<j ωijxixj

n(n− 1)/2
(8)

∆∗ =

∑∑
i<j ωijxixj∑∑
i<j xixj

(9)

These equations give the index values for a single site, and summation goes over
species i and j, and ω are the taxonomic distances among taxa, x are species
abundances, and n is the total abundance for a site. With presence absence data,
both indices reduce to the same index called ∆+, and for this it is possible to
estimate standard deviation. There are two indices derived from ∆+: it can be
multiplied with species richness1 to give s∆+, or it can be used to estimate an
index of variation in taxonomic distinctness Λ+:

(10) Λ+ =

∑∑
i<j ω

2
ij

n(n− 1)/2
− (∆+)2

We still need the taxonomic differences among species (ω) to calculate the indices.
These can be any distance structure among species, but usually it is found from
established hierarchic taxonomy. Typical coding is that differences among species
in the same genus is 1, among the same family it is 2 etc. However, the taxonomic
differences are scaled to maximum 100 for easier comparison between different data
sets and taxonomies. Alternatively, it is possible to scale steps between taxonomic
level proportional to the reduction in the number of categories: if almost all genera
have only one species, it does not make a great difference if two individuals belong
to a different species or to a different genus.

Function taxondive implements indices of taxonomic diversity, and taxa2dist
can be used to convert classification tables to taxonomic distances either with con-
stant or variable step lengths between successive categories. There is no taxonomic
table for the BCI data in vegan2 but there is such a table for the Dune meadow
data (Fig. 2):
> data(dune)

> data(dune.taxon)

> taxdis <- taxa2dist(dune.taxon, varstep = TRUE)

> mod <- taxondive(dune, taxdis)

3.2. Functional diversity: the height of property tree. In taxonomic diver-
sity the primary data were taxonomic trees which were transformed to pairwise
distances among species. In functional diversity the primary data are species prop-
erties which are translated to pairwise distances among species and then to cluster-
ing trees of species properties. The argument for trees is that in this way a single

1This text normally uses upper case letter S for species richness, but lower case s is used here

in accordance with the original papers on taxonomic diversity
2Actually I made such a classification, but taxonomic differences proved to be of little use in

the Barro Colorado data: they only singled out sites with Monocots (palm trees) in the data.
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Figure 2. Taxonomic diversity
∆+ for the dune meadow data.
The points are diversity values of
single sites, and the funnel is their
approximate confidence intervals
(2× standard error).

deviant species will have a small influence, since its difference is evaluated only once
instead of evaluating its distance to all other species.

Function treedive implements functional diversity defined as the total branch
length in a trait dendrogram connecting all species, but excluding the unnecessary
root segments of the tree. The example uses the taxonomic distances of the previous
chapter. These are first converted to a hierarchic clustering (which actually were
their original form before taxa2dist converted them into distances)
> tr <- hclust(taxdis, "aver")

> mod <- treedive(dune, tr)

4. Species abundance models

Diversity indices may be regarded as variance measures of species abundance
distribution. We may wish to inspect abundance distributions more directly. Ve-
gan has functions for Fisher’s log-series and Preston’s log-normal models, and in
addition several models for species abundance distribution.

4.1. Fisher and Preston. In Fisher’s log-series, the expected number of species
f̂ with n individuals is:

(11) f̂n =
αxn

n

where α is the diversity parameter, and x is a nuisance parameter defined by α and
total number of individuals N in the site, x = N/(N − α). Fisher’s log-series for a
randomly selected plot is (Fig. 3):
> k <- sample(nrow(BCI), 1)

> fish <- fisherfit(BCI[k, ])

> fish

Fisher log series model
No. of species: 92

Estimate Std. Error
alpha 35.888 4.6777

We already saw α as a diversity index. Now we also obtained estimate of standard
error of α (these also are optionally available in fisherfit). The standard errors
are based on the second derivatives (curvature) of log-likelihood at the solution of
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Figure 3. Fisher’s log-series fit-
ted to one randomly selected site
(36).
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α. The distribution of α is often non-normal and skewed, and standard errors are
of not much use. However, fisherfit has a profile method that can be used
to inspect the validity of normal assumptions, and will be used in calculations of
confidence intervals from profile deviance:

> confint(fish)

2.5 % 97.5 %
27.64699 46.10228

Preston’s log-normal model is the main challenger to Fisher’s log-series. Instead
of plotting species by frequencies, it bins species into frequency classes of increasing
sizes. As a result, upper bins with high range of frequencies become more common,
and sometimes the result looks similar to Gaussian distribution truncated at the
left.

There are two alternative functions for the log-normal model: prestonfit and
prestondistr. Function prestonfit uses traditionally binning approach, and is
burdened with arbitrary choices of binning limits and treatment of ties. Function
prestondistr directly maximizes truncated log-normal likelihood without binning
data, and it is the recommended alternative. Log-normal models usually fit poorly
to the BCI data, but here our random plot (number 36):

> prestondistr(BCI[k, ])

Preston lognormal model
Method: maximized likelihood to log2 abundances
No. of species: 92

mode width S0
0.8352028 1.7913322 24.1844800

Frequencies by Octave
0 1 2 3 4 5

Observed 35.00000 19.00000 16.00000 7.00000 9.000000 5.000000
Fitted 21.69362 24.08235 19.57600 11.65218 5.078656 1.620871

6
Observed 1.0000000
Fitted 0.3787968
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Figure 4. Ranked abundance
distribution models for a random
plot (no. 36). The best model has
the lowest aic.

4.2. Ranked abundance distribution. An alternative approach to species abun-
dance distribution is to plot logarithmic abundances in decreasing order, or against
ranks of species. These are known as ranked abundance distribution curves, species
abundance curves, dominance–diversity curves or Whittaker plots. Function rad-
fit fits some of the most popular models using maximum likelihood estimation:

âr =
N

S

S∑
k=r

1
k

brokenstick(12)

âr = Nα(1− α)r−1 preemption(13)

âr = exp [log(µ) + log(σ)Φ] log-normal(14)

âr = Np̂1r
γ Zipf(15)

âr = Nc(r + β)γ Zipf–Mandelbrot(16)

Where âr is the expected abundance of species at rank r, S is the number of species,
N is the number of individuals, Φ is a standard normal function, p̂1 is the estimated
proportion of the most abundant species, and α, µ, σ, γ, β and c are the estimated
parameters in each model.

It is customary to define the models for proportions pr instead of abundances ar,
but there is no reason for this, and radfit is able to work with the original abun-
dance data. We have count data, and the default Poisson error looks appropriate,
and our example data set gives (Fig. 4):
> rad <- radfit(BCI[k, ])

> rad

RAD models, family poisson
No. of species 92, total abundance 430

par1 par2 par3 Deviance AIC BIC
Null 85.9601 348.6007 348.6007
Preemption 0.049495 70.0645 334.7051 337.2269
Lognormal 0.86697 1.1832 28.5832 295.2238 300.2674
Zipf 0.14615 -0.86285 37.0519 303.6925 308.7361
Mandelbrot 1.6203 -1.4888 5.7543 5.8926 274.5332 282.0986

Function radfit compares the models using alternatively Akaike’s or Schwartz’s
Bayesian information criteria. These are based on log-likelihood, but penalized
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by the number of estimated parameters. The penalty per parameter is 2 in aic,
and logS in bic. Brokenstick is regarded as a null model and has no estimated
parameters in vegan. Preemption model has one estimated parameter (α), log-
normal and Zipf models two (µ, σ, or p̂1, γ, resp.), and Zipf–Mandelbrot model has
three (c, β, γ).

Function radfit also works with data frames, and fits models for each site.
It is curious that log-normal model rarely is the choice, although it generally is
regarded as the canonical model, in particular in data sets like Barro Colorado
tropical forests.

5. Species accumulation and beta diversity

Species accumulation models and species pool models study collections of sites,
and their species richness, or try to estimate the number of unseen species.

5.1. Species accumulation models. Species accumulation models are similar
to rarefaction: they study the accumulation of species when the number of sites
increases. There are several alternative methods, including accumulating sites in the
order they happen to be, and repeated accumulation in random order. In addition,
there are three analytic models. Rarefaction pools individuals together, and applies
rarefaction equation (5) to these individuals. Kindt’s exact accumulator resembles
rarefaction:

(17) Ŝn =
S∑
i=1

(1− pi), where pi =
(
N − fi
n

) / (N
n

)
where fi is the frequency of species i. Approximate variance estimator is:

(18) s2 = pi(1− pi) + 2
S∑
i=1

∑
j>i

(
rij
√
pi(1− pi)

√
pj(1− pj)

)
where rij is the correlation coefficient between species i and j. Both of these are
unpublished: eq. 17 was developed by Roeland Kindt, and eq. 18 by Jari Oksanen.
The third analytic method was suggested by Coleman:

(19) Sn =
S∑
i=1

(1− pi), where pi =
(

1− 1
n

)fi

and he suggested variance s2 = pi(1− pi) which ignores the covariance component.
In addition, eq. 19 does not properly handle sampling without replacement and
underestimates the species accumulation curve.

The recommended is Kindt’s exact method (Fig. 5):
> sac <- specaccum(BCI)

> plot(sac, ci.type = "polygon", ci.col = "yellow")

5.2. Beta diversity. Whittaker divided diversity into various components. The
best known are diversity in one spot that he called alpha diversity, and the diversity
along gradients that he called beta diversity. The basic diversity indices are indices
of alpha diversity. Beta diversity should be studied with respect to gradients, but
almost everybody understand that as a measure of general heterogeneity: how many
more species do you have in a collection of sites compared to an average site.

The best known index of beta diversity is based on the ratio of total number of
species in a collection of sites (S) and the average richness per one site (ᾱ):

(20) β = S/ᾱ− 1
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Figure 5. Species accumulation
curve for the BCI data; exact
method.

Subtraction of one means that β = 0 when there are no excess species or no het-
erogeneity between sites. For this index, no specific functions are needed, but this
index can be easily found with the help of vegan function specnumber:
> ncol(BCI)/mean(specnumber(BCI)) - 1

[1] 1.478519

The index of eq. 20 is problematic because S increases with the number of sites
even when sites are all subsets of the same community. Whittaker noticed this, and
suggested the index to be found from pairwise comparison of sites. If the number of
shared species in two sites is a, and the numbers of species unique to each site are
b and c, then ᾱ = (2a+ b+ c)/2 and S = a+ b+ c, and index 20 can be expressed
as:

(21) β =
a+ b+ c

(2a+ b+ c)/2
− 1 =

b+ c

2a+ b+ c

This is the Sørensen index of dissimilarity, and it can be found for all sites using
vegan function vegdist with binary data:
> beta <- vegdist(BCI, binary = TRUE)

> mean(beta)

[1] 0.3399075

There are many other definitions of beta diversity in addition to eq. 20. All
commonly used indices can be found using betadiver. The indices in betadiver
can be referred to by subscript name, or index number:
> betadiver(help = TRUE)

1 "w" = (b+c)/(2*a+b+c)
2 "-1" = (b+c)/(2*a+b+c)
3 "c" = (b+c)/2
4 "wb" = b+c
5 "r" = 2*b*c/((a+b+c)^2-2*b*c)
6 "I" = log(2*a+b+c)-2*a*log(2)/(2*a+b+c)-((a+b)*log(a+b)+(a+c)*log(a+c))/(2*a+b+c)
7 "e" = exp(log(2*a+b+c)-2*a*log(2)/(2*a+b+c)-((a+b)*log(a+b)+(a+c)*log(a+c))/(2*a+b+c))-1
8 "t" = (b+c)/(2*a+b+c)
9 "me" = (b+c)/(2*a+b+c)
10 "j" = a/(a+b+c)
11 "sor" = 2*a/(2*a+b+c)
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12 "m" = (2*a+b+c)*(b+c)/(a+b+c)
13 "-2" = pmin(b,c)/(pmax(b,c)+a)
14 "co" = (a*c+a*b+2*b*c)/(2*(a+b)*(a+c))
15 "cc" = (b+c)/(a+b+c)
16 "g" = (b+c)/(a+b+c)
17 "-3" = pmin(b,c)/(a+b+c)
18 "l" = (b+c)/2
19 "19" = 2*(b*c+1)/((a+b+c)^2+(a+b+c))
20 "hk" = (b+c)/(2*a+b+c)
21 "rlb" = a/(a+c)
22 "sim" = pmin(b,c)/(pmin(b,c)+a)
23 "gl" = 2*abs(b-c)/(2*a+b+c)
24 "z" = (log(2)-log(2*a+b+c)+log(a+b+c))/log(2)

Some of these indices are duplicates, and many of them are well known dissimilarity
indices. One of the more interesting indices is based on the Arrhenius species–area
model

(22) Ŝ = cXz

where X is the area (size) of the patch or site, and c and z are parameters. Param-
eter c is uninteresting, but z gives the steepness of the species area curve and is a
measure of beta diversity. In islands, z is typically about 0.3. This kind of islands
can be regarded as subsets of the same community, indicating that we really should
talk about gradient differences if z > 0.3. We can find the value of z for a pair of
plots using function betadiver:
> z <- betadiver(BCI, "z")

> quantile(z)

0% 25% 50% 75% 100%
0.2732845 0.3895024 0.4191536 0.4537180 0.5906091

The size X and parameter c cancel out, and the index gives the estimate z for any
pair of sites.

Function betadisper can be used to analyse beta diversities with respect to
classes or factors. There is no such classification available for the Barro Colorado
Island data, and the example studies beta diversities in the management classes of
the dune meadows (Fig. 6):
> data(dune)

> data(dune.env)

> z <- betadiver(dune, "z")

> mod <- with(dune.env, betadisper(z, Management))

> mod

Homogeneity of multivariate dispersions

Call: betadisper(d = z, group = Management)

No. of Positive Eigenvalues: 12
No. of Negative Eigenvalues: 7

Average distance to centroid:
BF HF NM SF

0.3080 0.2512 0.4406 0.3635

Eigenvalues for PCoA axes:
PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8 PCoA9
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Figure 6. Box plots of beta di-
versity measured as the average
steepness (z) of the species area
curve in the Arrhenius model S =
cXz in Management classes of
dune meadows.

1.6547 0.8870 0.5334 0.3744 0.2873 0.2245 0.1613 0.0810 0.0652
PCoA10 PCoA11 PCoA12 PCoA13 PCoA14 PCoA15 PCoA16 PCoA17 PCoA18
0.0353 0.0183 0.0040 -0.0042 -0.0194 -0.0369 -0.0429 -0.0536 -0.0602
PCoA19
-0.0828

6. Species pool

6.1. Number of unseen species. Species accumulation models indicate that not
all species were seen in any site. These unseen species also belong to the species
pool. Functions specpool and estimateR implement some methods of estimating
the number of unseen species. Function specpool studies a collection of sites, and
estimateR works with counts of individuals, and can be used with a single site.
Both functions assume that the number of unseen species is related to the number
of rare species, or species seen only once or twice.

Function specpool implements the following models to estimate the pool size
Sp:

Sp = So +
f2
1

2f2
Chao(23)

Sp = So + f1
N − 1
N

1st order Jackknife(24)

Sp = So + f1
2N − 3
N

+ f2
(N − 2)2

N(N − 1)
2nd order Jackknife(25)

Sp = So +
So∑
i=1

(1− pi)N Bootstrap(26)

Here So is the observed number of species, f1 and f2 are the numbers of species
observed once or twice, N is the number of sites, and pi are proportions of species.
The idea in jackknife seems to be that we missed about as many species as we saw
only once, and the idea in bootstrap that if we repeat sampling (with replacement)
from the same data, we miss any many species as we missed originally.

The variance estimators of Chao is:

(27) s2 = f2

(
G4

4
+G3 +

G2

2

)
, where G =

f1
f2
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The variance of the first-order jackknife is based on the number of “singletons” r
(species occurring only once in the data) in sample plots:

(28) s2 =

(
N∑
i=1

r2i −
f1
N

)
N − 1
N

Variance of the second-order jackknife is not evaluated in specpool (but contribu-
tions are welcome). For the variance of bootstrap estimator, it is practical to define
a new variable qi = (1− pi)N for each species:

s2 =
So∑
i=1

qi(1− qi) + 2
∑∑

Zp, where

Zp = . . .

(29)

The extrapolated richness values for the whole BCI data are:
> specpool(BCI)

Species chao chao.se jack1 jack1.se jack2 boot
All 225 236.6053 6.659395 245.58 5.650522 247.8722 235.6862

boot.se n
All 3.468888 50

If the estimation of pool size really works, we should get the same values of estimated
richness if we take a random subset of a half of the plots:
> s <- sample(nrow(BCI), 25)

> specpool(BCI[s, ])

Species chao chao.se jack1 jack1.se jack2 boot boot.se
All 209 231.5333 11.59737 233.96 7.394701 244.655 220.9073 4.106949

n
All 25

These typically are even lower than the observed richness (225 species) at the whole
data set.

6.2. Pool size from a single site. The specpool function needs a collection of
sites, but there are some methods that estimate the number of unseen species for
each single site. These functions need counts of individuals, and species seen only
once or twice, or other rare species, take the place of species with low frequencies.
Function estimateR implements two of these methods:
> estimateR(BCI[k, ])

36
S.obs 92.000000
S.chao1 121.750000
se.chao1 14.342232
S.ACE 136.318712
se.ACE 6.669613

Chao’s method is similar as above, but uses another, “unbiased” equation. ace is
based on rare species also:

Sp = Sabund +
Srare

CACE
+

a1

CACE
γ2 where

CACE = 1− a1

Nrare

γ2 =
Srare

CACE

10∑
i=1

i(i− 1)a1
Nrare − 1
Nrare

(30)
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Now a1 takes the place of f1 above, and means the number of species with only one
individual. Here Sabund and Srare are the numbers of species of abundant and rare
species, with an arbitrary upper limit of 10 individuals for a rare species, and Nrare

is the total number of individuals in rare species.
The pool size is estimated separately for each site, but if input is a data frame,

each site will be analysed.
If log-normal abundance model is appropriate, it can be used to estimate the

pool size. Log-normal model has a finite number of species which can be found
integrating the log-normal:

(31) Sp = Sµσ
√

2π

where Sµ is the modal height or the expected number of species at maximum (at µ),
and σ is the width. Function veiledspec estimates this integral from a model fitted
either with prestondistr or prestonfit, and fits the latter if raw site data are
given. Log-normal model fits badly, and prestonfit is particularly poor. Therefore
the following explicitly uses prestondistr, although this also may fail:
> veiledspec(prestondistr(BCI[k, ]))

Extrapolated Observed Veiled
108.59325 92.00000 16.59325

> veiledspec(BCI[k, ])

Extrapolated Observed Veiled
212901.8 92.0 212809.8

6.3. Probability of pool membership. Beals smoothing was originally sug-
gested as a tool of regularizing data for ordination. It regularizes data too strongly,
but it has been suggested as a method of estimating which of the missing species
could occur in a site, or which sites are suitable for a species. The probability for
each species at each site is assessed from other species occurring on the site.

Function beals implement Beals smoothing:
> smo <- beals(BCI)

We may see how the estimated probability of occurrence and observed numbers of
stems relate in one of the more familiar species. We study only one species, and
to avoid circular reasoning we do not include the target species in the smoothing
(Fig. 7):
> j <- which(colnames(BCI) == "Ceiba.pentandra")

> plot(beals(BCI, species = j, include = FALSE), BCI[, j],

+ main = "Ceiba pentandra", xlab = "Probability of occurrence",

+ ylab = "Occurrence")
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Figure 7. Beals smoothing for
Ceiba pentandra.
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