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LIKELIHOOD INFERENCE FOR NON-LINEAR, MULTIVARIATE
JUMP DIFFUSIONS WITH STATE DEPENDENT INTENSITY

Etienne A.D. Pienaara and Melvin M. Varughesea

AbstractJump diffusion processes provide a means of modelling both small and
large deviations in continuously evolving processes. Unfortunately, the calculus of
jump diffusion processes makes it difficult to analyse non-linear models. This paper
develops a method for approximating the transition densities of time-inhomogeneous
multivariate jump diffusions with state-dependent and/or stochastic intensity. By de-
riving a system of equations that govern the evolution of the moments of the process
we are able to approximate the transitional density through a density factorisation
that contrasts the dynamics of the jump diffusion with that of its purely diffuse coun-
terpart. Within this framework we develop a class of quadratic jump diffusions for
which we can calculate accurate approximations to the likelihood function. Subse-
quently, we analyse a number of non-linear jump diffusion models for Google equity
volatility, alternating between various drift, diffusion and jump mechanism specifica-
tions. In doing so we find evidence of both cyclical drift and state dependent jump
intensity.

Keywords: Jump Diffusion Process, Markov Chain Monte-Carlo, Kolmogorov
Equation, Inference, Jump Stochastic Differential Equation.

1. INTRODUCTION

Allowing for discontinuous jump innovations in the paths of a diffusion process
makes for extremely useful generalisation of diffusion processes. Indeed, many
naturally occurring processes exhibit multifarious random behaviour which can
be difficult to explain using a single source of randomness. Since the primary
stochastic component to any diffusion model is governed by Brownian motion,
diffusion models often fail to explain some salient features of real-world processes.
The generalisation of diffusion processes to include randomly occurring “jump”
innovations have been primarily motivated in financial contexts where diffusion
models used to describe the dynamics of price/asset processes fail to explain
seemingly spontaneous yet frequent large deviations in observed time series. For
example, Merton (1976) proposed the inclusion of jumps in the diffusion trajec-
tory in order to create a more realistic model of asset price returns than was
predicted by the continuous paths of geometric Brownian motion – a jump free
diffusion process that formed the basis of option pricing theory at the time. Al-
though the inclusion of alternate sources of randomness in the path of a diffusion
process serves to improve model flexibility and allows for the formulation of more
realistic models of observed processes, this flexibility comes at the cost of magni-
fying the already significant difficulties associated with the calculus of diffusion
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processes. Consequently, the space of analytically tractable jump diffusion models
is even more sparse than that of the jump free diffusion processes. Furthermore,
where analytical solutions to quantities such as the transitional density are avail-
able, they are often precluded by simplifying assumptions on the specification
of both the diffuse part of the process as well as the distributional properties
of the jump mechanism of the process. That said, a number of different jump
mechanisms have been proposed for jump diffusion models that appear in the
literature: Ball and Torous (1985) propose log-normally distributed jumps under
geometric Brownian motion as a model for stock price returns, whilst Ramezani
and Zeng (1998), Kou (2002) and Kou and Wang (2004) assumed that jump
innovations follow a double-exponential distribution under geometric Brownian
motion. Although the choice of distribution is usually based on some a priori
information of the process to be modelled, choosing a valid jump distribution
can be a subtle process. For example, in the case of Ball and Torous (1985) it is
actually meant that the log of the underlying process has normally distributed
jumps (i.e., Brownian motion with drift and normally distributed jumps), imply-
ing both the diffuse and jump dynamics are based on the Normal distribution.
As such Honore (1998) note that, depending on the quality of the data, it can be
difficult to distinguish which source of randomness is responsible for a random
innovation in the underlying process, thus making it difficult to calculate reliable
parameter estimates for such a model.

Despite the limited set of analytically tractable jump diffusion models, numer-
ous estimation techniques have been proposed for jump diffusion models with
analytically intractable dynamics. Craine et al. (2000) apply indirect inference
procedures to estimate the parameters of multivariate jump diffusion models. Er-
aker (2001) apply Monte Carlo techniques, replacing missing sample paths with
simulated trajectories (see also Eraker et al. (2003) and Eraker et al. (2003)) in
order to estimate the likelihood, thus circumventing the analytical threshold for
non-linear jump diffusions. Other notable approaches include the efficient method
of moments (EMM) scheme of Gallant et al. (1997), and the empirical charac-
teristic function estimation schemes of Jiang and Knight (2002) and Rockinger
and Semenova (2005). Yu (2007) extended the popular Hermite series approxi-
mations for jump free diffusions (Ait-Sahalia, 2002, 2008) to include closed-form
likelihood approximations for multivariate jump diffusions. Although most of the
literature on the estimation of jump diffusion models are concerned with para-
metric inference, non-parametric techniques have been developed by Johannes
(1999); Bandi and Nguyen (2003) and Ait-Sahalia et al. (2009). Although the
structure of jump diffusion models remain more or less consistent throughout
the literature, Aıt-Sahalia (2004); Aı̈t-Sahalia et al. (2009) and Aı̈t-Sahalia and
Jacod (2011) explore technical aspects regarding the nature of jump mechanisms
in the context of inference.

In the present paper we develop a procedure for performing likelihood based
inference on a class of non-linear, multivariate jump diffusion processes with
state dependent intensity. Using this it is possible to create a rich ecosystem of
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jump diffusion models that generalize many well-known diffusion models such as
the Cox-Ingersoll-Ross (CIR) process (Cox et al., 1985) and Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930) to the jump diffusion class. Furthermore,
the methodology readily allows for the specification of any jump distribution
with a known moment structure (e.g. the higher order moments of a normal
distribution). The paper is organised as follows: Section 2 outlines theoretical
concepts which precede the methodology to follow. Section 3 develops the core
methodology of the paper, in which we detail a scheme for approximating the
transitional density of a jump diffusion process based on its moment trajectories.
Section 5 demonstrates how the methodology can be used to conduct inference
on jump diffusion models with non-linear dynamics. In Section 6 we apply the
methodology to a real-world dataset by fitting various jump diffusion models to
Google equity volatility time series. Finally we give some concluding remarks in
Section 7.

2. MULTIVARIATE JUMP DIFFUSIONS WITH STATE DEPENDENT JUMP

INTENSITY

Let {S ⊆ Rk,X , f}, {Ψj ,Zj , φj}j and {Ωi,Li, πi}i be probability spaces for
i = 1, 2, . . . , k and j = 1, 2, . . . , q then a multivariate, k-dimensional jump process
can be written in differential form as:

(2.1) dPt = J(Pt, żt, t)dNt,

where J(Pt, żt, t) = (εij(Pt, żt, t))k×q denotes a jump matrix, żt is a k×q matrix

of random variables and Nt = (N
(j)
t )q×1 is a q-dimensional counting process with

intensity vector λ(Pt, ṙt, t) = (λi(Pt, ṙt, t))k×1. Under this formulation, the jump
matrix relates discrete increments in the process Nt into continuous innovations
in the process Pt. These are in turn in turn determined by the realisations of
the random variables żt, and may also depend on the state of the process at
the instant that the innovation occurs. Furthermore, the rate at which these
innovations occur is determined by the intensity vector, which is further allowed
to depend on an external process ṙt and the level of the process. For example, if
the first element of the process Nt increments at time τ , then every element of
Pτ changes in accordance to the outcome of the first column of the jump-matrix,
which in turn is determined by the functional relation between the first column
of jump variables in zτ and Pτ . To see this, it is useful to write the process

Pt = {P (1)
t , P

(2)
t , . . . , P

(k)
t }′ in terms of its individual components as:

(2.2) P
(i)
t =

q∑
j=1

Nj(t)∑
l=0

εij(Pt, ż
(.j),l
t , t) for i = 1, 2, . . . , k.

where ż
(.j),l
t denotes the l-th realisation of the j-th column of the jump variable

matrix where ż
(.j)
t ∈ żt : {ż1j(t), ż2j(t), . . . , żkj(t)}′ ∼ φj(t) and Pt evolves


