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Introduction

Acronyms to be used EBglmnet is a package that implemented the empirical Bayesian Lasso (EBlasso)
and Elastic Net (EBEN) method for generalized linear models (GLMs). Additionally, in EBlasso, two
different prior distributions are also developed: one with two-level hierarchical Normal + Exponential prior
(denoted as NE), and the other one with three-level Normal + Exponential + gamma prior (denoted as NEG).
The following names should not be confused with the lasso and elastic net method in the comparison
package glmnet:

EBglmnet: package that implements EBlasso and EBEN methods.

EBlasso: Empirical Bayesian method with lasso prior distribution, which includes two sets of prior
distributions: NE and NEG.

EBEN: Empirical Bayesian method with elastic net prior distribution.

lasso prior: the hierarchical prior distribution that is equivalent with lasso penalty term when the marginal
probability distribution for the regression coefficients is considered.

elastic net prior: the hierarchical prior distribution that is equivalent with elastic net penalty term
when the marginal probability distribution for the regression coefficients is considered.

EBlasso-NE: EBlasso method having NE prior.

EBlasso-NEG: EBlasso method having NEG prior.

Generalized Linear Models (GLMs) In a GLM

η = µI + Xβ,

where X is an n×p matrix containing p variables for n samples (p can be� n). η is an n×1 linear predictor
and is related to the response variable y through a link function g: E(y|X)=g−1 (µI + Xβ), and β is a p× 1
vector of regression coefficients. Depending on certain assumption of the data distribution on y, the GLM is
generally inferred through finding the set of model parameters that maximize the model likelihood function
p(y|µ,β, ϕ), where ϕ denotes the other model parameter of the data distribution. However, such Maximum
Likelihood (ML) approach is no longer applicable with p � n. With Bayesian Lasso and Bayesian elastic
net (EN) prior distribution on β, EBglmnet solves the problem by inferring a sparse posterior distribution
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for β̂, which includes exactly zero regression coefficients for irrelevant variables and both posterior mean
and variance for non-zero ones. Comparing to the glmnet package implementing Lasso and EN method,
not only does EBglmnet provide features including both sparse outcome and hypothesis testing, simulation
study and real data analysis in the reference papers also demonstrated the better performance in terms of
Power of Detection, False Discovery Rate, as well as Power Detecting Group Effects when applicable. While
mathematically details of the EBlasso and EBEN methods can be found in the reference papers, the principle
of the methods and differences on the prior distributions will be briefly introduced here.

Lasso and its Bayesian Interpretation

Lasso applies a penalty term on the log likelihood function and solve for β̂ by maximizing the following
penalized likelihood :

β̂ = argβ max [log p(y|µ,β, ϕ)− λ||β||1] ,

The l1 penalty term can be regarded as a mixture of hierarchical prior distribution:

βj ∼ N (0, σ2
j ), σ2

j ∼ exp(λ), j = 1, . . . , p,

and maximizing the penalized likelihood function is equivalent to maximize the marginal posterior distribution
of β :

β̂ = argβ max log p(β|y,X, µ, λ, ϕ) ≈ argβ max log
∫ p(y|µ,β, ϕ) · (2π)−p/2|A|1/2 exp{−1

2β
TAβ} ·

p∏
j=1

λ exp{−λσ2
j }

 dσ2,

where A is a diagonal matrix with σ−2 on its diagonal. Of note, lasso integrates out the variance information
σ2 and estimates a posterior mode β̂. The l1 penalty ensures a sparse solution can be achieved.

Empirical Bayesian Lasso (EBlasso)

EBglmnet keeps the variance information integrated out in lasso while still enjoying the sparse property by
taking a different and slightly complicated approach as showing below using EBlasso-NE as an example:

In contrary to the marginalization on β, the first step in EBlasso-NE is to obtain a marginal posterior
distribution for σ2 :

p(σ2|y,X, µ, λ, ϕ) =
∫ p(y|µ,β, ϕ) · (2π)−p/2|A|1/2 exp{−1

2β
TAβ} ·

p∏
j=1

λ exp{−λσ2
j }+ c

 dβ,
where c is a constant. While the integral in lasso is achieved through the conjugated normal + exponential
(NE) prior, the integral in EBlasso-NE is completed through mixture of two normal distributions: p(β|σ2)
and p(y|µ,β, ϕ), and the latter one typically is approximated to a normal distribution through Laplace
approximation if itself is not a normal PDF. Then the estimate of σ̂2 can be obtained by maximizing this
marginal posterior distribution, which has the following form:

σ̂2 = argσ2 max log p(σ2|y,X, µ, λ, ϕ) = argσ2 max

log p(y|µ,σ2, ϕ, λ)−
p∑
j=1

λσ2
j + c

 .
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Given the constraint that σ2 > 0, the above equation is actually maximizing the l1 penalized marginal
likelihood function of σ2, which images the l1 penalty in lasso with the beauty of producing a sparse solution
for σ̂2. Note that if σ̂j2 = 0, β̂j will also be zero and variable xj will be excluded from the model. Finally,
With the sparse estimate of σ̂2, the posterior estimate of β̂ and other nuance parameters can then be obtained
accordingly.

Hierarchical Prior Distributions in EBglmnet

Prior 1: EBlasso-NE
βj ∼ N (0, σ2

j ), σ2
j ∼ exp(λ), j = 1, . . . , p

As illustrated above, assuming a Normal + Exponential hierarchical prior distribution on β (EBlasso-NE)
will yield exactly the Lasso Prior. EBlasso-NE accommodates the properties of sparse solution and hypothesis
testing given both the estimated mean and variance information in β̂ and σ̂2. The NE prior is “peak zero and
flat tails”, which can select variables with relatively small effect size while shrinking most of non-effects to
exactly zero. EBlasso-NE can be applied to natural population analysis when effect sizes are relatively small.

Prior 2: EBlasso-NEG In simulation and real data analysis, it is observed that the prior in EBlasso-NE
has a relatively large probability mass on the nonzero tails, resulting in large number of non-zero small effects
with large p− values. We further developed another well studied conjugated hierarchical prior distribution
under the empirical Bayesian framework, the Normal + Exponential + Gamma (NEG) prior:

βj ∼ N (0, σ2
j ), σ2

j ∼ exp(λ), j = 1, . . . , pλ ∼ gamma(a, b)

Comparing to EBlasso-NE, the NEG prior has a larger probability centered at 0, and will only yield nonzero
regression coefficients for effects having relatively large signal to noise ratio.

Prior 3: Elastic Net Prior for Grouping Effect Similar as lasso, EBlasso typically selects one
variable out of a group of correlated variables. While elastic net was developed to encourage a grouping
effect by incorporating an l2 penalty term, EBglmnet implemented an innovative elastic net hierarchical
prior:

β ∼ N
[
0, (λ1 + σ̃j

−2)−1] , σ̃j2 ∼ generalized gamma(λ1, λ2), j = 1, . . . , p.

The generalized gamma distribution has probability density function (PDF): f(σ̃j2|λ1, λ2) = c(λ1σ̃j
2 +

1)−1/2 exp{−λ2σ̃j
2}, j = 1, . . . , p, with c being a normalization constant. The property of this prior can be

appreciated from the following aspects:

(1): λ1 = 0 When λ1 = 0 the generalized gamma distribution becomes an exponential distribution:
f(σ̃j2|λ2) = c exp{−λ2σ̃j

2}, j = 1, . . . , p, with c = λ2, and the elastic net prior is reduced to the two level
EBlasso-NE prior.

(2): λ1 > 0 When λ1 > 0 the generalized gamma distribution can be written as a shift gamma distribution
having the following PDF: f(σ̃j2|a, b, γ) = ba

Γ(a) (σ̃j2 − γ)a−1 exp{−b(σ̃j2 − γ)}, where a = 1/2, b = λ2, and
γ = −1/λ1. In (Huang A. 2015), it is proved that the marginal prior distribution for βj can be obtained as
p(βj) ∝ exp{−λ1

2 β
2
j −
√

2λ2|βj |}, which is equivalent with the elastic net method in glmnet.
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(3): structure of σ2 and interpretation of the elastic net prior Note that the prior variance for
the regression coefficients has this form: σ2 = σ̃2/(λ1σ̃

2 + I). This structure seems counter intuitive at first
glance. However, if we look at it from precision point of view, i.e., precision α = σ−2, and α̃ = σ̃−2, then we
have:

α = λ1I + α̃.

The above equation demonstrates that we actually decompose the precision of the normal prior into a
fixed component λ1 shared by all explanatory variables and a random component α̃ that is unique for each
explanatory variable. This design represents the mathematical balance between the inter-group independence
and intra-group correlation among explanatory variables, and is aligned with the objective of sparseness while
encouraging grouping effects.

The empirical Bayesian elastic net (EBEN) in EBglmnet is solved similar as EBlasso using the aforementioned
empirical Bayesian approach. Research studies presented in the reference papers demonstrated that EBEN has
better performance comparing with elastic net in terms of Power of Detection, False Discovery Rate, and
most importantly, Power of Detecting Groups.

EBglmnet Implementation and Usage

The EBglmnet algorithms use greedy coordinate descent, which successively optimizes the objective func-
tion over each parameter with others fixed, and cycles repeatedly until convergence. Key algorithms are
implemented in C/C++ with matrix computation using the BLAS/LAPACK packages. Due to closed form
solutions for σ̂2 in all prior setups and other algorithmic and programming techniques, the algorithms can
compute the solutions very fast.

We recommend to use EBlasso-NEG when there are a large number of candidate effects (eg. ≥ 106 number of
effects such as whole-genome epistasis analysis and GWAS), and use EBEN when there are groups of highly
correlated variables.

The authors of EBglmnet are Anhui Huang and Dianting Liu. This vignette describes the principle and usage
of EBglmnet in R. Users are referred to the papers in the reference section for details of the algorithms.

Installation

With Admin Permission on PC, EBglmnet can be installed directly from CRAN using the following command
in R console:

install.packages("EBglmnet", repos = "http://cran.us.r-project.org")

which will download and install the package to the default directories. When Admin Permission is not
immediately available, users can download the pre-compiled binary file at http://cran.r-project.org/web/
packages/EBglmnet/index.html, and install it from local package.

Back to Top

Quick Start

We will give users a general idea of the package by using a simple example that demonstrates the basis
package usage. Through running the main functions and examining the outputs, users may have a better
idea on how the package works, what functions are available, which parameters to choose, as well as where to
seek help. More details are given in later sections.

Let us first clear up the workspace and load the EBglmnet package:
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rm(list = ls())
set.seed(1)
library(EBglmnet)

We will use an R built-in dataset state.x77 as an example, which includes a matrix with 50 rows and 8
columns giving the following measurements in the respective columns: Population, Income, Illiteracy, Life
Expectancy, Murder Rate, High School Graduate Rate, Days Below Freezing Temperature, and Land Area.
The default model used in the package is the Gaussian linear model, and we will demonstrate it using Life
Expectancy as the response variable and the remaining as explanatory variables. We create the input data as
shown below, and users can load their own data and prepare variable y and x following this example.

varNames = colnames(state.x77);
varNames

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"

y= state.x77[,"Life Exp"]
xNames = c("Population","Income","Illiteracy", "Murder","HS Grad","Frost","Area")
x = state.x77[,xNames]

We fit the model using the most basic call to EBglmnet with default prior

output = EBglmnet(x,y,hyperparameters = c(0.1, 0.1))

“output” is a list containing all the relevant information of the fitted model. Users can examine the output by
directly looking at each elements in the list. Particularly, the sparse regression coefficients can be extracted
as shown below:

glmfit = output$fit
variables = xNames[glmfit[,1,drop=FALSE]]
cbind(variables,as.data.frame(round(glmfit[,3:6,drop=FALSE],4)))

## variables beta posterior variance t-value p-value
## 1 Murder -0.2716 2e-04 19.1011 0

The hyperparameters in each of the prior distributions control the number of non-zero effects to be selected, and
Cross-validation is perhaps the simplest and most widely used method in deciding their values. cv.EBglmnet
is the main function to do cross-validation, which can be called using the following code.

cvfit = cv.EBglmnet(x, y)

## EBLASSO Linear Model, NEG prior,Epis: FALSE ; 10 fold cross-validation

cv.EBglmnet returns a cv.EBglmnet object, which is a list with all the ingredients of the CV and the final fit
results using CV selected optimal hyperparameters. We can view the CV results, selected hyperparameters
and the corresponding coefficients. For example, CV using different hyperparameters and the corresponding
prediction errors are shown below:
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cvfit$CrossValidation

## a b Mean Square Error standard error
## [1,] 0.01 0.01 3.466663 0.6217155
## [2,] 0.05 0.05 3.483158 0.6260025
## [3,] 0.10 0.10 3.592183 0.6462591
## [4,] 0.50 0.50 3.716911 0.6422295
## [5,] 1.00 1.00 3.737286 0.6403193
## [6,] -0.01 0.01 3.487721 0.6408990
## [7,] -0.10 0.01 3.547974 0.6427727
## [8,] -0.20 0.01 3.486568 0.6400025
## [9,] -0.30 0.01 3.433898 0.6263712
## [10,] -0.40 0.01 3.515311 0.6274390
## [11,] -0.50 0.01 3.464166 0.6238619
## [12,] -0.60 0.01 3.497567 0.6214415
## [13,] -0.70 0.01 3.400848 0.6386451
## [14,] -0.80 0.01 3.630952 0.5357177
## [15,] -0.90 0.01 4.373941 1.5046732
## [16,] -0.70 0.05 3.716178 0.5365876
## [17,] -0.70 0.10 3.783325 0.5157860
## [18,] -0.70 0.50 4.458618 1.4205773

The selected parameters and the corresponding fitting results:

cvfit$hyperparameters

## a b
## -0.70 0.01

cvfit$fit

## locus1 locus2 beta posterior variance t-value p-value
## [1,] 4 4 -0.24209575 6.457118e-04 9.527255 9.796608e-13
## [2,] 5 5 0.03364319 1.515986e-05 8.640711 2.036060e-11

Back to Top

GLM Family

Two families of models have been developed in EBglmnet, the gaussian family and the binomial family,
which are essentially different probability distribution assumptions on the response variable y.

Gaussian Model

EBglmnet assumes a Gaussian distribution on y by default, i.e., p(y|µ,β, ϕ) = N(µI + Xβ, σ2
0I), where

ϕ = σ2
0 is the residual variance. In the above example, both µ̂ and σ̂0

2 are listed in the output:

output$Intercept

## [1] 72.88376
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output$residual

## [1] 0.6912821

Binomial Model

If there are two possible outcomes in the response variable, a binomial distribution assumption on y is
available in EBglmnet, which has p(y|µ,β, ϕ) following a binomial distribution and ϕ ∈ ∅. Same as the
widely-used logistic regression model, the link function is ηi = logit(pi) = log( Pr(yi)=1

1−Pr(yi=1) ), i = 1, . . . , n. To
run EBglmnet with binomial models, users need to specify the parameter family as binomial:

yy = y>mean(y);
output = EBglmnet(x,yy,family="binomial", hyperparameters = c(0.1, 0.1))

For illustration purpose, the above codes created a binary variable yy by set the cutoff at the mean Life
Expectancy value.
Back to Top

Prior, Hyperparameters and Epistasis

The three sets of hierarchical prior distribution can be specified by prior option in EBglmnet. By default,
EBglmnet assumes the lassoNEG prior, to change to other priors:

output = EBglmnet(x,yy,family="binomial", prior = "elastic net", hyperparameters = c(0.1, 0.1))

Note that the hyperparameters setup is associated with a specific prior. In lasso prior, only one hyperpa-
rameter λ is required, while in elastic net and lassoNEG, two hyperparameters need to be specified. For
EBEN having the elastic net prior distribution, the two hyperparameters λ1 and λ2 are defined in terms of
other two parameters α ∈ [0, 1] and λ > 0 same as in glmnet package, such that λ1 = (1− α)λ and λ2 = αλ.
Therefore, users are asked to specify hyperparameters = c(α, λ).
In genetic and population analysis, sometimes it is interested in analyzing the interaction terms among the
variables. EBglmnet provides a feature that can incorporate all pair-wise interactions into analysis, which is
achieved by setting Epis as TRUE:

output = EBglmnet(x,yy,family="binomial", prior = "elastic net", hyperparameters = c(0.1, 0.1),Epis = TRUE)
output$fit

## locus1 locus2 beta posterior variance t-value p-value
## [1,] 4 4 -5.318341e-02 1.491454e-03 1.3771184 0.17473457
## [2,] 1 7 1.719555e-10 5.184252e-20 0.7552192 0.45373244
## [3,] 2 4 -8.894085e-06 6.408661e-11 1.1110091 0.27198645
## [4,] 3 4 -3.785224e-02 4.632023e-04 1.7587586 0.08486232
## [5,] 4 5 -3.100472e-04 2.447304e-07 0.6267348 0.53374233
## [6,] 4 6 -4.688616e-04 1.273471e-07 1.3138633 0.19501041

When Epis = TRUE, both p number of main effects and p(p−1)/2 number of interaction effects are considered
in the model. In the output, locus1 and locus2 denote the pair of interaction variables, and if the numbers
are the same, the corresponding effect is from a main effect. Users should be aware of the significant larger
number variables considered (i.e., p(p− 1)/2 more variables), and EBglmnet will need longer time when p is
large for the program to finish the computation.
Back to Top
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