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Adaptive designs with data-driven treatment selection 
MedianaDesigner package 

 

1. Introduction 

This document provides a description of the statistical methodology used in the adaptive design 
module that supports data-driven treatment selection (ADTreatSel function).  

For more information on the MedianaDesigner package, visit the following web pages at 

http://www.mediana.us/medianadesigner 

http://medianasoft.github.io/MedianaDesigner 

2. Adaptive designs with data-driven treatment selection 

2.1. Trial design 

Consider a multi-arm Phase III trial that will be conducted to investigate the efficacy of several 
doses or regimens of an experimental therapy (the doses or regimens will be referred to as 
treatments) compared to a control, e.g., placebo.   The primary efficacy endpoint in this trial 
could be a continuous, binary or time-to-event endpoint.  Two interim analyses will be conducted 
to perform an early futility assessment and identify the most promising treatment, respectively. 

The interim analysis data will be analyzed in an unblinded manner to support the following 
decision rules: 

• Futility stopping rule at the first interim analysis: A futility assessment will be carried out 
for each treatment and a treatment will be dropped at this interim look if it is unlikely to 
be effective. 

• Treatment selection rule at the second interim analysis: The best performing treatment 
will be selected and the remaining treatments will be dropped at this interim analysis. 

The decision rules (futility stopping and treatment selection rules) are non-binding and could be 
overridden by the trial’s sponsor or data monitoring committee.  It is assumed in this module that 
the trial will not be stopped at either interim analysis due to superior efficacy; however, the 
proposed adaptive design is easily extended to support an option to evaluate the efficacy profile 
of each treatment and terminate the trial due to superior efficacy if a very strong efficacy signal 
is detected in at least one treatment arm.  Another potential extension relies on a rule for sample 
size or event count re-estimation introduced in the adaptive design module that supports sample 
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size or event count re-estimation (ADSSMod function).  After the best treatment has been chosen 
at the second interim analysis, the target number of patients or events could be increased to 
improve the probability of success based on a pre-defined re-estimation rule.  

The futility stopping and treatment selection rules are defined in Sections 2.2 and 2.3, 
respectively, and the adaptive design methodology is presented in Section 2.4.  The proposed 
approach to defining adaptive designs with data-driven treatment selection is illustrated in 
Section 3. 

2.2. Futility stopping rule 

The futility stopping rule to be applied at the first interim analysis will be set up using 
conditional power, see, for example, Wassmer and Brannath (2016, Chapter 7).  It is defined for 
each individual treatment as the probability of a significant improvement over control with 
respect to the primary efficacy endpoint at the final analysis conditional upon the interim data in 
the selected treatment arm and control arm.   

Let 𝑚 denote the total number of treatments in the trial and consider the comparison of the 𝑘th 
treatment versus control, 𝑘 = 1,… ,𝑚.  The conditional power for this comparison is denoted by 
𝐶𝑃!.  The derivation of conditional power is provided in the documentation for the ADSSMod 
function and will be omitted.  The 𝑘th treatment arm will be dropped at the first interim analysis 
due to futility if the treatment-specific conditional power does not exceed a pre-defined threshold 
denoted by 𝑐, where 0 < 𝑐 < 1, i.e.,  

𝐶𝑃! ≤ 𝑐. 

The futility threshold is typically set to a fairly low value, e.g., it rarely exceeds 0.3.  The trial 
will be terminated due to futility at this interim look if all treatments are dropped.  

2.2. Treatment selection rule 

A pre-defined treatment selection rule will be applied at the second interim analysis to identify 
the best performing treatment.  The best treatment corresponds to the largest effect size based on 
the primary efficacy endpoint (the effect size is defined as the negative log-hazard ratio if the 
primary efficacy endpoint is a time-to-event endpoint). 

The rule considered in this module assumes that a single treatment will be retained after this 
interim look and the other treatments will be dropped.  This rule could be extended in several 
directions: 

• A fixed number of best performing treatments, e.g., two best treatments, will be selected 
at the second interim analysis. 

• All treatments with a large enough effect size, e.g., effect sizes greater than a clinically 
relevant threshold, will be selected.  
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2.3. Adaptive design methodology 

As in the other adaptive design modules (ADSSMod and ADPopSel functions), a data-driven 
decision rule will be applied at the second interim analysis, which will inflate the Type I error 
rate.  To address this problem, the comparison of the selected treatment arm to control at the 
final analysis needs to be adjusted as described below. 

To define the adjustment, consider first the case where no treatment selection rule is applied at 
the second interim analysis and all treatments that were not dropped at the first interim analysis 
will be retained.  Let 𝑝! denote the one-sided treatment effect p-value corresponding to the 
comparison of the 𝑘th treatment versus control at the final analysis, 𝑘 = 1,… ,𝑚.  Since there are 
several opportunities to claim a positive outcome of this trial, a multiplicity adjustment needs to 
be applied.  The available options range from basic adjustments based on the Bonferroni test to 
more sophisticated adjustments that rely on the Hochberg or Hommel tests.  For more 
information on commonly used multiplicity adjustment, see for example Dmitrienko and 
D’Agostino (2018). 

Returning to the adaptive design with a treatment selection rule, let 𝑠 denote the index of the 
treatment chosen at the second interim analysis.  In this case, only one p-value will be computed 
at the final analysis, i.e., 𝑝!.  The other p-values cannot be derived and thus they will be set to 1, 
i.e.,  

𝑝! = 1 if 𝑖 ≠ 𝑠. 

Even though only one treatment will be compared to control at the final analysis, there is still a 
need for a multiplicity adjustment.  This adjustment represents a penalty for selection bias due to 
the option to identify the best treatment at the second interim analysis.  To protect the overall 
Type I error rate in the trial, a prospectively defined test such as the Bonferroni or Hochberg test 
will be applied to the p-values.  Since all but one p-value are equal to 1, the resulting multiplicity 
adjustment typically takes a very simple form.  For example, with the Bonferroni, Holm or 
Hochberg tests, a statistically significant treatment effect will be established at the final analysis 
if  

𝑝! ≤ 𝛼/𝑚, 

where 𝛼 denotes the one-sided significance level in the trial, i.e., 𝛼 = 0.025. 

3. Case study 

The use of data-driven treatment selection rules in confirmatory trials will be illustrated using a 
Phase III trial for the treatment of schizophrenia.  Three doses of an investigational treatment 
will be compared to placebo in this trial.  The doses are labeled Dose L (low dose), Dose M 
(medium dose) and Dose H (high dose).  The length of the treatment period is 6 weeks and the 
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primary efficacy analysis is based on the change from baseline to Week 6 in the PANSS 
(Positive and Negative Syndrome Scale) total score.  A larger reduction in the PANSS total score 
indicates a beneficial effect. 

The data collected in the Phase II trial are not very reliable due to high variability and the trial’s 
sponsor would like to take an advantage of an adaptive design to perform an early futility 
assessment and drop underperforming doses.  Another interim look will be taken to select the 
most promising dose.  This dose will be included in the final analysis whereas the other doses 
will be dropped.   

The number of enrolled patients per arm was set to 180.  An equal randomization scheme was 
assumed and a high patient dropout rate of 25% was assumed (patients are likely to be lost to 
follow up in schizophrenia trials).   

The adaptive design will be set up as follows: 

• A futility stopping rule based on conditional power will be applied at the first interim 
analysis, which corresponds to a 30% information fraction.  This means that this interim 
analysis will be conducted after 216 patients complete the treatment period or drop out of 
the trial prior to completing the treatment period.  The futility threshold (𝑐) was set to 
20%.  This value is lower than an optimal threshold derived using the approach 
implemented in the futility module (FutRule function).  The lower value was chosen 
because it resulted in a very high sensitivity rate (probability of correctly retaining at least 
one treatment arm at this interim analysis) assuming a common effect size of 0.4 across 
the three treatment arms.  Under this alternative hypothesis of beneficial effect, the 
sensitivity rate exceeds 90%. 

• The second interim analysis will be performed at 50% of the total sample size, i.e., after 
360 patients complete the treatment period or drop out of the trial before completing the 
treatment period.  The most promising dose with the largest effect size will be chosen at 
this interim analysis. 

• The final analysis will be conducted using a multiplicity adjustment based on the 
Hochberg test, which means that a significant treatment effect will be established if the p-
value for the chosen dose is no greater than 𝛼/3. 

It is helpful to note that the overall sample size in the adaptive design is much less than the 
number of enrolled patients (180 patients) times the number of trial arms (4 arms).  An important 
feature of the adaptive design is that only two arms are retained in the trial after the second 
interim analysis.  If the patient enrollment is sufficiently slow, the total sample size could be 
reduced by 25%, i.e., as few as 540 patients will be enrolled in the trial. 

The following treatment effect scenarios were considered to evaluate operating characteristics of 
the adaptive design:   



 MedianaDesigner package Page 5  
  

• Scenario 1: The common effect size is 0.4. 
• Scenario 2: The effect size at Doses L and M is 0.3 and the effect size at Dose H is 0.4. 

Summaries of the most important operating characteristics of the adaptive design are presented 
in Tables 1, 2 and 3.  The adaptive design’s performance is compared to that of three reference 
designs.  These designs are set up as traditional two-arm designs with 180 enrolled patients per 
arm.  Each design compares a single dose of the investigational treatment (Dose L, Dose M or 
Dose H) to placebo and applies the same futility stopping rule as in the adaptive design but does 
not employ treatment selection. 

Table 1 presents the probabilities of dropping each treatment arm due to futility at the first 
interim analysis in the adaptive or any of the three traditional two-arm designs.  The probability 
of dropping a treatment arm is quite low (about 13%) under Scenario 1, which is to be expected 
since a strong treatment effect with the true effect size of 0.4 is assumed.  Under Scenario 2, the 
treatment effect is weaker at Doses L and M and, as a direct consequence of that, these two doses 
are more likely to be removed at the interim look.  The probability of dropping each of these 
doses is about 26%. 

Table 2 focuses on the adaptive design and summarizes the characteristics of the treatment 
selection rule at the second interim analysis.  The probabilities of selecting each dose as the best 
performing treatment are presented.  Since the three doses are assumed to be equally effective 
under Scenario 1, each dose is equally likely to be selected and the three probabilities shown in 
Table 2 are essentially equal to 33.3%.  When unequal effect sizes are considered (Scenario 2), 
Doses L and M are clearly less likely to chosen at the second interim analysis.  The most 
promising dose (Dose H) will be identified as the best dose at this look over 50% of the time.  

Finally, the results of power calculations are reported in Table 3.  With the two-arm designs, the 
power values correspond to the probabilities of establishing a significant effect at each dose 
compared to placebo without a multiplicity adjustment.  Table 3 shows that, under Scenario 1, 
each traditional design is adequately powered with the power values exceeding 80%.  The 
adaptive design provides a considerable improvement over each two-arm design and power for 
the comparison of the best dose versus placebo is 90%.  Under Scenario 2, the adaptive design 
performs much better than the two-arm designs corresponding to Doses L and M.  Unlike these 
two designs, the adaptive design has an option to switch to Dose H with a larger effect size, 
which boosts the probability of success.  When the two-arm design corresponding to Dose H is 
compared to the adaptive design, the former provides a small power advantage over the latter 
(81.2% versus 79.1%).  This is due to the fact that the treatment selection rule employed in the 
adaptive design is not perfect and Doses L and M are occasionally selected for the final analysis, 
which leads to some power loss compared to this particular two-arm design. 
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Table 1. Futility stopping in the traditional and adaptive designs 

Treatment effect scenario Parameter Value 

Scenario 1 Probability of dropping Dose L for futility  13.4% 

 Probability of dropping Dose M for futility 13.6% 

 Probability of dropping Dose H for futility 13.1% 

Scenario 2 Probability of dropping Dose L for futility  26.0% 

 Probability of dropping Dose M for futility 25.6% 

 Probability of dropping Dose H for futility 13.6% 

Scenario 1: The common effect size is 0.4. Scenario 2: The effect size at Doses L and M is 0.3 
and the effect size at Dose H is 0.4. 
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Table 2. Treatment selection in the adaptive design 

Treatment effect scenario Parameter Value 

Scenario 1 Probability of selecting Dose L as the best 
performing treatment 

33.6% 

 Probability of selecting Dose M as the best 
performing treatment 

32.9% 

 Probability of selecting Dose H as the best 
performing treatment 

32.8% 

Scenario 2 Probability of selecting Dose L as the best 
performing treatment 

19.6% 

 Probability of selecting Dose M as the best 
performing treatment 

20.4% 

 Probability of selecting Dose H as the best 
performing treatment 

54.7% 

Scenario 1: The common effect size is 0.4. Scenario 2: The effect size at Doses L and M is 0.3 
and the effect size at Dose H is 0.4. 
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Table 3. Power calculations in the traditional and adaptive designs 

Treatment effect scenario Parameter Value 

Scenario 1 Power for Dose L (traditional design)  81.5% 

 Power for Dose M (traditional design) 81.2% 

 Power for Dose H (traditional design) 81.3% 

 Power for the best dose (adaptive design) 90.0% 

Scenario 2 Power for Dose L (traditional design)  58.1% 

 Power for Dose M (traditional design) 58.2% 

 Power for Dose H (traditional design) 81.2% 

 Power for the best dose (adaptive design) 79.1% 

Scenario 1: The common effect size is 0.4. Scenario 2: The effect size at Doses L and M is 0.3 
and the effect size at Dose H is 0.4. 

 

 


