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Abstract: Imputation is applied for two quite different purposes: to supply missing data to complete a data set
for subsequent modeling analyses or to estimate subpopulation totals. Error properties of the imputed values have
different effects in these two contexts. We partition errors of imputation derived from similar observation units
as arising from three sources: observation error, the distribution of observation units with respect to their
similarity, and pure error given a particular choice of variables known for all observation units. Two new
statistics based on this partitioning measure the accuracy of the imputations, facilitating comparison of
imputation to alternative methods of estimation such as regression and comparison of alternative methods of
imputation generally. Knowing the relative magnitude of the errors arising from these partitions can also guide
efficient investment in obtaining additional data. We illustrate this partitioning using three extensive data sets
from western North America. Application of this partitioning to compare near-neighbor imputation is illustrated
for Mahalanobis- and two canonical correlation-based measures of similarity. FOR. ScI. 53(1):62-72.
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MPUTATION METHODS are important tools for complet-

ing data sets in which some observation units lack

observed values for a portion of their attributes. The
objective is to impute a value as close to “truth” for each
missing value in the observation unit as if it were examined
in great detail for all attributes. Criteria for imputations to
support this objective are essentially different from criteria
for estimates of population totals. The difference is that pure
error, rather than being a nuisance, is of real value for
subsequent resource analyses and displays. These analyses
are often nonlinear optimizations or simulations. For them
to be realistic, the structure of the variances and covariances
among attributes inherent in the population should be pre-
served in the data set. Even for display purposes, omission
of pure error will cause the range of the displayed values to
be contracted. Unfortunately, these inherently useful vari-
ances may be combined with variances attributable to the
methodology used in the sampling and imputation pro-
cesses. This mixture complicates choice among analytical
methods for imputation. In this report we provide statistics
based on a partitioning of the error components that facili-
tate finding a closer approximation of “truth.” We partition
imputation errors independently for each variable in the data
set, although the joint distribution of their error components
would be of interest for some applications.

Imputation uses values of variables measured for all obser-
vation units (X) to guide the imputation of values of Y that are
measured only for a sample subset of the observation units (the
Reference set) to those units for which the Y values are missing
(the Target set). Both X, and Y; may be vectors of attributes for

the ith observation unit. Near-neighbor imputation selects units
from the reference set to serve as surrogates for members of the
target set using a measure of similarity based on the X values.
Choice of a particular measure of similarity, in turn, may
depend on the relation of the Y values to the X values.
Elements of Y, and X, y; and x;, will be subscripted only to
identify the ith observation unit. T and R will be used as
additional subscripts when it is relevant to indicate that a
Reference observation unit is being used as if it were a Target
unit (hence a “pseudo-target”). Unit identifying subscripts (i or
J) will be omitted when the variables are referred to collec-
tively. Var(+) capitalized will be used for expected values,
lower case var() for statistics calculated from the data.
Imputation from near-neighbor observations is often used
for classification. However, when the “classes” are arbitrary
intervals on scales of essentially continuous variables, we
argue that the imputation should be based directly on the scales
of the underlying continuous variables. If classes are needed
for display purposes, the classification algorithm should use
the imputed data. We will not consider in this article errors in
classification in which the classes are inherently discrete, re-
quiring the concept of “membership.” For discrete classes,
other methods for classification such as using a discriminant
function may be more appropriate than near-neighbor. For
example, classification by a discriminant function may assign
different classes to members of a target/reference pair of near
neighbors because the discriminating boundary passes between
them, whereas near-neighbor imputation would assign the tar-
get to the same class as the reference member of the pair.
However, there is a parallel process of partitioning the error
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sources in imputation of discrete variables that is beyond the
scope of this article.

Error properties of estimates derived from imputation
differ from those of regression-based estimates because the
two methods include a different mix of error components.
For example, the reference-set data may not be beyond
reproach because of measurement error. These error prop-
erties influence how we evaluate quality of the imputations,
compare alternative methods for imputation, and invest in
data collection. Commonly computed statistics that com-
pare imputed values to those of a presumably similar ob-
servation unit mask methodological differences in this cloud
of variation. We address this problem by partitioning the
variation into components that can be estimated from the
reference set. Then, new statistics based on this partitioning
are presented for assessing the accuracy of imputation
methods.

Several questions may be answered using these error
components:

1.  How does the accuracy of imputed Y values compare
to accuracy of estimates from regression, stratum
means, or other model-based estimates?

2. How large is the error caused by imputing values to a
target unit from reference units where there is substan-
tial difference in their X values? Is there room for
improvement by obtaining additional reference obser-
vations to fill gaps in their distribution? How is this
error component affected by the choice of a particular
measure of similarity?

3. How is the accuracy of imputation affected by the
choice of variables and their transformations?

4. What is the effect on imputed values of pooling k
reference observations?

5. How do the measurement accuracies compare to com-
ponents of variation from other sources?

6.  Would investments in additional data be more effi-
cient if used to obtain information on variables to be
added to the target set (new X variables), to refine the
estimates of the X values already included, or to
obtain data on additional units for the reference set?

Resolution of these questions requires quantitative esti-
mates of the sources of imputation error. These estimates
can be obtained from the information in the n observation
units in the reference data. In analysis of data in the refer-
ence-set data, although we will use some of the data as
though they were targets, there is no difference in their
approximation of “truth,” no intrinsic differences between
“observed” and “predicted.” We are simply describing the
properties of differences between members of pairs of ob-
servations. When the value to be imputed is a weighted
average of k near-neighbors, then its error properties are
derived from the error properties of the k separate pairs and
the weights defined by the particular k-nn procedure.

Bootstrap and cross-validation methods for answering
some of these questions have been developed for imputation
methods other than near-neighbor (Shao and Sitter 1996) or
for classification with k-nn (Mullin and Sukthankar 2000).

Neither of these papers has addressed the problem of par-
titioning the errors as to sources. Moeur and Stage (1995)
used data-splitting and jackknife methods to evaluate capa-
bility of most-similar neighbor (MSN) to reproduce the
variance and covariance structure of the reference data and
to compare error rates to those obtained by stratified sam-
pling and regression. Their analyses of errors also included
variation in the coefficients in the measure of similarity
caused by sequentially omitting 1.7% of their data as well as
the difference between the observed and imputed Y values
for the pair selected by the calculated similarity measure.

Splitting data into “calibration” and “validation” subsets,
which was intended to reduce bias in error estimates, intro-
duces a different bias into estimates of imputation errors.
The withheld reference observations in sparsely represented
parts of X-space could have supplied imputations for nearby
target observations. In the analysis of imputation error,
however, those targets will be paired with a more remote
reference observation, thereby increasing the estimated er-
ror. A further disadvantage of the jackknife procedure is that
it may increase the estimate of error by increasing the
mean-square bias. Targets in the midst of a cloud of refer-
ence observations may be paired with an observation from
any direction. Targets at the edge of a cloud, however, will
likely be paired with a more central point. If there is a trend
in the Y values with distance from the center of the cloud,
then the asymmetry of direction to the reference introduces
bias in the imputed value. Withholding data unnecessarily
increases this bias. The jackknife procedure using a single
reference observation as if a target minimizes this bias by
using the full range of data. Other methods to reduce this
bias in k-nn imputation have been evaluated by Malinen
(2003).

A statistic commonly used to evaluate imputation error
estimates the root-mean-square differences between refer-
ence and target observations by withholding each observa-
tion unit in the reference set while searching for its similar
neighbor in the remainder of the reference set. The term
RMSE (root-mean-square error) used for this statistic is
unfortunate (e.g., Moeur and Stage 1995, Crookston et al.
2002). The term as used in imputation includes different
components of error than the same term used in a regression
or sampling context. Therefore, we use the term mean-
squared difference (MSD) for the statistic describing
squared differences in a pair of similar observations. Thus,
our partitioning is applicable for evaluating any of the
near-neighbor methods of imputation that are judged on the
basis of sums of squared errors.

We use the term “distance” for the value produced by the
function measuring dissimilarity between the ith and jth pair
of observation units. Although Podani (2000) cites more
than 60 distance functions, those most widely used for
imputation are of the quadratic form,

dz‘zj = (Xi - Xj)W(Xi - Xj),7 (1)
where X is the (1 X p) vector of X-variables for the ith
target observation unit, Xj is the (1 X p) vector of X-vari-

ables for the jth reference observation unit, and Wis a (p X
p) symmetric matrix of weights.
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If the weight matrix, W, is the diagonal identity matrix,
then we have a simple Euclidean distance (squared). As a
variation of Euclidean distance, some analysts empirically
vary the diagonal elements to improve the imputation. If
correlations among the variates are to be considered, then
the inverse of their correlation matrix is used for W to
produce a Mahalanobis distance—a distance function that
plays a key role in estimating the error components. MSN
distances are of the same form with W derived from anal-
yses of canonical correlation (Moeur and Stage 1995), ca-
nonical regression (Stage and Crookston 2002), or of ca-
nonical correspondence (Ohmann and Gregory 2002). With
a simple transformation of the X values to x/V/20_, x2, the
quadratic form with identity matrix for W also includes
spectral analysis imputation as used by Sohn et al. (1999).

Our following presentation is in four sections: (1) defin-
ing error sources in the process of imputation, (2) partition-
ing MSD into components arising from these sources, (3)
presenting some new statistics based on the partitioning
relevant to the key questions stated above, and (4) applying
these statistics to three extensive data sets.

Components of Error

Variation in imputed values arises from both natural vari-
ability of attributes of the ecosystem and from the measure-
ment and analytical procedures used to describe the ecosystem.
Although natural variability is useful in analyses requiring the
completed data set, variation introduced by measurement and
analytical procedures is a nuisance to be reduced.

Imputation error arises from four sources for a given set
of X and Y variables:

1. Measurement Errors of the Y Values in the Ref-
erence Set.—These errors are defined as

€y = )V — )’;'k (2)

in which the starred variables represent the true, but un-
known, values. The &; are not properties of the ecosystem
being described, but properties of the accidents of how we
observed it. The measurement errors may arise from using
a sample-based estimate as if it were a complete census
within the jth unit, from changes during elapsed time since
observation, from lack of standardization among different
observers or their instruments, or any combination of such
causes. These errors often are assumed to be zero (e.g.,
Moeur and Stage 1995). We now relax that assumption
because in some applications, errors from this source have
been quite large relative to total error. We assume that the
measurement errors can be rendered unbiased and are inde-
pendent of the true y;and of the observed X values.

2. Pure Error.—That there exists a relation between the
Y and the X variables is a key premise of near-neighbor
inference. For a given set of X variables, the departure of an
element of Y’} from the underlying true but unknown model
is termed pure error:

€pj = y;k_ g(Xj)- (3)

Magnitude of the pure error (ep;) depends on the particular
choice of Y and X variables. By definition, pure error,
which arises from effects not associated with the X vari-
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ables is independent of the X variables and has zero expec-
tation. Examples of omitted factors are myriad, but would
include predicting species composition (the Y variables)
from Landsat spectra (the X variables), but omitting eleva-
tion as an additional X variable that might improve the
imputation.

Not so obvious as a source of pure error would be the
effect of lack of accurate registration between the Y-
variable observation units located on the ground and the
paired X-variable observation units from a remote sensing
platform. In effect, the observed values of Xj from a com-
plete census from the erroneous position are just a differ-
ently defined variable for imputation than the X; values
from a properly registered observation unit. Therefore, vari-
ation from lack of registration would contribute to pure
error that might be reduced by improving registration.

From Equations 2 and 3,

Y= g(X/-) + Epj + Eyjs 4)

in which the error components include measurement error
(ey)), and pure error (gp)). These two components of imputa-
tion error are shown graphically in Figure 1. Pure error and
measurement error are inseparable in many data sets. To esti-
mate pure error alone requires an external estimate of the
measurement error. For example, if the observation unit is a
spatial polygon represented by the mean of each of the at-
tributes over a number of plots within the polygon, then the
estimated variance-of-the-mean would provide the sampling
portion of measurement variance to be subtracted to leave pure
error.

3. Factors Affecting the Availability and Similarity of
Reference Observation Units to Serve as Surrogates for
the Target Units.—This component depends on both the
choice of a distance function and on the distribution of
observation units in the space spanned by the X variables.
Ideally, all the target data should be within the span of the
reference data. The denser the data, the shorter will be the
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Figure 1. Error components for imputing yy; (e.g., species volume) to
a target observation at x; from one of two reference observations in a
one-dimensional space of X (e.g., elevation). Pure error (gp;) is the
vertical distance from y;* to the dashed line g(X). Measurement error
(gy;) is the vertical distance between y* and y,, Model lack-of-fit
(£1,(x;)) is the vertical separation between the dashed g(X) and solid
f(X) lines.



average distance between a target unit and its nearest sur-
rogate in the reference set, and shorter distances usually
imply greater similarity. The magnitude of this effect can be
appreciated by comparing the distribution of distances to
nearest neighbors among the reference data to the distribu-
tion of distances from each target observation to its nearest
neighbor in the reference set. The distances between the real
targets and their near neighbors in the reference set usually
would be, on average, shorter than the distances among
members of the reference set. Thus, estimated errors based
only on the reference set will be biased upward. Effects of
the density and range of the data apply to all methods of
imputation and are determined by the inventory design.

4. The Choice of k, the Number of Reference Observa-
tions, and their Relative Weights in k-nn Methods of Esti-
mating Y Values as a Weighted Average of k Near Neigh-
bors.

Error analyses we propose are based on the data in the
reference set. Inferences about the error properties of the
estimates for the entire population based on these analyses
depend on the extent to which the reference set represents
the target set. As with inferences about any population
parameter, appropriate randomization is a prerequisite to the
assumption that the partitioning of error based on the ref-
erence set will apply to imputations for the real target set.

Imputation Error Statistics Based on the
Reference Set

In the imputation context (yr; — ij)zln is the statistic
commonly reported as “squared error” based on the n obser-
vation units in the reference set. We use the term mean square
difference (MSD) for it to emphasize that it is not an
“error”—rather, it is simply a function of the difference be-
tween two co-equal observations, neither of which is any more
“true” than the other. In this and the expressions to follow, the
subscript j identifies the reference observation to be imputed to
the ith pseudo-target observation unit. For each observation
unit i, the value of j is determined by the minimum of dizi in
Equation 1. In k-nn imputation yg; is replaced by an averagé of
k values of y,, using a weighting rule for the particular flavor
of k-nn inference, where m is from the set of indices of the k
observations selected as near-neighbors. We will develop the
partitioning of error components for k = 1 because the notation
is much more compact. However, the extension to & > 1
introduces no new concepts and will be treated when we
discuss the choice of k as an error source.

Each member of the pairs being averaged in MSD in-
cludes stochastic components that do not change whether
the observation unit is playing the role of target or reference.
Each pair also includes a component determined by the
distribution of the X values within the reference set. Thus,
the statistics we compute are conditional on distribution of
X values in the reference set, and may be used to guide
decisions on how or whether to augment that reference set.
The stochastic components, pure error and measurement
error, are assumed to be drawn from distributions having
zero mean and zero covariance. Therefore, for both stochas-
tic error sources:

E[SPj] = E[st] =0 Var(sp) = E[EjSsz/n]L
Var(ey) = E[Siey;i/n];  Eley;ep] = 0. (3)

We will define the estimated variances of the stochastic
error terms var(ep) and var(ey;) as the average over the
reference set, dividing by » rather than (n — p) because the
error terms are defined relative to true values rather than
from a computed mean.

We first introduce the measurement error from Equation
2 into an addend of MSD:

yR;‘k - SYj)2~ (6)

Expanding Equation 6 on the starred terms from Equation 3,
we have

(yri — ij)2 = (J’Tik t+ ey —

(yri — ij)2 = [e(Xp) + &p; T &y; — g(XRj) — &p — 8\1_;‘]2«
(7

Averaging over the n pseudo-target units (y;) in Equation 7
assuming &p; and ey, are independent of each other and
using Equation 6, the expectation of MSD becomes:

E[MSD]
= E[Z(yr — YRj)z/n]
=3 [e(Xy) — g(Xg)/n + 2Var(ey) + 2Var(ep).  (8)

The term 3, [g(Xr,) — g(XRj)]Z/n in Equation 8 is, therefore,
the error component arising from the distance between a
pseudo-target point and its selected surrogate reference
point. Note that in addition to the distance error component,
the other error variances are included twice in MSD.

Estimating Pure Error and Measurement Error

In a regression context, sums of squares for pure error
plus measurement error can be estimated from differences
between the y values for observations having the same X
values. The corresponding concept in imputation is for
observations separated by zero Mahalanobis distance. Ma-
halanobis distances are calculated in the space spanned by
the normalized, but uncorrelated, X variables. The Mahal-
anobis distance was selected because other distance func-
tions may transform the X variables such that the dimension
of the space spanned by the transformed X variables is of
lower dimension than the original X space. Zero distances in
the space of reduced dimension would not necessarily in-
dicate that X, for a target unit is identical to the Xg; for the
selected reference unit. We argue that an estimate of twice
the sum of variances of pure error and measurement error
can be obtained by averaging the squared differences for
some fraction of the units with short Mahalanobis distances.
We call this estimate MMSD(0), adding an initial M and the
(0) to suggest it is derived from pairs of units with Mahal-
anobis distances of close to zero. Using Equation 8§,

E[MMSD(0)] = 2 Var(ep) + 2 Var(ey) + bias, (9)

where the bias equals the amount by which the mean of the
squared distance component (as in Equation 8 but averaged
over only the observation units with close-to-zero distances)
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differs from zero. Note that whereas MSD may be derived
from any of the many distance functions, MMSD(0) always
uses Mahalanobis distance.

The estimate is biased by the average of [g(X,) —
g(XRj)]2 in MMSD(0). The bias might be reduced by re-
gressing the values of (y; — ij)2 on their distances where
the near-neighbor pairings are determined using a Mahal-
anobis distance function. The intercept of this regression
may provide an improved estimate of MMSD(0) by extrap-
olation to zero distance. However, for some obstreperous Y
variables, the squared deviations decline with increasing
distance so that the intercept is above the mean. This cir-
cumstance indicates that the X variables do not measure
similarity for those elements of Y or that their stochastic
components are heteroskedastic.

Estimating Distance Component

The distance component depends only on the range and
density of the X values and on the measure of similarity
used to select the near neighbor(s). Equation 8 showed that
E[MSD] is comprised of the distance component,
3 [eXry) — g(XRj)]z/n plus two times the sum of variances
of pure error and measurement error. Therefore, the distance
component of MSD can be estimated by subtracting twice
the components of pure error and measurement error esti-
mated by Equation 9 in the previous section:

2 [g(Xy,) — g(Xg)F/n =MSD — MMSD(0). (10)

This error component does not depend on the specific
functional form of the relations of the Y variables to the X
variables, so any model lack-of-fit is not involved. There-
fore, it applies equally to near-neighbor pairing of units
without regard for the distance function. Unfortunately,
MSD — MMSD(0) is not constrained to be positive if
[e(Xt) — g(XRj)]2 decreases with increasing distance.

Using the Partitioning to Illuminate Key
Questions

We now revisit key questions posed in the introduction,
developing some new statistics based on the partitioning to
provide answers.

Accuracy of Imputed Values

The fundamental variance statistic in sampling inference
compares an estimate with its true value. In our notation that
comparison is yg; — g(X;) for k equal to one. Therefore, we
propose that the efficacy of the imputation process should
be based on a statistic we term the standard error of impu-
tation (SEI).

SEI’ = Zi[YRj - g(XTi)]2 In
i=1...,nandjminimizes d,zj (11)

Unfortunately, the addends in the bracket of SEI cannot be
computed directly from the data in the reference set because
the true value, g(Xr,), is not directly observable. The pro-
posed aggregate statistic (Equation 11), however, can be
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obtained by replacing the “estimate” yg; in Equation 11 with
Equation 4 evaluated for the jth reference unit.

SEP=X[g(Xg) + &5 + &y; — Xp) P /n. (12)

Then averaging with the same assumptions of error inde-
pendence used in deriving Equation 8:

E[SEP’] = E[X[yg, — &(Xp)]* /n]
= 3 [e(Xg)—g(X1)¥/n + Var(ep) + Var(ey), (13)

which differs from MSD (Equation 8) by omitting the terms
for the variances of pure error and sampling error arising
from the target members of Equation 11. If the distance
component of MMSD(0) can be assumed to be trivially
small when Equation 8 is averaged over only the shorter
distances, then

E[SEI’] = E[yg;, — gX1)]* =~ MSD — MMSD(0)/2.  (14)

Imputation Compared to Estimates Using f(X)

The regression model is y_;" = f(X)) + ¢;, where the &;
includes pure error and the lack of fit of the assumed model.
The regression model could be, but is not limited to, the
familiar linear parameterization f(X;) = BX'. Error lack-
of-fit for the linear model is indicated in Figure 1. Alterna-
tively, it could be a nonlinear or nonparametric regression
model or a collection of means for strata defined by the X
variables. The true model y; = g(X;) + &p; differs from the
regression model by the lack-of-fit of the regression model:

gLy = &(X) — f(X). (15)

The error statistic commonly calculated for a regression is
the standard error of estimate (SEE) (ignoring the reduction
of the divisor by the number of estimated parameters):

SEE’=3,(y; — f(X;))*/n. (16)

We assume that the lack-of-fit will sum to zero for the
particular X values (certain if f(X) is fit by least-squares and
includes an intercept) in the reference set.

Then, from Equations 2, 3, and 15,

(y_j - f(Xj))2 = (SP_,' t ey + 8L(Xj))2~ 7)

The terms for the model lack-of-fit were assumed to be
independent of the X values and of ep; and &y;, s0 E(SEE?)
is the sum of these three sources:

E[SEE’] = E[Z(y; — f(X)))’/n]
= Var(ep) + Var(ey) + Zj[sf(xﬁ]/n. (18)

Comparison of E[SEI?] in Equation 13 with E[SEE?] in
Equation 18 shows that they differ only by the substitution
of the distance component, 2,[g(Xg;) — g(Xp)]*/n, in im-
putation error variance for lack of fit, Ej(sL(Xj))z/n, in re-
gression estimation error variance.

Rearranging Equation 18 and substituting Equation 9,

3 [61x)2)/n = E[SEE*] — E]MMSD(0)/2] ~ (19)

The ideal contents for a data set for subsequent analysis
would be Y;k, which would have variance about g(X)) of



Var(ep). Unfortunately, the best imputation can do for a
given data set is YTj, which differs from the ideal by
inclusion of measurement error variance plus the distance
component. Alternatively, regression estimation could
supply as estimates, f(X;) plus a random element drawn
from a distribution with variance Var(ep). Using Equa-
tions 4 and 15 and the independence of pure error relative to
the model lack-of-fit, these estimates would have variance
about g(X;) given by

E[Z[f(X)) + ep — 2(X))]*/n]
=3,( + e x))/n+Var(ep)
= E[SEE’] — Var(ey), (20)
which can be estimated by
S[X)) + ey — g(X)/n
= SEE?* — MMSD(0)/2 + var(ep)
= SEE? — var(ey). (21)

Subtracting Equation 21 from Equation 14, the comparison
of SEI” to Equation 21 becomes

Elyg; — g(XTi)]z - E[z;[f(X,) + ep — g(Xj)]z/n]
~ SEI’—[SEE*—var(ey)], (22)

which is the same as Equation 13 minus Equation 18 plus
pure error variance:

Ei[g(XRj) - g(XTi)]Z/n - [Ej(SL(Xj))Z/n + var(ep)]. (23)

Thus, the variance of the imputed values would be greater
than regression estimated values for each y if Equation 22 or
equivalently if Equation 23 is greater than zero. However,
the regression alternative would not guarantee that the true
correlation among the estimated y values within each ob-
servation unit would be retained.

Effects of Distribution of X Values

The second key question concerning distributions of the
X values and alternative measures of similarity is addressed
by considering the distance component of MSD,
SleXy) — g(XRj)]zln. This error component should be
made as small as possible, either by adding new members to
the reference set to reduce average distance between target
units and their similar reference unit(s) or by adopting a
better measure of similarity, or both.

An important consideration in accuracy assessment
based only on the reference observation units is the relation
between the distribution of the X values in the target set in
relation to that distribution in the reference set. Ideally, the
reference set would completely cover the ranges of X vari-
ables of the target set and have an approximately uniform
distribution over the range of the combined sets. The dis-
tance function being invoked may weight variation of some
of the X variables heavier than others, thereby stretching
and rotating the space spanned by the X variables. There-
fore, the distributions to be compared are those of the
distances between the reference units and their near-neigh-
bors from the pseudo-target set versus the distances between

the reference units and their near-neighbors from the real
target set.

A statistic sensitive to the merits of alternative distance
functions would reduce the influence of pure error and
sampling error to focus on X [g(Xy,) — g(XRj)]z. At short
distances, the values of (y; — ij)2 are dominated by the
pure error plus sampling error. Therefore, a better alterna-
tive to MSD calculated as the average overall references is
to average by only using pairs separated by the longer
distances.

Choice of X Values and their Transformations

How these decisions affect MSD for a particular variable
y depends on the choice of the weight matrix W in Equation
1. If W gives little or no weight to a particular x, then that
x is effectively omitted. Conversely, an x may be heavily
weighted because of its contribution to g(X) for other y
values. Then, even though a subset of the x variables may
effectively predict the y under consideration, their contribu-
tion will be diluted by differences in the extraneous x
variables and MSD for that element, y of Y will be domi-
nated by pure error and measurement error to such an extent
that [g(Xy;) — g(XRj)]2 may decrease with distance. If it
does decrease, then the distance component and model
lack-of-fit will be underestimated.

Transformations in variables are typically invoked to
simplify a model such as y = f(X) and to render errors more
homogeneous. Consideration of Equations 8, 10, and 17, as
estimates of sources of imputation errors from the three
sources shows that transformations of the X variables, while
modifying the fit of the regression model y = f(X), affect
MSD only through the distance component, %;[g(Xy,) —
g(XRj)]Z/n, and homogeneity of the pure error component.
Transformations affect the distance component through the
selection of surrogates, which in turn depend on the choice
of the weight matrix W. In dense regions of the space
spanned by the X variables of the reference set, the distance
component in MSD is small relative to pure error plus
measurement error for any choice of near neighbor. How-
ever, where the X; are not closely spaced (sparse), their
imputations to the Xy, will be few in number, so their effect
on MSD will be small. This ambiguity explains a puzzling
property of near-neighbor imputation: that it has not ap-
peared to be very sensitive to monotonic transformations of
the variables. However, for imputation methods that base W
on the relations of Y to X in distance calculations (e.g.,
MSN), the nonlinear components represented by lack-of-fit
would change the selection of “near neighbors.” The extent
of the change would be greatest in pairs of observation units
in which model lack-of-fits were of opposite sign.

Choice of k

The partitioning of error provides useful insight concern-
ing the choice of k for imputation using a weighted average
of k near neighbors. The obvious effect is that larger k, by
averaging over the errors of more reference observations,
would seem to reduce the error of the imputed value.
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However, it is not that simple. Following the same assump-
tions used in deriving Equation 8 MSD becomes

E[Ei[yTi - EmWimyRm]zln]
=2 [g(Xy,) — Emwimg(XRm)]zl n
+ (1 + 22, w2 m)[Var(ey) + Var(ep)].  (24)

In k-nn imputation, yg; of Equation 8 is replaced by an
average of k values of y,, using a weighting rule for the
particular flavor of k-nn inference, where m is from the set
of indices of the k observations selected as near neighbors to
the ith target and 3,,w;,, = 1. When w,,, = 1/k, the multi-
plier of the variances in Equation 24 becomes (1 + 1/k). To
the extent that it is pure error being reduced, increasing k is
counterproductive for the subsequent analysis. Offsetting
this effect, measurement error will also be reduced in the
same proportion. Hence, there is a tradeoff; either lose
valuable pure error or reduce undesirable measurement er-
ror. The net effect of changing k also depends on the change
in 3[eXp) — 2, Wing(Xg,)]*/n. Whether this component
increases or decreases the total error depends on the change
of [gXy) — =, Wi (Xg,)]* for the reference observation
being added or omitted by changing k.

Application to Example Data Sets

Three data sets will be used to illustrate the estimation of
error components and application of these estimates in
evaluating alternative weight matrices. All three use suites
of remotely sensed data and data from digital terrain models
to impute data from ground-based observations. As exam-
ples of real imputation analyses, they illustrate the behavior
of the statistics we propose. We do not purport to second-
guess the analysis of these data sets, so the definitions of the
69 specific variables in these three data sets are mostly
irrelevant to our purposes. Where we do discuss behavior of
the partitioning as a consequence of the biological situation,
we will define those variables explicitly in the text. Other-
wise, readers desiring more detail are directed to the original
sources.

The first example uses data used by Moisen and Frescino
(2002) obtained by the USDA Forest Service, Rocky Moun-
tain Experiment Station Forest Inventory and Analysis Unit
(FIA). The ground-based data (Y variables) are from routine
FIA observations for Utah. The X variables were obtained
from LANDSAT and digital terrain data.

The other two data sets use ground data from inventories
of stands defined as polygons. One, from the Deschutes
National Forest in Oregon, has been used in previously
reported analyses by Moeur (2000) and is the example in the
MSN User’s Guide (Crookston et al. 2002). The third data
set is from Tally Lake area in the Flathead National Forest
in Montana. For these comparisons, the Y variables will be
limited to those measured on continuous scales. These anal-
yses differ from those reported by Stage and Crookston
(2002) in that all discrete and a few redundant y variables
have been omitted to achieve approximately equal numbers
of y variables in the three examples, and additional x vari-
ables (transformations of the original variables) have been
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Table 1. Number of coefficients to be estimated in relation to number
of samples for three data sets used as examples

Tally Users
Lake Guide Utah

Number of Y variables 8 6 10
Number of X variables (p) 21 12 12
Number of reference obs. (n) 847 197 1076
Significant canonical pairs (s) 7 5 4
n/(s + p *s) 5.50 3.03 16.55
1
@ 0.9
o 08
@ 0.7
< 06
2 05
.% 0.4
0.3
g 02
& o
&
&
Tally Lake User's Guide Utah

Figure 2. Proportion of zero values in example data sets.

added. Table 1 summarizes numbers of variables and sam-
ple sizes for the three data sets. Of the three data sets, the
Users Guide has remarkably fewer observations in relation
to the number of unique coefficients in the weight matrix
being estimated (last line, Table 1).

The Utah data set differs from the other two in that it
contains a notable portion of locations in nonforest, al-
though the continuous Y variables describe forest stand
parameters. By contrast, y values of zero in the other two
data sets indicate lack of stocking in otherwise forested
polygons. The proportion of zeroes in the three data sets are
indicated in Figure 2.

Table 2 summarizes the structure of the correlations
between the canonical vectors for the three data sets. Mul-
tivariate regression R” values of y on X are listed in col. B
of Table 2. Correlations between Y and X variables were
lowest in the Utah data because the measurement errors of
the Y variables from the FIA plot clusters were larger than
in the two data sets based on inventories of stand polygons.

Components of Variance

Data for partitioning variance for the three example data
sets are displayed in Table 3. Columns A—C contain statis-
tics for each y variable considered independently of the
remaining elements of Y. Columns D-F contain statistics

Table 2. Comparison between three example data sets of first four
squared canonical correlations between Y and X

Canonical

Pair (m) Tally Lake User’s Guide Utah
1 0.697 0.686 0.450
2 0.477 0.456 0.153
3 0.325 0.376 0.109
4 0.292 0.244 0.034




Table 3. Components of variance for three example data sets

Squared error

Mean square
between target

Mean square
between target
and nearest

Total about and nearest reference for Calculated
variance of Multivariate regression of reference for 1/8 of shorter distance
Y variable in regression single ¥ SEE? all pairs in distances component
reference set R? 1.-col. B MSD (MMSD(0)) D—FE
Y Variable (A) (B) © (D) (E) F)
Tally Lake
Top height 566.669 0.6713 0.3287 0.6990 0.2837 0.4153
Vlig'AF 8.69601 0.4716 0.5284 1.0380 0.8461 0.1919
VIg'ES 9.01080 0.4322 0.5678 1.2098 1.4075 —0.1977
Vlig'DF 7.03682 0.3696 0.6304 1.0064 0.6292 0.3772
CCover 222.797 0.2999 0.7001 1.1628 1.0061 0.1567
Vig'L 6.664606 0.2556 0.7444 1.3189 0.9271 0.3918
Vig'LP 8.18933 0.1956 0.8044 1.4893 1.0475 0.4418
Vig'PP 0.71893 0.1076 0.8924 1.1779 0.6486 0.5294
Users Guide
TotBA 2822.19 0.5917 0.4083 0.7695 0.735 0.0345
LN-FIR 4.43945 0.5440 0.4560 0.8217 0.087 0.7347
TopHT 292.968 0.4839 0.5161 0.9453 0.287 0.6583
LN_PINE 7.0639 0.3858 0.6142 1.0768 0.087 0.9898
LN-BADF 1.85368 0.3548 0.6452 0.9557 0 0.9557
LN-BALP 3.55926 0.3225 0.6775 1.2927 0.6712 0.6215
Utah
MAICF 684.346 0.3567 0.6433 1.1259 0.3334 0.7925
NVOLTOT  2064882. 0.3142 0.6858 1.3522 0.7868 0.5654
NVOLMER  1546287. 0.2976 0.7024 1.3472 0.8143 0.5329
BA 4211.15 0.2736 0.07264 1.3271 0.7525 0.5746
CRCOV 779.175 0.2621 0.7379 1.4426 0.8551 0.5876
STAGECL 3746.17 0.2528 0.7472 1.3367 1.0754 0.2613
NGRWCF 905.920 0.2434 0.7566 1.4868 2.1123 —0.6255
BIOTOT 636.018 0.2390 0.07610 1.4758 0.5886 0.8872
NGRWBA 0.75238 0.2280 0.7720 1.5302 1.0740 0.4562
QMDALL 19.5868 0.1711 0.8289 1.6427 0.6462 0.9965

Columns C-F are standardized by division by variance in column A. Columns B and C are for a linear model used as y = f(X). Columns D-F are obtained

with a Mahalanobis distance function.

for each y variable for pairs of near neighbors selected using
a multivariate Mahalanobis distance measure.

Accuracy of Imputed Values

Standard error of imputation squared (SEI?) (as a fraction
of variance of each variable) of values imputed using a
Mahalanobis distance function are shown in Figure 3. The
error component arising from distance between target and
reference, 3,[(g(Xy) — g(XRj))z]/n, as estimated by Equa-
tion 10, is shown in Figure 3 by the shaded portions of the
bars for each y variable. This figure also shows the com-
bined components of pure error and measurement error as
estimated by Equation 9.

Imputation Compared to Linear Regression

Figure 4 compares the distance component of imputa-
tions (plotted as its negative) with the model lack-of-fit
computed as SEE* — Min(MMSD(0)/2, SEE?) for f(X) =
BX'. As a corollary of the differences between imputation
distance component and regression lack-of-fit, SEE? is al-
most always less than SEI”. The exceptions to the inequality

are Crown Cover (CCover) and logarithm of Pinus pon-
derosa volume (VIg'PP) in the Tally Lake data set. We
conjecture that the linear regression is just not a very effec-
tive model for crown cover, and that the large proportion of
zero data for Pinus ponderosa preclude effective prediction
of volume. Also, there would be two anomalies leading to
negative estimates of lack-of-fit if the minimum of
MMSD(0) and SEE? were not used: logarithm of En-
gelmann spruce volume (VIg'ES) in the Tally Lake data and
net growth in cubic feet (NGRWCEF) in the Utah data. The
larger values of MMSD(0) for these variables are the con-
sequence of squared differences between yr; and yg; that
decrease with increasing differences in the X variables. As
a result, MMSD(0) is larger than SEE®. We attribute this
anomaly to unequal pure error in different regions of the X
space. Engelmann spruce in the Tally Lake area occurs
bimodally with elevation—either very common at high
elevations or as sparse stringers in valley bottoms. How-
ever, the density in the X space of the observations repre-
senting valley bottoms and stands at similar elevations is
higher than the density of data representing high elevations.
Thus observation pairs with near-zero distances tend to
come from low elevations, where the sporadic presence of
spruce gives large squared differences, whereas at high
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Figure 3. Partitioning of relative variance of imputed values (SEI
Equation 13) for Mahalanobis distance function. Variables within a
data set are ordered from left to right by increasing SEE. Values
standardized by division by attribute variance.
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Figure 4. Distance error component of imputation (plotted as its
negative) compared to lack of fit of a linear regression, and pure error
plus measurement error. The clear portion of the bar is the amount of
error that would be added to lack of fit to make expression 23 equal
zero. The stippled bar is the remaining portion of pure error plus
measurement error. Variables within a data set are ordered from left
to right by increasing SEE for a linear regression model. Values
standardized by division by attribute variance.

elevations spruce is more ubiquitous, giving smaller differ-
ences in volume even at larger separations in X space.

That SEE is almost always less than SEI is not surpris-
ing, because whereas SEE is a least-squares minimization of
the model prediction, SEI is not the result of an explicit
minimization and includes the pure error and measurement
error components. When pure error should be included in
estimates for subsequent analyses, the proportion of pure
error that might be added to regression lack of fit that would
just make Equation 23 equal to zero is indicated by the
white bars in Figure 4. Unfortunately, we lack a direct
estimate of measurement error that should be subtracted
from SEI, so we can only show the margin from which it
would be subtracted.

Effect of Distances between X Values

The three data sets show differences in the proportions of
variance attributable to the Mahalanobis distances between
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target and reference (Figure 3, shaded bar). The low ratio of
number of observations compared to number of coefficients
to be estimated and large linear model lack-of-fit of the
User’s Guide data produces a relatively large distance com-
ponent compared to the Tally Lake data. Utah data show an
intermediate level because the effect of the larger number of
data relative to the number of coefficients to be estimated is
offset by the low correlations between Y and X values
(Table 3) caused by the inclusion of nonforest observations
(Figure 2).

In the Tally Lake application, average distances from
reference observation units to actual target observation units
is 2.04 times the average distance from each reference
observation unit to its nearest neighbor also in the reference
set. Nearly one-third of the targets are farther from their
nearest reference than the ninth percentile of the distribution
of distances among the references. The significance of this
extrapolation might be determined by modeling squared
differences for each element of Y as a function of distance.
Such analysis is beyond the scope of this report.

Comparison of Alternative Distance Functions

The difficulty of using MSD to compare alternative
distance functions can be appreciated by considering that
the influence of pure error plus sampling error would be
double that shown in Figure 3. Although the absolute value
of differences in MSD arising from different distance func-
tions would not change, the relative importance of the
differences among the alternative distance functions would
be underestimated.

Figures 5, 6, and 7 compare three alternative distance
functions, the Mahalanobis distance used heretofore in this

W Mahalanobis
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Figure 5. Tally Lake comparison of distance components (Equation
10) for two canonical-correlation-based distance functions with Ma-
halanobis distance function. Variables within a data set are ordered
from left to right by increasing SEE.
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Figure 6. Users guide. Comparison of distance components (Equation
10) for two canonical-correlation-based distance functions with Ma-
halanobis distance function. Variables within a data set are ordered
from left to right by increasing SEE.
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Figure 7. Utah. Comparison of distance components (Equation 10)
for two canonical-correlation-based distance functions with Mahal-
anobis distance function. Variables within a data set are ordered from
left to right by increasing SEE.

report, the original canonical-correlation-based distance
(CC) of Moeur and Stage (1995), and the newer canonical-
regression-based distance (CR) introduced by Stage and
Crookston (2002). The panels present both estimated means
of [gXt) — g(XRj)]2 based on all data for comparison to
means for the 50% of the data separated by the longer

distances. Only the Utah data show the alternative similarity
measures to rank differently in the full data set than in the
reduced data set containing only the 50% longer distances.
Also, the Utah data set was the only one to show a distinct
advantage to using one or the other of the canonical-based
distances over the Mahalanobis distances; the differences
would be even greater if the nonforest data were masked
because the Mahalanobis distances did slightly better at
matching the zero data. The result seems anomalous be-
cause the Utah data had the lowest canonical correlations
between Y and X. However, one of the merits of the
canonical approach lies in its capability to ignore X vari-
ables that are irrelevant. Moisen and Frescino (2002) found
that several of the X variables were superfluous. The Ma-
halanobis distance would have given these variables
weights equal to the weights of the useful variables. The
other two data sets were obtained after extensive analysis by
others that probably had already screened the X variables
for utility.

Conclusions

This report concerns the error properties of imputation
processes used to fill in a data set by imputing values from
a sample of intensively measured observation units to in-
terspersed, less completely measured units. The error sta-
tistics for the imputed, continuous-valued variables pre-
sented in this report are based on partitioning of the error
components into measurement error, error inherent in the
particular imputation method, and the pure error not asso-
ciated with the variables measured on all observation units.
These statistics can assist in the design of inventories and
their analysis with near-neighbor imputation methods. It is
now possible to consider the relative gains from reducing
measurement error versus increasing the density of the
sampled observation units. They also clarify comparisons to
other inference methods such as regression or stratum-mean
based estimators, and help to choose among alternative
weight matrices in similarity measures.
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