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Abstract

This short article illustrates how to analyze time-to-event outcomes with the BART

R package.
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1. Time-to-event outcomes with BART

The BART package supports time-to-event outcomes including survival analysis, competing
risks and recurrent events.

1.1. Background: survival analysis with the Cox proportional hazard model

The inspiration for survival analysis with BART is the classic standard: the Cox proportional
hazard model (Cox 1972). The data is (si, δi,xi) where si is the time of an absorbing event,
δi = 1, or right censoring, δi = 0, and xi is a vector of covariates (which can be time-
dependent, but, for simplicity, we assume that they are known at time zero). We construct
a grid of the ordered distinct event times, 0 = t(0) < · · · < t(K) < ∞, and we consider
the following time intervals: (0, t(1)], (t(1), t(2)], . . .(t(K−1), t(K)]. The general form of the Cox
proportional hazard model is the following: λ(t(j),xi) = λ0(t(j)) exp(β

′xi) where λ(t(j),xi)
is the hazard, λ0(t(j)) is a nonparametric baseline hazard defined at the grid of time points
and exp(β′xi) is a parametric multiplier which we call linear proportionality. To perform
estimation and inference of β, we utilize what is known as the partial likelihood: [β|λ0(t)] =
∏

i
eβ

′xi
∑

j∈R(ti)
eβ

′xj
where R(ti) is the set of subjects at risk for an event at time point ti (which

for events is a grid point by definition). The cumulative baseline hazard can be estimated as

Λ̂0(t(j)) =
∑

ti≤t(j)

δi∑
j∈R(ti)

eβ̂
′xi

. The baseline survival is Ŝ0(t(j)) = e−Λ̂0(t(j)) and the general

survival is Ŝ(t(j),xi) = Ŝ0(t(j))
exp(β̂′xi). Notice that we don’t directly estimate the survival;

rather, we estimate β and survival is a consequence of this estimate by construction. This
feature, and the time grid, foreshadow elements of survival analysis with BART.

1.2. Survival analysis with BART

Survival analysis with BART is provided by the surv.bart function for serial computation
and mc.surv.bart for parallel computation. The complete details of our approach can be
found in Sparapani, Logan, McCulloch, and Laud (2016) and a brief introduction follows. We
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take an approach that is tantamount to discrete-time survival analysis (Thompson Jr. 1977;
Arjas and Haara 1987; Fahrmeir and Tutz 1994; Fahrmeir 1998). Following the capabilities
of BART, we do not stipulate linearity nor proportional hazards. We use the same notation
developed for the Cox proportional hazards model above.

Now, consider event indicators yij for each subject i at each distinct time t(j) up to and
including the subject’s last observation time ti = t(ni) with ni = argmaxj

[

t(j) ≤ ti
]

. This
means yij = 0 if j < ni and yini

= δi. Denote the probability of an event at time t(j),
conditional on no previous event, by pij . Now, our model for yij is a nonparametric probit
regression of yij on the time t(j) and the covariates xi. We utilize the Albert and Chib (1993)
truncated Normal latent variables zij to recast it as a continuous BART model where the
latents are the outcome. We choose Albert and Chib (1993) Normal latents as the default for
computational efficiency, but we also provide the optional Holmes and Held (2006) Logistic
latents by specifying type=’lbart’.

So the model is

yij = δiI
(

si = t(j)
)

, j = 1, . . . , ni

yij |pij∼B (pij)

pij |f = Φ(µij), µij = µ0 + f(t(j),xi)

f
prior
∼ BART

zij |yij , f∼

{

N(µij , 1) I (−∞, 0) if yij = 0

N (µij , 1) I (0,∞) if yij = 1

where Φ is the standard Normal cumulative distribution function.

If the event indicators, yij , have already been computed, then you can specify them with the
y.train argument. However, it is likely that the indicators would need to be constructed, so
for convenience, you can specify (si, δi) by the arguments times and delta respectively. In
either case, the default value of µ0 is Φ

−1(ȳ) (which you can over-ride with the binaryOffset
argument). For BART with continuous outcomes, typically the outcome is centered and µ0 is
taken to be ȳ. While centering can be helpful for small samples with Albert and Chib (1993),
it is unnecessary for moderate to large samples because of the flexibility of f (for Holmes and
Held (2006) with Logistic latents which have heavier tails, centering is unnecessary even for
small samples so µ0 is fixed at zero for type=’lbart’).

So just like in the Cox model case, we have to construct quantities of interest with BART for
survival analysis. In discrete-time survival analysis, the probability of an event in an interval
is the foundation which essentially replaces the instantaneous hazard from continuous-time
survival analysis: p(t,x) = Φ(µ0 + f(t,x)). Now, the survival function is constructed as
follows: S(t(j)|x) = Pr(T > t(j)|x) =

∏j
l=1(1− p(t(l),x)).

Survival data pairs (s, δ) are converted to indicators by the helper function surv.pre.bart

which is called automatically by surv.bart if y.train is not provided. surv.pre.bart

returns a list which contains y.train for the indicators; tx.train for the covariates corre-
sponding to y.train for training f(t,x) (which includes time in the first column, and the rest
of the covariates afterward, if any, i.e., rows of [t,x], hence the name tx.train to distinguish
it from the original x.train); tx.test for the covariates to predict f(t,x) rather than to
train; times which is the grid of ordered distinct time points; and K which is the length of
times. Here is a very simple example of a data set with three observations and no covariates
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re-formatted for display (no covariates is an interesting special case but we will discuss the
more common case with covariates further below).

times <- c(2.5, 1.5, 3.0)

delta <- c( 1, 1, 0)

surv.pre.bart(times=times, delta=delta)

$y.train $tx.train $tx.test $times $K

[1] t t [1] [1] 3

0 [1,] 1.5 [1,] 1.5 1.5

1 [2,] 2.5 [2,] 2.5 2.5

1 [3,] 1.5 [3,] 3.0 3.0

0 [4,] 1.5

0 [5,] 2.5

0 [6,] 3.0

Here is a schematic of the input and output for the surv.pre.bart function.
pre <- surv.pre.bart(times, delta, x.train, x.test=x.train)

pre is a list with the matrix pre$tx.train & pre$y.train which is a vector


























t(1) x1
...

...
t(n1) x1
...

...
t(1) xN

...
...

t(nN ) xN





















































y11 = 0
...

y1n1 = δ1
...

yN1 = 0
...

yNnN
= δN



























For pre$tx.test, ni is replaced by K which is very helpful so that each subject contributes
an equal number of settings for programmatic convenience and noninformative estimation,
i.e., if high-risk subjects with earlier events did not appear beyond their event, then estimates
of survival for latter times would be biased upward. For other outcomes besides time-to-event,
we provide two matrices of covariates, x.train and x.test, where x.train is for training
and x.test is for validation. However, due to the variable ni for time-to-event outcomes,
we generally provide two arguments as follows: x.train, x.test=x.train where the former
matrix will be expanded by surv.pre.bart to

∑N
i=1 ni rows for training f(t,x) while the

latter matrix will be expanded to N ×K rows for f(t,x) estimation only. If you still need to
perform validation, then you can make a separate call to the predict function.

N.B. the argument ndpost=M is the length of the chain to be returned and the argument
keepevery is used for thinning, i.e., return M observations where keepevery are culled in be-
tween each returned value. For BART with time-to-event outcomes, the default is keepevery=10
(rather than keepevery=1 for other outcomes) since the grid of time points creates data set
observations of order N ×K which have a tendency towards higher auto-correlation, there-
fore, making thinning more necessary. To avoid unnecessarily enlarged data sets, it is often
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prudent to coarsen the time axis appropriately, i.e., re-scale from days to weeks or months.
You can coarsen automatically by supplying the optional K argument to coarsen the times to
a grid of time quantiles: 1/K, 2/K, ..., K/K (not to be confused with the k argument which is
a prior parameter for the distribution of the leaf terminal values).

Here is a schematic of the input and output for the surv.bart function for serial computation
and mc.surv.bart for parallel computation.
set.seed(99)

post=surv.bart(x.train, times=times, delta=delta, x.test=x.train, ndpost=M) or
post=mc.surv.bart(x.train, times=times, delta=delta, x.test=x.train, ndpost=M,

mc.cores=C, seed=99)

Input vector times with K distinct values and x.train:











x1

x2
...

xN











or xi

Output post of type survbart which is essentially a list of

objects including the matrix: post$surv.test: Ŝm(t(j),xi)






Ŝ1(t(1),x1) ... Ŝ1(t(K),x1) ... Ŝ1(t(1),xN ) ... Ŝ1(t(K),xN )

...
...

...
...

...
...

...
ŜM (t(1),x1) ... ŜM (t(K),x1) ... ŜM (t(1),xN ) ... ŜM (t(K),xN )







Here is a schematic of the input and output for the predict.survbart function.
pred <- predict(post, pre$tx.test, mc.cores=C)

Input: x.test











x1

x2
...

xQ











or xi

Output: pred of type survbart with pred$surv.test: Ŝm(t(j),xi)






Ŝ1(t(1),x1) ... Ŝ1(t(K),x1) ... Ŝ1(t(1),xQ) ... Ŝ1(t(K),xQ)

...
...

...
...

...
...

...
ŜM (t(1),x1) ... ŜM (t(K),x1) ... ŜM (t(1),xQ) ... ŜM (t(K),xQ)







As previously noted, BART does not directly provide a summary of the effect of a single
covariate, or a subset of covariates, on the outcome. For survival analysis, we use Fried-
man’s partial dependence function (Friedman 2001) with BART to summarize the marginal
effect due to a subset of the covariates, (t,xS), by aggregating over the complement of
covariates, xC , i.e., x = [xS ,xC ]. This marginal dependence function is defined by fix-
ing (t,xS) while aggregating over the observed settings of the complement covariates in
the cohort: f(t,xS) = N−1

∑N
i=1 f(t,xS ,xiC). For survival analysis, the f function is
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often not directly of interest; rather, the survival function is more readily interpretable:
S(t,xS) = N−1

∑N
i=1 S(t,xS ,xiC). Other marginal functions can be obtained in a simi-

lar fashion. Estimates can be derived via functions of the posterior samples such as means,
quantiles, e.g., Ŝ(t,xS) = M−1N−1

∑M
m=1

∑N
i=1 Sm(t,xS ,xiC) where m indexes posterior

samples. Friedman’s partial dependence function is a concept which is very flexible. So flexi-
ble that as of yet, we are unable to provide abstract functional support in the BART package;
rather, we provide examples of the many practical uses in the demo directory.

Here we present an example that is available in the BART package.
system.file(’demo/lung.surv.bart.R’, package=’BART’). The North Central Cancer
Treatment Group surveyed 228 advanced lung cancer patients (Loprinzi, Laurie, Wieand,
Krook, Novotny, Kugler, Bartel, Law, Bateman, and Klatt 1994). This data can be found in
the lung data set. The study focused on prognostic variables. Patient responses were paired
with a few clinical variables. We control for age, gender and Karnofsky performance score
as rated by their physician. We compare the survival for males and females with Friedman’s
partial dependence function; see Figure 1. We also analyze this data set with Logistic latents
and the results are quite similar (not shown): system.file(’demo/lung.surv.lbart.R’,

package=’BART’). Furthermore, we perform convergence diagnostics on the chain:
system.file(’demo/geweke.lung.surv.bart.R’, package=’BART’).

1.3. Survival analysis and the concordance probability

The concordance probability (Gönen and Heller 2005) is a measure of the discriminatory
ability of survival analysis analogous to the area under the receiver operating characteristic
curve for binary outcomes. A simple analytic example with the Exponential distribution is
as follows.

ti∼Exp (λi) where i ∈ {1, 2}

P [t1 < t2] =

∫ ∞

0

∫ t2

0
λ2e

−λ2t2λ1e
−λ1t1 dt1 dt2 =

λ1

λ1 + λ2

1− P [t1 > t2] = 1−
λ2

λ1 + λ2
=

λ1

λ1 + λ2

Notice that the concordance is symmetric with respect to t1 and t2.

We can make a similar calculation based on our BART survival analysis model. First, we
calculate P [s1 < s2].

P [s1 < s2] =P
[

s1 = t(1), s2 > t(1)
]

+

P
[

s1 = t(2), s2 > t(2)|s1 > t(1), s2 > t(1)
]

P
[

s1 > t(1), s2 > t(1)
]

+ . . .

=
K
∑

j=1

P
[

s1 = t(j), s2 > t(j)|s1 > t(j−1), s2 > t(j−1)

]

P
[

s1 > t(j−1), s2 > t(j−1)

]

=

K
∑

j=1

p1jq2jS1(t(j−1))S2(t(j−1))
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Now, we calculate the mirror image relationship.

1− P [s1 > s2] =1−
K
∑

j=1

q1jp2jS1(t(j−1))S2(t(j−1))

=1−
K
∑

j=1

(1− p1j)(1− q2j)S1(t(j−1))S2(t(j−1))

=1−

K
∑

j=1

(1− p1j − q2j + p1jq2j)S1(t(j−1))S2(t(j−1))

=1−
K
∑

j=1

p1jq2jS1(t(j−1))S2(t(j−1))−
K
∑

j=1

(q1j − q2j)S1(t(j−1))S2(t(j−1))

However, note that these probabilities are not symmetric. Therefore, we enforce symmetry
as follows.

κs1,s2 =0.5 (P [s1 < s2] + 1− P [s1 > s2]) = 0.5



1−
K
∑

j=1

(q1j − q2j)S1(t(j−1))S2(t(j−1))





See the concordance probability example at system.file(’demo/concord.surv.bart.R’,

package=’BART’).

1.4. Competing risks with BART

Competing risks are supported by the function crisk.bart for serial computation and
mc.crisk.bart for parallel computation. Typically, competing risks (Fine and Gray 1999;
Kalbfleisch and Prentice 2002) deal with events which are mutually exclusive, say, death from
cardiovascular disease vs. death from other causes, i.e., a patient experiencing one of the events
is incapable of experiencing another. We adopt the subdistribution concept of Fine and Gray
(1999) for competing risks. Let’s suppose we have two kinds of events: events of kind 1, death
from cause 1 which is the cause of interest, and events of kind 2, death from cause 2 which is
any other cause. The distribution function of an event time is F (t,x) = G1(t,x) + G2(t,x)
whereG1(t,x) = pF1(t,x) andG2(t,x) = (1−p)F2(t,x). F1 and F2 are distribution functions,
i.e., Fh(∞,x) = 1. While G1 and G2 are subdistribution functions, i.e., Gh(∞,x) < 1. Fine
and Gray (1999) model the subdistribution functions rather than the distribution functions;
and we do the same. But, here we part ways with Fine and Gray (1999) since they assume
linear proportionality and the Exponential distribution while we impose neither precarious
restrictive assumption.

To accomodate competing risks, we adapt our notation slightly: (si, δi) where δi = 1 for
kind 1 events, δi = 2 for kind 2 events, or δi = 0 for censoring times. We create a single
grid of time points for the ordered distinct times based on either kind of event or censoring:
0 = t(0) < t(1) < · · · < t(K) < ∞. We model the probability for an event of kind 1, p1(t(j),xi),
and an event of kind 2 conditioned on subject i being alive at time t(j), p2(t(j),xi). Now, as
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before, we create event indicators.

y1ij = I (δi = 1) I (j = ni) where j = 1, . . . , ni

y1ij |p1ij∼B (p1ij)

p1ij = Φ(µ1 + f1(t(j),xi) where f1
prior
∼ BART

y2ij = I (δi = 2) I (j = ni) where j = 1, . . . , ni − y1ini

y2ij |p2ij∼B (p2ij)

p2ij = Φ(µ2 + f2(t(j),xi) where f2
prior
∼ BART

Based on this BART framework, we can estimate the survival function and the cumulative
incidence functions as follows.

S(t,xi) = 1− F (t,xi) =

k
∏

j=1

(1− p1ij)(1− p2ij) where k = argmax
j

[

t(j) ≤ t
]

F1(t,xi) =

∫ t

0
S(u−,xi)λ1(u,xi)du =

k
∑

j=1

S(t(j−1),xi)p1ij

F2(t,xi) =

∫ t

0
S(u−,xi)λ2(u,xi)du =

k
∑

j=1

S(t(j−1),xi)(1− p1ij)p2ij

The returned object of type criskbart from crisk.bart or mc.crisk.bart provides the cu-
mulative incidence functions and survival corresponding to x.test as follows: F1 is cif.test,
F2 is cif.test2 and S is surv.test.

Here, we present the Mayo Clinic liver transplant waiting list data from 1990-1999 with
N = 815 patients. During the study period, the liver transplant organ allocation policy was
flawed. Blood type is an important matching factor to avoid organ rejection. Donor livers
from subjects with blood type O can be used by patients with A, B, AB or O blood types;
whereas a donor liver from the other types will only be transplanted to a matching A, B or
AB recipient. Therefore, type O subjects on the waiting list were at a disadvantage since the
pool of competitors was larger for type O donor livers. This data is of historical interest and
provides a useful example of competing risks, but it has little relevance today. Current liver
transplant policies have evolved and now depend on each individual patient’s risk/need which
are assessed and updated regularly while a patient is on the waiting list. However, there
still remains an acute shortage of donor livers today. The transplant data set is provided
by the BART R package as is this example: system.file(’demo/liver.crisk.bart.R’,

package=’BART’). We compare the nonparametric Aalen-Johansen competing risks estimator
with BART for the transplant event of type O patients which are in general agreement; see
Figure 2.

1.5. Recurrent events with BART

The BART package supports recurrent events with recur.bart for serial computation and
mc.recur.bart for parallel computation. BART provides much desired flexibility in modeling
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the dependence of recurrent events on covariates. Consider data in the form: δi, si, ti,ui,xi(t)
where i = 1, . . . , n indexes subjects; si is the end of the observation period (death, δi = 1, or
censoring, δi = 0); Ni is the number of events during the observation period; ti = [ti1, . . . , tiNi

]
and tik is the event start time of the kth event (let ti0 = 0); ui = [ui1, . . . , uiNi

] and uik is
the event end time of the kth event (let ui0 = 0); and xi(t) is a vector of time-dependent
covariates. Both start and end times of events are necessary to define risk set eligibility for
events of stochastic duration like readmissions since patients currently hospitalized cannot
be readmitted. For instantaneous events (or roughly instantaneous events such as emergency
department visits with time measured in days), the end times can be simply ignored.

We denote the K collectively distinct event start and end times for all subjects by 0 < t(1) <

· · · < t(K) < ∞ thus taking t(j) to be the jth order statistic among distinct observation
times and, for convenience, t(j′) = 0 where j′ ≤ 0 (note that t(j) are constructed from
all event start/end times for all subjects, but they may be a censoring time for any given
subject). Now consider binary event indicators yij for each subject i at each distinct time
t(j) up to the subject’s last observation time t(ni) ≤ si with ni = argmaxj

[

t(j) ≤ si
]

, i.e.,
yi1, . . . , yini

∈ {0, 1}. We then denote by pij the probability of an event at time t(j) conditional
on

(

t(j), x̃i(t(j))
)

where x̃i(t(j)) =
(

Ni(t(j−1)), vi(t(j)),xi(t(j))
)

. Let Ni(t−) ≡ lim
s↑t

Ni(s) be the

counting process of events for subject i just prior to time t and we also note that Ni = Ni(si).
Let vi(t) = t−uNi(t−) be the sojourn time for subject i, i.e., time since last event, if any. Notice
that we can replace Ni(t(j)−) with Ni(t(j−1)) since, by construction, the state of information
available at time t(j)− is the same as that available at t(j−1). Assuming a constant intensity
and constant covariates, x̃i(t(j)), in the interval (t(j−1), t(j)], we define the cumulative intensity
process as:

Λ(t(j), x̃i(t(j))) =

∫ t(j)

0
dΛ(t, x̃i(t)) =

j
∑

j′=1

PrNi(t(j′))−Ni(t(j′−1)) = 1 | t(j′), x̃i(t(j′)) =

j
∑

j′=1

pij′

(1)

where these pij are currently unspecified and we provide their definition later (2). Note: the
terms “intensity” and “hazard” are generally interchangeable.

With absorbing events such as mortality there is no concern about the conditional indepen-
dence of future events because there will never be any. Conversely, with recurrent events,
there is a valid concern. Of course, conditional independence can be satisfied by conditioning
on the entire event history, denoted by Ni(s) where 0 ≤ s < t. However, conditioning on the
entire event history is impractical. Rather, we condition on both Ni(t−) and vi(t) to satisfy
any concern of conditional independence.

We now write the model for yij as a nonparametric probit regression of yij on
(

t(j), x̃i(t(j))
)

tantamount to parametric models of discrete-time intensity (Thompson Jr. 1977; Arjas and
Haara 1987; Fahrmeir and Tutz 1994; Fahrmeir 1998). Specifically, with temporal data con-
verted from δi, si, ti,ui,xi(t) to a sequence of longitudinal binary events as follows: yij =
maxk I

(

tik = t(j)
)

. However, note that the definition of j is currently unspecified. To under-
stand the impetus of the range of j, let’s look at an example.

Suppose that we have two subjects with the following values:

N1 = 2, s1 = 9, t11 = 3, u11 = 7, t12 = 8, u12 = 8 ⇒ y11 = 1, y12 = y13 = 0, y14 = 1, y15 = 0 (2.3)

N2 = 1, s2 = 12, t21 = 4, u21 = 7 ⇒ y21 = 0, y22 = 1, y23 = y24 = y25 = y26 = 0
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which creates the grid of times (3, 4, 7, 8, 9, 12). For subject 1 (2), notice that y12 = y13 = 0
(y23 = 0) as it should be since no event occurred at times 4 or 7 (7). However, there were
no events since their first event had not ended yet, i.e., these subjects are not chronologically
at risk for an event and, therefore, no corresponding random behavior contributed to the
likelihood. The BART package provides the recur.pre.bart function which you can use
to construct these data sets. Here is a short demonstration of its capabilities adapted from
demo/data.recur.pre.bart.R (re-formatted for display purposes).

> library(BART)

> times <- matrix(c(3, 8, 9, 4, 12, 12), nrow=2, ncol=3, byrow=TRUE)

> tstop <- matrix(c(7, 8, 0, 7, 0, 0), nrow=2, ncol=3, byrow=TRUE)

> delta <- matrix(c(1, 1, 0, 1, 0, 0), nrow=2, ncol=3, byrow=TRUE)

> recur.pre.bart(times=times, delta=delta, tstop=tstop)

$K $times $y.train $tx.train $tx.test

[1] [1] [1] t v N t v N

6 3 1 [1,] 3 3 0 [1,] 3 3 0

4 1 [2,] 8 5 1 [2,] 4 1 1

7 0 [3,] 9 1 2 [3,] 7 4 1

8 0 [4,] 3 3 0 [4,] 8 5 1

9 1 [5,] 4 4 0 [5,] 9 1 2

12 0 [6,] 8 4 1 [6,] 12 4 2

0 [7,] 9 5 1 [7,] 3 3 0

0 [8,] 12 8 1 [8,] 4 4 0

[9,] 7 3 1

[10,] 8 4 1

[11,] 9 5 1

[12,] 12 8 1

Notice that $tx.test is not limited to the same time points as $tx.train, i.e., we often
want/need to estimate f at counter-factual values not observed in the data so each subject
contributes an equal number of evaluations for estimation purposes.

It is now clear that the yij which contribute to the likelihood are those that correspond to
j ∈ Ri(t(j)) which is the risk set for subject i at time t(j) that either contains j or is empty. We

formally define the risk set as Ri(t(j)) =
{

j : (j ∈ {1, . . . , ni}) ∩
(

∩Ni

k=1{t(j) 6∈ (tik, uik)}
)}

.

Putting it all together, we arrive at the following recurrent events discrete-time model.

yij |pij∼B (pij) where i = 1, . . . , n; j ∈ Ri(t(j))

pij |f = Φ(µij), µij = µ0 + f(t(j), x̃i(t(j))) (2)

f
prior
∼ BART

For computational efficiency, we carry out the probit regression via truncated Normal latent
variables zij to reduce it to a continuous outcome BART model like so (Albert and Chib
1993) (this default can be over-ridden to utilize Holmes and Held (2006) Logistic latents by
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specifying type=’lbart’).

zij |yij , f∼

{

N(µij , 1) I (−∞, 0) if yij = 0

N (µij , 1) I (0,∞) if yij = 1

For binary data, µ0 = Φ−1(p0) can be used for centering the latents around the probability
of an event p0. For recurrent event data, we can similarly center the latents by assuming the
times of recurrent events follow the Exponential distribution and the covariates, x̃, have no

impact, i.e., µ0 = Φ−1
(

1− exp
(∑

i Ni∑
i si

))

.

With the data prepared as described in the above example, the BART model for binary data
treats the probability of an event within an interval as a nonparametric function of time, t,
and covariates, x̃(t). Conditioned on the data, BART provides samples from the posterior
distribution of f . For any t and x̃(t), we obtain the posterior distribution of p(t, x̃(t)) =
Φ(µ0 + f(t, x̃(t))).

For the purposes of recurrent events survival analysis, we are typically interested in estimating
the cumulative intensity function as presented in formula (1). With these estimates, one can
accomplish inference from the posterior via means, quantiles or other functions of p(t, x̃i(t))

or Λ(t, x̃(t)) as needed such as the relative intensity, i.e., RI(t, x̃n(t), x̃d(t)) =
p(t,x̃n(t))
p(t,x̃d(t))

where

x̃n(t) and x̃d(t) are two settings we wish to compare like two treatments.

An interesting example of recurrent events involves a clinical trial conducted by the Veterans
Administration Cooperative Urological Research Group. In this study, all patients had super-
ficial bladder tumors when they entered the trial. These tumors were removed transurethrally
and patients were randomly assigned to one of three treatments: placebo, thiotepa or pyri-
doxine (vitamin B6). Many patients had multiple recurrences of tumors during the study
and new tumors were removed at each visit. For each patient, their recurrence time, if any,
was measured from the beginning of treatment. There were 118 patients enrolled but only
116 were followed beyond time zero and contribute information. This data set is loaded by
data(bladder) and the data frame of interest is bladder1. This data set is analyzed by
system.file(’demo/bladder.recur.bart.R’, package=’BART’). In Figure 3, notice that
the relative intensity calculated by Friedman’s partial dependence function favors thiotepa
over placebo from roughly 3 to 18 months and afterward they are about equal, but the 95%
credible intervals are wide throughout. Similarly, the relative intensity calculated by Fried-
man’s partial dependence function favors thiotepa over vitamin B6 from roughly 3 to 18
months and afterward they are about equal, but the 95% credible intervals are wide through-
out; see Figure 4. And, finally, vitamin B6 is no better than placebo, and possibly worse, but
the 95% credible intervals are wide; see Figure 5.
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Figure 1: Advanced lung cancer example: Friedman’s partial dependence function with 95%
credible intervals: males (blue) vs. females (red).
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Figure 2: Liver transplant competing risks for type O patients estimated by BART and
Aalen-Johansen.
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Figure 3: Relative Intensity via Friedman’s partial dependence function: Thiotepa vs.
Placebo.
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Figure 4: Relative Intensity via Friedman’s partial dependence function: Thiotepa vs. Vitamin
B6.
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Figure 5: Relative Intensity via Friedman’s partial dependence function: Vitamin B6 vs.
Placebo.
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