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License
Copyright (c) 2008, 2009 Regents of the University of California.
ADModelbuilder and associated libraries and documentations are provided

under the general terms of the ”BSD” license
License:
Redistribution and use in source and binary forms, with or without modi-

fication, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the University of California, Otter Research, nor the
ADMB Foundation nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Preface

A few comments about notation: Important points are emphasized with a star

F like this.

Please submit all comments and complaints by email to users@admb-
project.org.
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Chapter 1

Introduction

This document is a user’s guide to random effects modelling in AD Model
Builder (ADMB). Random effects is feature of ADMB, in the same way as
profile likelihoods are, but sufficiently complex to merit a separate user manual.
The work on the random effects “module” (ADMB-RE) started around 2003.
The pre-existing part of ADMB (and its evolution) is referred to as “ordinary”
ADMB in the following. This manual refers to version 9.0.x of ADMB and
(ADMB-RE).

Before you start with random effects it is recommended that you have some
experience with ordinary ADMB. This manual tries to be self contained, but it
is clearly an advantage if you have written (and successfully run) a few tpl-files.
Ordinary ADMB is described in the ADMB manual (ADMB Development
Core Team 2009) which is available from admb-project.org. If you are new to
ADMB, but have experience with C++ (or a similar programming language)
you may benefit from taking a look at the quick references in Appendix D.

ADMB-RE is very flexible. The term “random effect” seems to indicate
that it only can handle mixed-effect regression type models, but this is very
misleading. “Latent variable” module would have been a more precise term.
It can be argued ADMB-RE is the most flexible latent variable framework
around. All the mixed model stuff in software packages such that R, Stata,
SPSS, etc. allow only very specific models to be fit, and it is impossible to
change the distribution of the random effects, say, if you wanted to do that.
The NLMIXED macro in SAS is more flexible, but cannot handle state-space
models or models with crossed random effects. WinBUGS is the only excep-
tion, which with it ability to handle discrete latent variables, is a bit more
flexible than ADMB-RE. However, WinBUGS does all its computations using
MCMC exclusively, while ADMB-RE lets the user choose between maximum
likelihood estimation (which in general is much faster) and MCMC.
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8 CHAPTER 1. INTRODUCTION

An important part of the ADMB-RE documentation is the example col-
lection which is described in Appendix A. As with the example collections for
ADMB and AUTODIF, you will find fully worked examples including data
and code for the model. The examples have been selected to illustrate the
various aspects of ADMB-RE, and are frequently referred to troughout this
manual.

1.1 Summary of features

Why use AD Model Builder for creating nonlinear random effects models? The
answer consists of three words – flexibility, speed and accuracy. To illustrate
these points a number of examples comparing ADMB-RE with two existing
packages NLME which runs on R and Splus, and WinBUGS. In general NLME
is rather fast and it is good for the problems for which it was designed, but it
is quite inflexible. What is needed is a tool with at least the computational
power of NLME but the flexibility to deal with arbitrary nonlinear random
effects models. In section 2.4 we consider a thread from the R user list where
a discussion about extending a model to use random effects which had a log-
normal rather than normal distribution took place. This appeared to be quite
difficult. With ADMB-RE this change takes one line of code. WinBUGS on
the other hand is very flexible and many random effects models can be easily
formulated in it. However, it can be very slow and it is necessary to adopt a
Bayesian perspective which may be a problem for some applications. A model
which runs 25 times faster under ADMB than under WinBUGS may be found
in A.1.1.

Model formulation With ADMB you can formulate and fit a large class of
nonlinear statistical models. With ADMB-RE you can include random effects
in your model. Examples of such models include:

• Generalized linear mixed models (logistic and Poisson regression).

• Nonlinear mixed models (growth curve models, pharmacokinetics).

• State space models (nonlinear Kalman filters).

• Frailty models in survival analysis.

• Nonparametric smoothing.

• Semiparametric modelling.
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• Frailty models in survival analysis.

• Bayesian hierarchical models.

• General nonlinear random effects models (fisheries catch-at-age models).

You formulate the likelihood function in a template file, using a language that
resembles C++. The file is compiled into an executable program (Linux or
Windows). The whole C++ language is to your disposal, giving you great
flexibility with respect to model formulation.

Computational basis of ADMB-RE

• Hyper-parameters (variance components etc.) estimated by maximum
likelihood.

• Marginal likelihood evaluated by the Laplace approximation or impor-
tance sampling.

• Exact derivatives calculated using Automatic Differentiation.

• Sampling from the Bayesian posterior using MCMC (Metropolis-Hastings
algorithm).

• Most features of ordinary ADMB (matrix arithmetic and standard errors,
etc.) are available.

• Sparse matrix libraries useful for Markov random fields and crossed ran-
dom effects are available.

The strengths of ADMB-RE

• Flexibility : You can fit a large variety of models within a single frame-
work.

• Convenience: Computational details are transparent. Your only respon-
sibility is to formulate the loglikelihood

• Computational efficiency : ADMB-RE is up to 50 times faster than Win-
BUGS.

• Robustness : With exact derivatives you can fit highly nonlinear models.

• Convergence diagnostic: The gradient of the likelihood function provides
a clear convergence diagnostic.
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Program interface

• Model formulation: You fill in a C++ based template using your favorite
text editor.

• Compilation: You turn your model into an executable program using a
C++ compiler (which you need to install separately).

• Platforms : Windows and Linux

How to obtain ADMB-RE ADMB-RE is a module for ADMB. Both can
be obtained from admb-project.org



Chapter 2

The language and the program

2.1 What is ordinary ADMB?

ADMB is a software package for doing parameter estimation in nonlinear mod-
els. It combines a flexible mathematical modelling language (built on C++)
with a powerful function minimizer (based on Automatic Differentiation). The
following features of ADMB make it very useful for building and fitting non-
linear models to data:

• Vector-matrix arithmetic, vectorized operations for common mathemat-
ical functions.

• Read and write vector and matrix objects to file.

• Fit the model is a stepwise manner (with ‘phases’), where more and more
parameters become active in the minimization.

• Calculate standard deviations of arbitrary functions of the model param-
eters by the ‘delta method’.

• MCMC sampling around the posterior mode.

To use random effects in ADMB it is recommended that you have some expe-
rience in writing ordinary ADMB programs. In this sections we review, for the
benefit of the reader without this experience, the basic constructs of ADMB.

Model fitting with ADMB has three stages: 1) Model formulation, 2) Com-
pilation and 3) Program execution. The model fitting process is typically iter-
ative: After having looked at the output from stage 3) one goes back to stage
1) and modifies some aspect of the program.

11
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Writing an ADMB program To fit a statistical model to data we must
carry out certain fundamental tasks, such as reading data from file, declaring
the set of parameters that should be estimated, and finally we must give a
mathematical description of the model. In ADMB you do all of this by filling
in a template, which is an ordinary text file with the file-name extension ‘.tpl’
(and hence the template file is known as the tpl-file). You therefore need a
text editor, such as ’vi’ under Linux or ’Notepad’ under Windows, to write the
tpl-file. The first tpl-file to which the reader of the ordinary ADMB manual is
exposed is simple.tpl (listed in Section 2.3 below). We shall use simple.tpl
as our generic tpl-file, and we shall see that introduction of random effects
only requires small changes to the program.

A tpl-file is divided into a number of ‘sections’, each representing one of
the fundamental tasks mentioned above. The required sections are:

Name Purpose
DATA SECTION Declare ‘global’ data objects; initialization from file
PARAMETER SECTION Declare independent parameters
PROCEDURE SECTION Specify model and objective function in C++

More details are given when we later look at simple.tpl, and a quick reference
card is available in Appendix D.

Compiling an ADMB program After having finished writing simple.tpl,
we want to convert it into an executable program. This is done in a DOS-
window under Windows, and in an ordinary terminal window under Linux.
To compile simple.tpl, we would under both platforms give the command:

$ admb -r simple

Here, ’$’ is the command line prompt (which may be a different symbol on
your computer), and -r is an option telling the program admb that your model
contains random effects. The program admb accepts another option -s which
produces the ‘safe’ (but slower) version of the executable program. The -s

option should be used in a debugging phase, but it should be skipped when
the final production version of the program is generated.

The compilation process really consists of two steps: first simple.tpl is
converted to a C++ program by a preprosessor called tpl2rem in the case
of ADMB-RE and tpl2cpp in the case of ordinary ADMB (Appendix D). An
error message from tpl2rem consists of a single line of text, with a reference to
the line in the tpl-file where the error occurs. If successful, the first compilation
step results in the C++ file simple.cpp. In the second step simple.cpp is
compiled and linked using an ordinary C++ compiler (which is not part of
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ADMB). Error messages during this phase typically consist of long printouts,
with references to line numbers in simple.cpp. To track down syntax errors
it may occasionally be useful to look at the content of simple.cpp. When
you understand what is wrong in simple.cpp you should go back and correct
simple.tpl and re-enter the command admb -r simple. When all errors have
been removed, the result will be an executable file, which is called simple.exe

under Windows or simple under Linux. The compilation process is illustrated
in Figure D.1.

Running an ADMB-program The executable program is run in the same
window as it was compiled. Note that data are not usually part of the ADMB
program (simple.tpl). Instead, data are being read from a file with the file
name extension ‘.dat’ (simple.dat). This brings us to the naming convention
used by ADMB programs for input and output files: The executable automat-
ically infers file names by adding an extension to its own name. The most
important files are:

File name Contents
Input simple.dat Data for the analysis

simple.pin Initial parameter values
Output simple.par Parameter estimates

simple.std Standard deviations
simple.cor Parameter correlations

You can use command line options to modify the behavior of the program at
runtime. The available command line options can be listed by typing:

$ simple -?

(or whatever your executable is called). The command line options that are
specific to ADMB-RE are listed in Appendix C, and are discussed in detail
under the various sections. An option you probably will like to use during
an experimentation phase is -est, which turns off calculation of standard
deviations, and hence reduces the running time of the program.

ADMB-IDE: Easy and efficient user interface The graphical user in-
terphase to ADMB by Arni Magnusson simplifies the process of building and
running the model, especially for the beginner (ADMB Foundation 2009).
Among other things, it provides syntax highlighting and links error messages
from the C++ compiler to the .cpp file.
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Initial values The initial values can be provided in different ways (see the
ordinary ADMB manual). Here we only describe the .pin file approach. The
.pin file should contain legal values (within the bounds) for all the parameters,
including the random effects. The values must be given in the same order as
the parameters are defined in the .tpl file . The easiest way of generating a
.pin file with the right structure is to first run the program with an -maxfn

0 option (for this you do not need a .pin file) and copy the resulting .p01

file into .pin file, and edit it to provide the correct numeric values. More
information about what initial values for random effects really means is given
in Section 3.7.

2.2 Why random effects?

Many people are familiar with the method of least squares for parameter es-
timation. Far fewer know about random effects modeling. The use of random
effects requires that we adopt a statistical point of view, where the sum of
squares is interpreted as being part of a likelihood function. When data are
correlated, the method of least squares is sub-optimal, or even biased. But
relax, random effects come to rescue!

The classical motivation of random effects is:

• To create parsimonious and interpretable correlation structures.

• To account for additional variation or overdispersion.

We shall see, however, that random effects are useful in a much wider context.
For instance, in non-parametric smoothing (??).

Statistical prerequisites To use random effects in ADMB you must be
familiar with the notion of a random variable, and in particular with the
normal distribution. In case you are not, please consult a standard textbook
in statistics. The notation u ∼ N(µ, σ2) is used throughout this manual,
and means that u has a normal (Gaussian) distribution with expectation µ
and variance σ2. The distribution placed on the random effects is called the
’prior’, which is a term borrowed from Bayesian statistics.

A central concept that originates from generalized linear models is that
of a linear predictor. Let x1, . . . , xp denote observed covariates (explanatory
variables), and let β1, . . . , βp be the corresponding regression parameters to
be estimated. Many of the examples in this manual involve a linear predictor
ηi = β1x1,i + · · ·+ βpxp,i, which we also will write on vector form as η = Xβ.
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Frequentist or Bayesian statistics? A pragmatic definition of a frequen-
tist is a person who prefers to estimate parameters by the method of maximum
likelihood. Similarly, a Bayesian is a person who use MCMC techniques to gen-
erate samples from the posterior distribution (typically with noninformative
priors on hyper-parameters), and from these samples generates some summary
statistic such as the posterior mean. With its -mcmc runtime option ADMB
lets you switch freely between the two worlds. The approaches complement
each other rather than being competitors. A maximum likelihood fit (point
estimate + covariance matrix) is a step-1 analysis. For some purposes step-1
is sufficient. In other situations, one may want to see posterior distributions
for the parameters. In such situations the established covariance matrix (in-
verse Hessian of the log-likelihood) is used by ADMB to implement an efficient
Metropolis-Hastings algorithm (which you invoke with -mcmc).

A simple example We use the simple.tpl example from the ordinary
ADMB manual to exemplify the use of random effects. The statistical model
underlying this example is the simple linear regression

Yi = axi + b+ εi, i = 1, . . . , n,

where Yi and xi are the data, a and b are the unknown parameters to be
estimated, and εi ∼ N(0, σ2) is an error term.

Consider now the situation that we do not observe xi directly, but rather
we observe

Xi = xi + ei,

where ei is a measurement error term. This situation frequently occurs in
observational studies, and is known as the ‘error in variables’ problem. Assume
further that ei ∼ N(0, σ2

e), where σ2
e is the measurement error variance. For

reasons discussed below, we shall assume that we know the value of σe, so we
shall pretend that σe = 0.5.

Because xi is not observed, we model it as a random effect with xi ∼
N(µ, σ2

x). In ADMB-RE you are allowed to make such definitions through the
new parameter type random effects vector. (There is also a random effects matrix

which allows you to define a matrix of random effects).

1. Why do we call xi a random effect, while we do not use this term for Xi

and Yi (though they clearly are ’random’)? The point is that Xi and Yi
are observed directly, while xi is not. The term ’random effect’ comes
from regression analysis, where it means a random regression coefficient.
In a more general context ’latent random variable’ is probably a better
term.



16 CHAPTER 2. THE LANGUAGE AND THE PROGRAM

2. The unknown parameters in our model are: a, b, µ, σ, σx and x1, . . . , xn.
We have agreed to call x1, . . . , xn random effects. The rest of the param-
eters are called hyper-parameters. Note that we place no prior distribu-
tion on the hyper-parameters.

3. Random effects are integrated out of the likelihood, while hyper-parameters
are estimated by maximum likelihood . This approach is often called
‘empirical Bayes’, and will be considered a frequentist method by most
people. There is however nothing preventing you from making it ‘more
Bayesian’ by putting priors (penalties) on the hyper-parameters.

4. A statistician will say ”this model is nothing but a bivariate Gaussian
distribution for (X, Y ), and we don’t need any random effects in this
situation”. This is formally true, because we could work out the co-
variance matrix of (X, Y ) by hand and fit the model using ordinary
ADMB. This program would probably run much faster, but it would
have taken us longer to write the code without declaring xi to be of
type random effects vector. But, more important is that random ef-
fects can be used also in non-Gaussian (nonlinear) models where we are
unable to derive an analytical expression for the distribution of (X, Y ).

5. Why didn’t we try to estimate σe? Well, let us count the parameters
in the model: a, b, µ, σ, σx and σe; totally six parameters. We know
that the bivariate Gaussian distribution has only five parameters (the
means of X and Y and three free parameters in the covariate matrix).
Thus, our model is not identifiable if we also try to estimate σe. Instead,
we pretend that we have estimated σe from some external data source.
This example illustrates a general point in random effects modelling: you
must be careful to make sure that the model is identifiable!

2.3 A code example

Here is the random effects version of simple.tpl:

DATA_SECTION

init_int nobs

init_vector Y(1,nobs)

init_vector X(1,nobs)

PARAMETER_SECTION
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init_number a

init_number b

init_number mu

vector pred_Y(1,nobs)

init_bounded_number sigma_Y(0.000001,10)

init_bounded_number sigma_x(0.000001,10)

random_effects_vector x(1,nobs)

objective_function_value f

PROCEDURE_SECTION // This section is pure C++

f = 0;

pred_Y=a*x+b; // Vectorized operations

// Prior part for random effects x

f += -nobs*log(sigma_x) - 0.5*norm2((x-mu)/sigma_x);

// Likelihood part

f += -nobs*log(sigma_Y) - 0.5*norm2((pred_Y-Y)/sigma_Y);

f += -0.5*norm2((X-x)/0.5);

f *= -1; // ADMB does minimization!

Comments

1. Everything following ’//’ is a comment.

2. In the DATA SECTION, variables with a init in front of the data type
are read from file.

3. In the PARAMETER SECTION

• Variables with a init in front of the data type are the hyper-
parameters, i.e. the parameters to be estimated by maximum like-
lihood.

• random effects vector defines the random effect vector (there is
also a random effects matrix). There can be more than one such
object, but they must all be defined after the hyper-parameters, oth-
erwise you will get an error message from the preprocessor tpl2rem.

• Objects that neither are hyper-parameters or random effects are or-
dinary programming variables that can be used in the PROCEDURE SECTION.
For instance, we can assign a value to the vector pred Y.
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• The objective function should be defined as the last variable.

4. The PROCEDURE SECTION basically consists of standard C++ code which
primary purpose is to calculate the value of the objective function.

• Variables defined in DATA SECTION and PARAMETER SECTION may be
used.

• Standard C++ functions as well as special ADMB functions, such
as norm2(x) (which calculates

∑
x2
i ), may be used.

• Often the operations are vectorized, as in the case of simple.tpl

• The objective function should be defined as the last variable.

• ADMB does minimization, rather than optimization. Thus, the
sign of the loglikelihood function f is changed in the last line of the
code.

Parameter estimation We learned above that hyper-parameters are esti-
mated but maximum likelihood, but what if we also are interested in the value
of the random effects? For this purpose ADMB-RE offers an ‘empirical Bayes’
approach, which involves fixing the hyper-parameters at their maximum like-
lihood estimates, and treating the random effects as the parameters of the
model. ADMB-RE automatically calculates ‘maximum posterior’ estimates of
the random effects for you. Estimates of both hyper-parameters and random
effects are written to simple.par.

2.4 The flexibility of ADMB-RE

Say that you doubt the distributional assumption xi ∼ N(µ, σ2
x) that was made

in simple.tpl, and that you want to check if a skewed distribution gives a
better fit. You could for instance take

xi = µ+ σx exp(zi), zi ∼ N(0, 1).

Under this model the standard deviation of xi is proportional to, but not
directly equal to σx. It is easy to make this modification in simple.tpl. In
the PARAMETER SECTION we replace the declaration of x by

vector x(1,nobs)

random_effects_vector z(1,nobs)
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and in the PROCEDURE SECTION we replace the prior on x by

f = - 0.5*norm2(z);

x = mu + sigma_x*exp(z);

This example shows one of the strengths of ADMB-RE: it is very easy to
modify models. In principle you can implement any random effects model you
can think of, but as we shall discuss later, there are limits to the number of
random effects you can declare.



20 CHAPTER 2. THE LANGUAGE AND THE PROGRAM



Chapter 3

Random effects modeling

This chapter describes all ADMB-RE features, except those related to “separa-
bility” which are dealt with in Chapter 4. Separability, or the Markov property
as it is called in statistics, is a property possessed by many model classes al-
lows ADMB-RE to generate more efficient executable programs. However,
most ADMB-RE concepts and techniques are better learned and understood
without introducing separability. Throughout much of this chapter we will
refer to the program simple.tpl from Section 2.3.

3.1 The objective function

As with ordinary ADMB the user specifies an objective function in terms of
data and parameters, but in ADMB-RE the objective function must have the
interpretation of being a (negative) log-likelihood. One typically has got a hier-
archical specification of the model, where at the top layer data are assumed to
have a certain probability distribution conditionally on the random effects (and
the hyper-parameters), and at the next level the random effects are assigned
a prior distribution (typically normal). Because conditional probabilities are
multiplied to yield the joint distribution of data and random effects, the ob-
jective function becomes a sum of (negative) log-likelihood contributions, and
the following rule applies

F The order in which the different loglikelihood contributions are added to
the objective function does not matter.

An addition to this rule is that all programming variables have got their value
assigned before they enter in a prior or a likelihood expression. WinBUGS
users must take care when porting their programs to ADMB because this is
not required in WinBUGS.

21
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The reason why the negative log-likelihood is used is that ADMB for
historical reasons does minimization (as opposed to maximization). In complex
models, with contributions to the log-likelihood coming from a variety of data
sources and random effects priors, it is recommended that you collect the
contributions to the objective function using the -= operator of C++, i.e.

f -= -nobs*log(sigma_x) - 0.5*norm2((x-mu)/sigma_x);

By using -= instead of += you do not have to change the sign of every likelihood
expression, which would be a likely source of error. When non of the advanced
features of Chapter 4 are used, you are allowed to switch the sign of the
objective function at the end of the program

f *= -1; // ADMB does minimization!

so that in fact f can hold the value of the log-likelihood until the last line of
the program.

It is OK to ignore constant terms (0.5 log(2π) for the normal distribution)
as we did in simple.tpl. This only affects the objective function value, not
any other quantity reported in the .par and .std (not even the gradient
value).

3.2 The random effects distribution (prior)

In simple.tpl we declared x1, . . . , xn to be of type random effects vector.
This statement tells ADMB that x1, . . . , xn should be treated as random ef-
fects (i.e. be the targets for the Laplace approximation), but it does not say
anything about which distribution the random effects should have. We as-
sumed that xi ∼ N(µ, σ2

x), and (without saying it explicitly) that the xi’s were
statistically independent. We know that the corresponding prior contribution
to the loglikelihood is

−n log(σx)−
1

2σ2
x

∑
i=1

(xi − µ)2 .

with ADMB implementation

f += -nobs*log(sigma_x) - 0.5*norm2((x-mu)/sigma_x);

Both the assumption about independence and normality can be generalized,
as we shortly will do, but first we introduce a transformation technique that
forms the basis for much of which follows later.
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Scaling of random effects A frequent source of error when writing ADMB-
RE programs is that priors get wrongly specified. The following trick can make
the code easier to read, and has the additional advantage of being numerically
stable for small values of σx. From basic probability theory we know that
if u ∼ N(0, 1), then x = σxu + µ will have a N(µ, σ2

x) distribution. The
corresponding ADMB code would be

f += - 0.5*norm2(u);

x = sigma_x*u + mu;

(This, of course, requires that we change the type of x from random effects vector

to vector, and that u is declared as a random effects vector.)
The trick here was to start with a N(0, 1) distributed random effect u

and to generate random effects x with another distribution. This is a special
case of a transformation. Had we used a non-linear transformation we would
have got a x with a non-gaussian distribution. The way we obtain correlated
random effects is also transformation based. However, as we shall see in Chap-
ter 4 transformation may “break” the separability of the model, so there are
limitations to what transformations can do for you.

3.3 Correlated random effects

In some situation you will need correlated random effects, and as part of your
problem you may want to estimate the elements of the covariance matrix. A
typical example is mixed regression where the intercept random effect (ui) is
correlated with the slope random effect (vi),

yij = (a+ ui) + (b+ vi)xij + εij.

(If you are not familiar with the notation, please consult an introductory book
on mixed regression, such Pinheiro & Bates (2000).) In this case we can define
correlation matrix

C =

[
1 ρ
ρ 1

]
,

and we want to estimate ρ along with the variances of ui and vi. Here it is
trivial to ensure that C is positive definite, by requiring −1 < ρ < 1, but in
higher dimensions this issue requires more careful consideration.

To ensure that C is positive definite you can parameterize the problem in
terms of the Cholesky factor L, i.e. C = LL′, where L is a lower diagonal
matrix with positive diagonal elements. There are q(q− 1)/2) free parameters
(the non-zero elements of L) to be estimated, where q is the dimension of C.
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Since C is a correlation matrix we must ensure that its diagonal elements are
unity. An example with q = 4 is

PARAMETER_SECTION

matrix L(1,4,1,4) // Cholesky factor

init_vector a(1,6) // Free parameters in C

init_bounded_vector B(1,4,0,10) // Standard deviations

PROCEDURE_SECTION

int k=0;

L(1,1) = 1.0;

for(i=2;i<=4;i++)

{

L(i,i) = 1.0;

for(j=1;j<=i-1;j++)

L(i,j) = a(k++);

L(i)(1,i) /= norm(L(i)(1,i)); // Ensures that C(i,i) = 1

}

Given the Cholesky factor L, we can proceed in different directions. One
option is to use the same transformation-of-variable technique as above: Start
out with a vector u of independent N(0, 1) distributed random effects. Then,
the vector

x = L*u;

has correlation matrix C = LL′. Finally, we multiply each component of x by
the appropriate standard deviation:

y = elem_prod(x,sigma);

Large structured covariance matrices In some situations, for instance
in spatial models, q will be large (q = 100, say). Then it is better to use the
approach outlined in Section 4.5.

3.4 Non-Gaussian random effects

Usually, the random effects will have a Gaussian distribution, but technically
speaking there is nothing preventing you from replacing the normality assump-
tion, such as
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f -= -nobs*log(sigma_x) - 0.5*norm2((x-mu)/sigma_x);

with a log gamma density, say. It can however be expected that the Laplace
approximation will be less accurate when you move away from normal priors.
Hence, you should instead use the transformation trick that we learned earlier,
but now with a non-linear transformation. A simple example of this yielding
a log-normal prior was given in Section 2.4.

Say you want x to have cumulative distribution function F (x). It is well
known that you achieve this by taking x = F−1(Φ(u)), where Φ is the where
Φ is the cumulative distribution function of the N(0, 1) distribution. For a
few common distributions, the composite transformation F−1(Φ(u)) has been
coded up for you in ADMB-RE, and all you have to do is:

1. Define a random effect u with a N(0, 1) distribution.

2. Transform u into a new random effect x using one of something deviate

functions described below.

where something is the name of the distribution.
As an example, say we want to obtain av vector x of gamma distributed

random effects (probability density xa−1 exp(−x)/Γ(a)). We can then use the
code:

PARAMETER_SECTION

init_number a // Shape parameter

init_number lambda // Scale parameter

vector x(1,n)

random_effects_vector u(1,n)

objective_function_value g

PROCEDURE_SECTION

g -= -0.5*norm2(u); // N(0,1) likelihood contr.

for (i=1;i<=n;i++)

x(i) = lambda*gamma_deviate(u(i),a);

Full example: http://www.otter-rsch.com/admbre/examples/gamma/gamma.html
Similarly, to obtain beta(a, b) distributed random effects, with density

f(x) ∝ xa−1(1− x)b−1, we use:

PARAMETER_SECTION
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init_number a

init_number b

PROCEDURE_SECTION

g -= -0.5*norm2(u); // N(0,1) likelihood contr.

for (i=1;i<=n;i++)

x(i) = beta_deviate(u(i),a,b);

The function beta deviate() has a fourth (optional) parameter that controls
the accuracy of the calculations. To learn more about this you will have to
dig into the source code. You find the code for beta deviate() in the file
df1b2betdev.cpp. The mechanism for specifying default parameter values
are found in the source file df1b2fun.h.

A third example is provided by the “robust” normal distribution with prob-
ability density

f(x) = 0.95
1√
2π
e−0.5x2

+ 0.05
1

c
√

2π
e−0.5(x/c)2

where c is a “robustness” parameter which by default is set to c = 3 in
df1b2fun.h. Note that this is a mixture distribution consisting of 95% N(0, 1)
and 5% N(0, c2). The corresponding ADMB-RE code is

PARAMETER_SECTION

init_number sigma // Standard deviations (almost)

number c

PROCEDURE_SECTION

g -= - 0.5*norm2(u); // N(0,1) likelihood contribution from u’s

for (i=1;i<=n;i++)

{

x(i) = sigma*robust_normal_mixture_deviate(u(i),c);

}

Can a, and c be estimate? As indicated by the data types used above:

F a and b are among the parameters that are being estimated.

F c cannot be estimated.

It would however be possible to write a version of robust normal mixture deviate

where also c and the mixing proportion (fixed at 0.95 here) can be estimated.
For this you need to look into the file df1b2norlogmix.cpp. The list of dis-
tribution that can be used is likely to be expanded in the future.
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Density Expression Parameters Name

Poisson µx

Γ(x+1)
e−µ µ > 0 log density poisson

Neg. binomial1 µ = E(X), τ = V ar(X)
E(X)

µ, τ > 0 log negbinomial density

Table 3.1: Distributions which currently can be used as high-level data dis-
tributions (for data X) in ADMB-RE. 1The expression for the negative bi-
nomial distribution is omitted due to its somewhat complicated form. In-
stead the parameterization, via the via the overdispersion coefficient, is given.
The interested reader can look at the actual implementation in the source file
df1b2negb.cpp

3.5 Built in data likelihoods

In simple simple.tpl the mathematical expressions for all log-likehood con-
tributions where written out in full detail. You may have hoped that for the
most common probability distributions there were functions written so that
you do not have to remember or look up their log-likelihood expressions. In
case your density are among those given in Table 3.1 you are lucky. More
functions are likely to be implemented over time, and user contributions are
welcomed!

We stress that these functions should be only be used for data likelihoods,
and in fact, they will not compile if you try to let X be a random effect.
So for instance, if you have observations xi that are Poisson distributed with
expectation µi you would write

for (i=1;i<=n;i++)

f -= og\_density\_poisson(x(i),mu(i));

Note that functions do not accept vector arguments.

3.6 Phases

A very useful feature of ADMB is that it allows the model to be fit in different
phases. In the first phase you estimate only a subset of the parameters, with
the remaining parameters being fixed at their initial values. In the second
phase more parameters are turned on, and so it goes. The phase in which a
parameter becomes active is specified in the declaration of the parameter. By
default a parameter has phase 1. A simple example would be

PARAMETER_SECTION
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init_number a(1)

random_effects_vector b(1,10,2)

where a becomes active in phase 1, while b is a vector of length 10 that becomes
active in phase 2. With random effects we have the following rule-of-thumb
(which may not always apply):

Ph1 Activate all parameters in the data likelihood, except those related to
random effects.

Ph2 Activate random effects and theirs standard deviations.

Ph3 Activate correlation parameters (of random effects)

In complicated models it may be useful to break Ph1 into several sub-phases.
During program development it is often useful to be able to completely

switch a parameters off. A parameter is inactivated when given phase ‘-1’ as
in

PARAMETER_SECTION

init_number c(-1)

The parameter is still part of the program, and its value will still be read from
the pin-file, but it does not take part in the optimization (in any phase).

For further details about phases, please consult the section ‘Carrying out
the minimization in a number of phases’ in the ADMB manual (ADMB De-
velopment Core Team 2009).

3.7 Penalized likelihood and empirical Bayes

The main question we answer in this section is: how are the random effects
estimated, i.e. how are the values that enters the .par and .std calculated?
Along the way we will learn a little about how ADMB-RE works internally.

By now you should be familiar with the statistical interpretation of the
random effects, but how are they treated internally in ADMB-RE? Since the
random effects are not observed data they have parameter status, but we dis-
tinguish them from the hyper-parameters. In the marginal likelihood function
used internally by ADMB-RE to estimate hyper-parameters, the random ef-
fects are ‘integrated out’. The purpose of the integration is to generate the
marginal probability distribution for the observed quantities, which are X and
Y in simple.tpl. In that example we could have found an analytical expres-
sion for the marginal distribution of (X, Y ), because only normal distributions
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were involved. For other distributions, such as the binomial, no simple expres-
sion for the marginal distribution exists, and hence we must rely on ADMB
to do the integration. In fact, the core of what ADMB-RE does for you is to
automatically calculates the marginal likelihood, in its effort to estimate the
hyper-parameters.

The integration technique used by ADMB-RE is the so-called Laplace ap-
proximation (Skaug & Fournier 2006). Somewhat simplified, the algorithm
involves iterating between the following two steps:

1. The ‘penalized likelihood’ step: Maximizing the likelihood with respect
to the random effects, while holding the value of the hyper-parameters
fixed. In simple.tpl this means doing the maximization w.r.t. x only.

2. Updating the value of the hyper-parameters, using the estimates of the
random effects obtained in 1).

The reason for calling the objective function in 1) a penalized likelihood, is
that the prior on the random effects acts as a penalty function.

We can now return to the role of the initial values specified for the random
effects in the .pin file. Each time step 1) above is performed these values
are used, unless you use the command line option -noinit, in which case the
previous optimum is used as the starting value.

Empirical Bayes is commonly used to refer to Bayesian estimates of the
random effects, with the hyper-parameters fixed at their maximum likelihood
estimates. ADMB-RE uses maximum aposteriori Bayesian estimates, as eval-
uated in step 1) above. Posterior expectation is a more commonly used as
Bayesian estimator, but it requires additional calculations, and is currently not
implemented in ADMB-RE. For more details, see Skaug & Fournier (2006).

The classical criticism of empirical Bayes is that the uncertain about the
hyper-parameters is ignored, and hence that the total uncertainty about the
random effects is underestimated. ADMB-RE does however take this into
account and uses the following formula

cov(u) = −
[
∂2 log p(u|data; θ)

∂u∂u′

]−1

+
∂u

∂θ
cov(θ)

(
∂u

∂θ

)′
, (3.1)

where u is the vector of random effect, θ is the vector of hyper-parameters, and
∂u/∂θ is the sensitivity of the penelized likelihood estimator on the value of θ.
The first term on the r.h.s. is the ordinary Fisher information based variance
of u, while the second term accounts for the uncertainty in θ.
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3.8 Building a random effects model that works

In all nonlinear parameter estimation problems, there are two possible expla-
nations when your program does not produce meaningful results:

1. The underlying mathematical model is not well defined, e.g. it may be
over-parameterized.

2. You have implemented the model incorrectly, e.g. you have forgotten a
minus sign somewhere.

In an early phase of the code development it may not be clear which of these
is causing the problem. With random effects, the two-step iteration scheme
described above makes it even more difficult to find the error. We therefore
advise you always to check the program on simulated data before you apply
it to your real dataset. This section gives you a recipe for how to do this.

The first thing you should do after having finished the tpl-file is to check
that the penalized likelihood step is working correctly. In ADMB it is very
easy to switch from a random effects version of the program to a penalized
likelihood version. In simple.tpl we would simply redefine the random effects
vector x to be of type init vector. The parameters would then be a, b, µ,
σ, σx and x1, . . . , xn. It is not recommended, or even possible, to estimate
all of these simultaneously, so you should fix σx (by giving it a phase ‘-1’) at
some reasonable value. The actual value at which you fix σx is not critically
important, and you could even try a range of σx values. In larger models there
will be more than one parameter that needs to be fixed. We recommend the
following scheme:

1. Write a simulation program (in R, S-Plus, Matlab, or some other pro-
gram) that generates data from the random effects model (using some
reasonable values for the parameters) and writes to simple.dat.

2. Fit the penalized likelihood program with σx (or the equivalent param-
eters) fixed at the value used to simulate data.

3. Compare the estimated parameters with the parameter values used to
simulate data. In particular, you should plot the estimated x1, . . . , xn
against the simulated random effects. The plotted points should center
around a straight line. If they do (to some degree of approximation) you
most likely have got a correct formulation of the penalized likelihood.
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If your program passes this test, you are ready to test the random effects
version of the program. You redefine x to be of type random effects vector,
free up σx, and apply again your program to the same simulated dataset. If
the program produces meaningful estimates of the hyper-parameters, you most
likely have implemented your model correctly, and you are ready to move on
to your real data!

With random effects it often happens that the maximum likelihood esti-
mate of a variance component is zero (σx = 0). Parameters bouncing against
the boundaries usually makes one feel uncomfortable, but with random effects
the interpretation of σx = 0 is clear and unproblematic. All it really means is
that data do not support a random effect, and the natural consequence is to
remove (or inactivate) x1, . . . , xn, together with the corresponding prior (and
hence σx), from the model.

3.9 MCMC

There are two different MCMC methods built into ADMB-RE: -mcmc and
-mcmc2. Both are based on the Metropolis-Hastings algorithm. The former
generates a Markov chain on the hyper-parameters only, while -mcmc2 gener-
ates a chain on the joint vector of hyper-parameters and random effects. (Some
sort of rejection sampling could be used with -mcmc to generate values also for
the random effects, but this is currently not implemented). The advantages
of -mcmc are:

• Because there typically is a small number of hyper-parameters, but a
large number of random effects, it is much easier to judge convergence
of the chain generated by -mcmc than that generated by -mcmc2.

• The -mcmc chain mixes faster than the -mcmc2 chain.

The disadvantage of the -mcmc option is that it is slow, because it relies on
evaluation of the marginal likelihood by the Laplace approximation. It is
recommended to run (separately) both of -mcmc and -mcmc2 to verify that
they yield the same posterior for the hyper-parameters.

3.10 Importance sampling

The Laplace approximation may be inaccurate in some situations . The accu-
racy may be improved by adding an importance sampling step. This is done
in ADMB-RE by using the command line argument -is N seed, where N is
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the sample size in the importance sampling and seed (optional) is used to ini-
tialize the random number generator. Increasing N will give better accuracy,
at the cost of a longer run time. As a rule-of-thumb you should start with
N=100, and increase N stepwise by a factor of 2 until the parameter estimates
stabilize.

By running the model with different seeds you can check the Monte Carlo
error in your estimates, and possibly average across the different runs to de-
crease the Monte Carlo error. Replaing the -is N seed option with a -isb

N seed gives you a “balanced” sample, which in general should reduce the
Monte Carlo error.

For large values of N, the option -is N seed will require a lot of memory,
and you will see that huge temporary files are produced during the execution
of the program. The option -isf 5 will split the calculations relating to
importance sampling into 5 (or any number you like) batches. In combination
with the techniques discussed in Section 3.12.1, this should reduce the storage
requirements. An example of a command line is:

lessafre -isb 1000 9811 -isf 20 -cbs 50000000 -gdb 50000000

The -is option can also be used as a diagnostic tool for checking the accu-
racy of the Laplace approximation. If you add the -isdiag (print importance
sampling) the importance sampling weights will be printed at the end of the
optimization process. If these weights do not vary much, the Laplace approxi-
mation is probably doing well. On the other hand, if a single weight dominates
the others by several orders of magnitude, you are in trouble, and it is likely
that even -is N with a large value of N is not going to help you out. In such
situations, reformulating the model, with the aim of making the loglikelihood
closer to a quadratic function in the random effects, is the way to go. See also
the following section.

3.11 REML (Restricted maximum likelihood)

It is well known that maximum likelihood estimators of variance parameters
can be downwards biased. The biases arises from estimation of one or more
mean-related parameters. The simplest example of a REML estimator is the
ordinary sample variance

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2,
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where the divisor (n − 1), rather the n which occurs for the maximum like-
lihood estimator, accounts for the fact that we have estimated a single mean
parameter.

There are many ways of deriving the REML correction, but in the cur-
rent context the most natural explanation is that we integrate the likelihood
function (note: not the log-likelihood) with respect to the mean parame-
ters β, say. This is achieved in ADMB-RE by defining β as being of type
random effects vector, but without specifying a distribution/prior for the
parameters. It should be noted that the only thing that the random effects vector

statement tells ADMB-RE is that the likelihood function should be integrated
with respect to β. In linear-Gaussian models the Laplace approximation is
exact, and hence this approach yields exact REML estimates. In nonlinear
models the notion of REML is more difficult, but REML-like corrections are
still being used. For linear-Gaussian models the REML likelihood is available
in closed form. Also many linear models can be fitted with standard software
packages. It is typically much simpler to formulate a hierarchical model with
explicit latent variables. As mentioned, the Laplace approximation is exact
for Gaussian models, so it does not matter what way you do it.

An example of such a model is found at http://otter-rsch.com/admbre/examples/bcb/bcb.html.
To make the executable program run efficiently, the command line options -nr
1 -sparse should be used for linear models. Also, note that REML estimates
can be obtained as explained in section 3.11.

3.12 Improving performance

In this section we discuss certain mechanisms you can use to make an ADMB-
RE program run faster and more smoothly.

3.12.1 Reducing the size of temporary files

When ADMB needs more temporary storage than is available in the allo-
cated memory buffers, it starts producing temporary files. Since writing to
disk is much slower than accessing memory, it is important to reduce the size
of temporary files as much as possible. There are several parameters (such
as arrmblsize) built into ADMB that regulates how large memory buffers
an ADMB program allocates at startup. With random effects the memory re-
quirements increase dramatically, and ADMB-RE deals with this by producing
(when needed) six temporary files:
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File name Command line option
f1b2list1 -l1 N

f1b2list12 -l2 N

f1b2list13 -l3 N

nf1b2list1 -nl1 N

nf1b2list12 -nl2 N

nf1b2list13 -nl3 N

The table also shows the command line arguments you can use to manually
set the size (determined by N) of the different memory buffers.

When you see any of these files start growing, you should kill your applica-
tion and restart it with the appropriate command line options. In addition to
the options shown above there is -ndb N that splits the computations into N
chunks. This effectively reduces the memory requirements by a factor of N , at
the cost of a somewhat longer run time. It is necessary that N is a divisor of
the total number of random effects in the model, so that it is possible to split
the job into N equally large parts. The -ndb option can be used in combina-
tion with the -l and -nl options listed above. The following rule-of-thumb for
setting N in -ndb N can be used: if there are totally m random effects in the
model, one should choose N such that m/N ≈ 50. For most of the models in
the example collection (Chapter 3) this choice of N prevents any temporary
files of being created.

Consider the model http://otter-rsch.com/admbre/examples/union/union.html
as an example. This model contains only about 60 random effects, but does
rather heavy computations with these, and as a consequence large temporary
files are generated. The following command line

$ ./union -l1 10000000 -l2 100000000 -l3 10000000 -nl1 10000000

takes away the temporary files but requires 80Mb of memory. The command
line

$ ./union -est -ndb 5 -l1 10000000

also runs without temporary files, requires only 20Mb of memory, but runs
three times slower.

Finally, a warning about the use of these command line options. If you
allocate too much memory your application will crash, and you will (should)
get a meaningful error message. You should monitor the memory use of your
application using “Task Manager” under Windows and the command “top”
under Linux, to ensure that you do not exceed the available memory on your
computer.
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3.12.2 Limited memory Newton optimization

The penalized likelihood step (Section 3.7), that forms a crucial part of the al-
gorithm used by ADMB to estimate hyper-parameters, is by default conducted
using a quasi-Newton optimization algorithm. If the number of random effects
is large, as it typically is for separable models, it may be more efficient to use
a ‘limited memory quasi-Newton’ optimization algorithm. This is done using
the command line argument -ilmn N, where N is the number of steps to keep.
Typically N=5 is a good choice.
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Chapter 4

Exploiting separability

The following model classes:

• Grouped or nested random effects

• State-space models

• Crossed random effects

• Latent Markov random fields

share an important property: their “Hessian” is a sparse matrix. This enables
ADMB-RE to do the calculations very efficiently. The Hessian H is defined
as the (negative) Fisher information matrix (inverse covariance matrix) of the
posterior distribution of the random effects:

p(u|y) ∝ p(y|u)p(u), (4.1)

where u are the random effect and y are the data. This definition is only
excact if both u and y are Gaussian. More generally, H is the Hessian matrix
of the function log[p(·|y)].

That H is sparse means that it contains mostly zeros. The actual sparsity
pattern depends on the model type:

• Grouped or nested random effects: H is block diagonal.

• State-space models: H is a banded matrix with a narrow band.

• Crossed random effects: unstructured sparsity pattern.

• Latent Markov random fields: often banded, but with a wide band.

37
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ADMB-RE should print out a message such as

Block diagonal Hessian (Block size = 3)

at the beginning of the phase when the random effects are becoming active
parameters.

Not all models are separable, and for small toy examples (less than 50
random effects, say) we do not need to care about separability. But chances
are high that you need to become familiar with the concept. How do we
inform ADMB-RE that the model is separable? We shall see the key is
SEPARABLE FUNCTION’s, which are invoked many times with a small number
of the random effects as arguments each time. Do you think that ADMB-RE
should be able to detect the separable structure on its own? Well, maybe
so, but after you have worked with a few separable models you will find that
having to call the SEPARABLE FUNCTION’s actually structures your own way of
thinking about the model. This is especially so for state-space models. A good
reference (although a bit advanced) on conditional probabilities is Rue & Held
(2005).

4.1 The first example

A simple example is the one-way variance component model

yij = µ+ σuui + εij, i = 1, . . . , q, j = 1, . . . , ni

where ui ∼ N(0, 1) is a random effect and εij ∼ N(0, σ2) is an error term. The
straightforward implementation of this model (shown only in part) is

PARAMETER_SECTION

random_effects_vector u(1,q)

PROCEDURE_SECTION

for(i=1;i<=q;i++)

{

g -= -0.5*square(u(i));

for(j=1;j<=n(i);j++)

g -= -log(sigma) - 0.5*square((y(i,j)-mu-sigma_u*u(i))/sigma);

}

The efficient implementation of this model is
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PROCEDURE_SECTION

for(i=1;i<=q;i++)

g_cluster(i,u(i),mu,sigma,sigma_u);

SEPARABLE_FUNCTION void g_cluster(int i, const dvariable& u,...)

g -= -0.5*square(u);

for(int j=1;j<=n(i);j++)

g -= -log(sigma) - 0.5*square((y(i,j)-mu-sigma_u*u)/sigma);

where ... replaces the rest of the argument list (due to lack of space in this
document).

It is the function call g cluster(i,u(i),mu,sigma,sigma u) that enables
ADMB-RE to identify that the posterior distribution (4.1) factors (over i):

p(u|y) ∝
q∏
i=1

{
ni∏
j=1

p(ui|yij)

}

and hence that the Hessian is block diagonal (with block size 1). Knowing
that the Hessian is block diagonal enables ADMB-RE to do a series of uni-
variate Laplace approximations, rather than a single Laplace approximation
in full dimension q. It should then be possible to fit models where q is in the
order of thousands, but this clearly depends on the complexity of the function
g cluster.

The following rules apply:

F The argument list in the definition of the SEPARABLE FUNCTION should not
broken into several lines of text in the tpl-file. This is often tempting
as the line typically gets long, but it results in an error message from
tpl2rem.

F Objects defined in the PARAMETER SECTION must be passed as arguments
to g cluster. There is one exception: the objective function g is a global
object, and does not need to be an argument. Temporary/programming
variables should be defined locally within the SEPARABLE FUNCTION.

F Objects defined in the DATA SECTION should not be passed as arguments
to g cluster (they are also global objects).

The data types that currently can be passed as arguments to a SEPARABLE FUNCTION

are:
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int

const dvariable&

const dvar_vector&

const dvar_matrix&

with an example being

SEPARABLE_FUNCTION void f(int i, const dvariable& a, const dvar_vector& beta)

The qualifier const is required for the latter two data types, and signalizes to
the C++ compiler that the value of the variable is not going to be changed by
the function. You may also come across the type const prevariable& which
means exactly the same as const dvariable&.

There are other rules that have to be obeyed:

F No calculations involving variables defined in the PARAMETER SECTION

are allowed in the PROCEDURE SECTION. The only use of such variables
there is passing them as arguments to SEPARABLE FUNCTION’s.

This rule implies that all the action has to take place inside the SEPARABLE FUNCTION’s.
To minimize the number of parameters that have be passed as arguments, the
following programming practice is recommended when using SEPARABLE FUNCTION’s:

F The PARAMETER SECTION should contain definitions only of the indepen-
dent parameters (those variables which type has a init prefix) and
random effects, i.e. no temporary programming variables.

All temporary variables needed for the computations should be defined locally
in the SEPARABLE FUNCTION as shown here:

SEPARABLE_FUNCTION void prior(const dvariable& log_s, const dvariable& u)

dvariable sigma_u = exp(log_s);

g -= -log_s - 0.5*square(u(i)/sigma_u);

Full example http://otter-rsch.com/admbre/examples/orange/orange.html.
The orange model has block size 1,

4.2 Nested or clustered random effects: Block

diagonal H

In the above model there was no hierarchical structure among the latent ran-
dom variables (the u’s). A more complicated example is provided by the
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following model:

yijk = σvvi + σuuij + εijk, i = 1, . . . , q, j = 1, . . . ,m, k = 1, . . . , nij,

where the random effects vi and uij are independent N(0, 1) distributed, and
εijk ∼ N(0, σ2) is still the error term. One often says that the u’s are nested
within the v’s.

Another perspective is that the data can be split into independent clusters.
For i1 6= i2 we have that yi1jk and yi2jk are statistically independent, so that
the likelihood factors at the outer nesting level (i).

To exploit this we use the SEPARABLE FUNCTION as follows:

PARAMETER_SECTION

random_effects_vector v(1,q)

random_effects_matrix u(1,q,1,m)

PROCEDURE_SECTION

for(i=1;i<=q;i++)

g_cluster(v(i),u(i),sigma,sigma_u,sigma_v,i);

Note that u(i) is the i’th row of the matrix u (this is standard ADMB stuff),
and it should be passed as a vector to the SEPARABLE FUNCTION, which we
would implement as follows:

SEPARABLE_FUNCTION void g_cluster(const dvariable& v,const dvar_vector& u,...)

g -= -0.5*square(v);

g -= -0.5*norm2(u);

for(int j=1;j<=m;j++)

for(int k=1;k<=n(i,j);k++)

g -= -log(sigma) - 0.5*square((y(i,j,k)

-sigma_v*v - sigma_u*u(j))/sigma);

F For a model to be detected as “Block diagonal Hessian” each latent vari-
able should be passed exactly once as an argument to a SEPARABLE FUNCTION.

To ensure that you have not broken this rule you should look for an message
like this at run time:

Block diagonal Hessian (Block size = 3)



42 CHAPTER 4. EXPLOITING SEPARABILITY

It is possible that the groups or clusters (as indexed by i in this case) are of
different size. Then the “Block diagonal Hessian” that is printed is an average.

Alternative, we could have structured the program as follows:

PARAMETER_SECTION

random_effects_vector v(1,q)

random_effects_matrix u(1,q,1,m)

PROCEDURE_SECTION

for(i=1;i<=q;i++)

for(j=1;j<=m;j++)

g_cluster(v(i),u(i,j),sigma,sigma_u,sigma_u,i);

but this would not be detected by ADMB-RE as a clustered model (because
v(i) is passed multiple times), and hence ADMB-RE will not be able to
take advantage of the fact that the likelihood factors. However, the use of
the SEPARABLE FUNCTION makes it possible for ADMB-RE to perform efficient
calculations when invoked with the -shess command line option as described
later.

4.2.1 Gauss-Hermite quadrature

In the situation where the model is separable of type ”block diagonal Hessian”
with only a single random effect in each block (see Section 4), Gauss-Hermite
quadrature is available as an option to the Laplace approximation and the -is
option (importance sampling). It is invoked with command line option -gh N

where N is the number of quadrature points.

4.2.2 Frequency weighting for multinomial likelihoods

In situations were the response variable only can take on a finite number of
different values, it is possibly to reduce the computational burden enormously.
As an example, consider a situation where observation yi is binomially dis-
tributed with parameters N = 2 and pi. Assume that

pi =
exp(µ+ ui)

1 + exp(µ+ ui)
,

where µ is a parameter and ui ∼ N(0, σ2) is a random effect. For independent
observations y1, . . . , yn, the loglikelihood function for the parameter θ = (µ, σ)
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can be written:

l(θ) =
n∑
i=1

log [p(xi; θ)] . (4.2)

In ADMB-RE p(xi; θ) is approximated using the Laplace approximation. How-
ever, since yi only can take the values 0, 1 and 2, we can re-write the loglike-
lihood as

l(θ) =
2∑
j=0

nj log [p(j; θ)] ,

where nj is the number yi’s being equal to j. Still the Laplace approximation
must be used to approximate p(j; θ), but now only for j = 0, 1, 2, as opposed
to n times above. For large n this can give large a large reduction in computing
time.

To implement the weighted loglikelihood (A.5) we define a weight vector
(w1, w2, w3) = (n0, n1, n2). To read the weights from file, and to tell ADMB-
RE that w is a weights vector, the following code is used:

DATA_SECTION

init_vector w(1,3)

PARAMETER_SECTION

!! set_multinomial_weights(w);

In addition it is necessary to explicitly multiply the likelihood contributions
in (A.5) by w. The program must be written with SEPARABLE FUNCTION as
explained in Section 4.2. For the likelihood (A.5) the SEPARABLE FUNCTION

will be invoked three times.

Full example: http://www.otter-rsch.com/admbre/examples/weights/weights.html

4.3 State-space models: Banded H

A simple state space model is

yi = ui + εi,

ui = ρui−1 + ei,
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where ei ∼ N(0, σ2) is an innovation term. The log-likelihood contribution
coming from the state vector (u1, . . . , un) is

n∑
i=2

log

(
1√
2πσ

exp

[
−(ui − ρui−1)2

2σ2

])
,

where (u1, . . . , un) is the state vector. To make ADMB-RE exploit this special
structure we write a SEPARABLE FUNCTION named g conditional, that imple-
ments the individual terms in the above sum. This function would then be
invoked as follows

for(i=2;i<=n;i++)

g_conditional(u(i),u(i-1),rho,sigma);

Full example http://www.otter-rsch.com/admbre/examples/polio/polio.html.
Above we have looked at a model with a univariate state vector. For

multivariate state vectors, as in

yi = ui + vi + εi,

ui = ρ1ui−1 + ei,

vi = ρ2vi−1 + di,

we would merge the u and v vectors into a single vector (u1, v1, u2, v2, . . . , un, vn),
and define

random_effects_vector u(1,m)

where m = 2n. The call to the SEPARABLE FUNCTION would now look like

for(i=2;i<=n;i++)

g_conditional(u(2*(i-2)+1),u(2*(i-2)+2),u(2*(i-2)+3),u(2*(i-2)+4),...);

where ... denotes the arguments ρ1, ρ2, σe and σd.

4.4 Crossed random effects: sparse H

The simplest instance of a crossed random effects model is

yk = σuui(k) + σvvj(k) + εk, i = 1, . . . n,
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where u1, . . . , uN and v1, . . . , vM are random effects, and where i(k) ∈ {1, N}
and j(k) ∈ {1,M} are index maps. The y’s sharing either a u or a v will
be dependent, and in general no complete factoring of the likelihood will be
possible. However, it is still important to exploit the fact that the u’s and v’s
only enter the likelihood through pairs (ui(k), vj(k)). Here is the code for the
crossed model:

for (k=1;k<=n;k++)

log_lik(k,u(i(k)),v(j(k)),mu,s,s_u,s_v);

SEPARABLE_FUNCTION void log_lik(int k, const dvariable& u,...)

g -= -log(s) - 0.5*square((y(k)-(mu + s_u*u + s_v*v))/s);

If only a small proportion of all the possible combinations of ui and vj actually
occurs in the data, then the posterior covariance matrix of (u1, . . . , uN , v1, . . . , vM)
will be sparse. When an executable program produced by ADMB-RE is in-
voked with the -shess command line option, sparse matrix calculations are
used.

This is useful not only for crossed models. Here are a few other applications:

• For the nested random effects model as explained in section 4.2.

• REML estimation; recall that REML estimates are obtained by making a
fixed effect random, but with no prior distribution. For the nested models
in section 4.2, and the models with state-space structure of section 4.3,
when using REML, ADMB-RE will to detect the cluster or time series
structure of the likelihood. (This has to do with the implementation of
ADMB-RE, not the model itself). However, the posterior covariance will
still be sparse, and the use of -shess is advantageous.

4.5 Gaussian priors and quadratic penalties

In most models the prior for the random effect will be Gaussian. In some
situations, such as in spatial statistics, all the individual components of the
random effects vector will be jointly correlated. ADMB contains a special
feature (the normal prior keyword) for dealing efficiently with such models.
The construct used to declaring a correlated Gaussian prior is

random_effects_vector u(1,n)

normal_prior S(u);
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The first of these lines is an ordinary declaration of a random effects vector.
The second line tells ADMB that u has a multivariate Gaussian distribution
with zero expectation and covariance matrix S , i.e. the probability density of
u is

h(u) = (2π)− dim(S)/2 det(S)−1/2 exp

(
−1

2
u′S−1u

)
.

Here, S is allowed to depend on the hyper-parameters of the model. The part of
the code where S gets assigned its value must be placed in a SEPARABLE FUNCTION

(see

F The log-prior log (h (u)) is automatically subtracted from the objective
function. It is thus necessary that the objective function holds the neg-
ative loglikelihood when using the normal prior.

F To verify that your model really is partially separable you should try
replacing the SEPARABLE FUNCTION keyword with an ordinary FUNCTION.
Then verify on a small subset of your data that the two versions of the
program produce the same results. You should be able to observe that
the SEPARABLE FUNCTION-version runs faster.

Full example http://otter-rsch.com/admbre/examples/spatial/spatial.html).



Appendix A

Example collection

This section contains various examples of how to use ADMB-RE. Some of
these has been referred to earlier in the manual. The exampels are grouped
according to their “Hessian type” (see Section 4). At the end of each example
you will find a Files section containing links to webpages where both program
code and data can be downloaded.

A.1 Non-separable models

This section contains models which do not use any of the separability stuff.
Sections A.1.2 and A.1.3 illustrate how to use splines as non-parametric com-
poents. This is currenlty a very popular technqiue, and fits very nicely into the
random effects framework (Ruppert, Wand & Carroll 2003). All the models,
except the first, are in fact separable, but for illustrative purposes (the code
becomes easier to read) this has been ignored.

47
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A.1.1 Mixed logistic regression; a WinBUGS compari-
son

Mixed regression regression models will usually have a block diagonal Hessian
du to grouping/clustering of the data. The present model was deliberately
chosen not to be separable, in order to pose a computational challenge to both
ADMB-RE and WinBUGS.

Model description Let y = (y1, . . . , yn) be a vector of dichotomous ob-
servations (yi ∈ {0, 1}), and let u = (u1, . . . , uq) be a vector of independent
random effects, each with Gaussian distribution (expectation 0 and variance
σ2). Define the success probability πi = Pr(yi = 1). The following relation-
ship between πi and explanatory variables (contained in matrices X and Z) is
assumed:

log

(
πi

1− πi

)
= Xiβ + Ziu,

where Xi and Zi are the i’th rows of the known covariates matrices X (n× p)
and Z (n×q), respectively, and β is a p-vector of regression parameters. Thus,
the vector of fixed-effects vector is θ = (β, log σ).

Results The goal here is to compare computation times with BUGS on
a simulated data set. For this purpose we use n = 200, p = 5, q = 30, and
values of the the hyper parameters as shown in the table below (‘True values’).
The matrices X and Z were generated randomly with each element uniformly
distributed on [−2, 2]. As start values for both AD Model Builder and BUGS
we used βinit,j = −1 and σinit = 4.5. In BUGS we used a uniform [−10, 10]
prior on βj and a standard (in the BUGS literature) noninformative gamma
prior on τ = σ−2. In AD Model Builder the parameter bounds βj ∈ [−10, 10]
and log σ ∈ [−5, 3] were used in the optimization process.

β1 β2 β3 β4 β5 σ
True values 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000
ADMB-RE 0.0300 -0.0700 0.0800 0.0800 -0.1100 0.1700
Std. dev. 0.1500 0.1500 0.1500 0.1400 0.1600 0.0500
WinBUGS 0.0390 -0.0787 0.0773 0.0840 -0.1041 0.1862

On the simulated dataset AD Model Builder used 27 seconds to converge to
the optimum of likelihood surface. On the same dataset we first ran WinBUGS
(Version 1.4) for 5, 000 iterations. The recommended convergence diagnostic
in WinBUGS is the Gelman-Rubin plot (see the help files available from the



A.1. NON-SEPARABLE MODELS 49

menues in WinBUGS) which require that two Markov chains are run in paral-
lel. From the Gelman-Rubin plot it was clear that convergence appeared after
approximately 2, 000 iterations. The time taken by WinBUGS to perform
generate the first 2, 000 was approximately 700 seconds.

Files http://otter-rsch.com/admbre/examples/logistic/logistic.html
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A.1.2 Generalized additive models (GAM’s)

Model description A very useful generalization of the ordinary multiple
regression

yi = µ+ β1x1,i + · · ·+ βpxp,i + εi,

is the class of additive models,

yi = µ+ f1(x1,i) + · · ·+ fp(xp,i) + εi. (A.1)

Here, the fj are ‘nonparametric’ components which can be modelled by pe-
nalized splines. When this generalization is carried over to generalized linear
models, and we arrive at the class of GAM’s (Hastie & Tibshirani 1990). From
a computational perspective penalized splines are equivalent to random effects,
and thus GAM’s fall naturally into the domain of ADMB-RE.

For each component fj in (A.1) we construct a design matrix X such that
fj(xi,j) = X(i)u, where X(i) is the ith row of X and u is a coeffisient vector.
We use the R-function splineDesign (from the splines library) to construct
a design matrix X. To avoid overfitting we add a first order difference penalty
(Eilers & Marx 1996) :

− λ2
∑
k=2

(uk − uk−1)2 , (A.2)

to the ordinary GLM loglikelihood, where λ is a smoothing parameter to be
estimated. By viewing u as a random effects vector with the above Gaussian
prior, and by taking λ as a hyper-parameter, it becomes clear that GAM’s are
naturally handled in ADMB-RE.

Implementation details

• A computationally more efficient implementation is obtained by moving
λ from the penalty term to the design matrix, i.e. fj(xi,j) = λ−1X(i)u.

• Since (A.2) does not penalize the mean of u, we impose the restriction
that

∑
k=1 uk = 0 (see the union.tpl for details). Without this restric-

tion the model would be over-parameterized since we allready have an
overall mean µ in (A.1).

• To speed up computations the parameter µ (and other regression pa-
rameters) should be given ‘phase 1’ in ADMB, while the λ’s and the u’s
should be given given ‘phase 2’.
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Figure A.1: Probablity of membership as a function of covariates. In each
plot, the remaining covariates are fixed at their sample means. The effective
degrees of freedom (df) are also given (Hastie & Tibshirani 1990).

The Wage-union data The data, which are available from Statlib (lib.stat.cmu.edu/),
contain information for each of 534 workers about whether they are members
(yi = 1) of a workers union or not (yi = 0). We study the probability of
membership as a function of six covariates. Expressed in the notation used by
the R (S-Plus) function gam the model is:
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union ~race + sex + south + s(wage) + s(age) + s(ed), family=binomial

Here, s() denotes a spline functions with 20 knots each. For wage a cubic
spline is used, while for age and ed quadratic splines are used. The total
number of random effects that arrise from the three corresponding u vectors is
64. Figure A.1 shows the estimated nonparametric components of the model.
The time taken to fit the model was 165 seconds.

Extentions

• The linear predictor may be a mix of ordinary regression terms (fj(x) =
βjx) and nonparametric terms. ADMB-RE offers a unified approach
to fitting such models, in which the smoothing parameters λj and the
regression parameters βj are estimated simultaneously.

• It is straight forward in ADMB-RE to add ‘ordinary’ random effects to
the model, for instance to accomodate for correlation within groups of
observations, as in Lin & Zhang (1999).

Files http://otter-rsch.com/admbre/examples/union/union.html
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A.1.3 Semi-parametric estimation of mean and variance

Model description An assumption underlying the ordinary regression

yi = a+ bxi + ε′i

is that all observations have the same variance, i.e. Var(ε′i) = σ2. This as-
sumption does not always hold, as for the data shown in the upper panel of
Figure A.2. This example is taken from Ruppert et al. (2003).

It is clear that the variance increases to the right (for large values of x). It
is also clear that the mean of y is not a linear function of x. We thus fit the
model

yi = f(xi) + σ(xi)εi,

where εi ∼ N(0, 1), and f(x) and σ(x) are modelled nonparametrically. We
take f to be a penalized spline. To ensure that σ(x) > 0 we model log [σ(x)] ,
rather than σ(x), as a spline function. For f we use a cubic spline (20 knots)
with a 2nd order difference penalty

−λ2

20∑
k=3

(uj − 2uj−1 + uj−2)2 ,

while we take log [σ(x)] to be a linear spline (20 knots) with the 1st order
difference penalty (A.2).

Implementation details Details on how to implement spline components
are given Example A.1.2.

• Parameter associated with f should be given ‘phase 1’ in ADMB, while
those associated with σ should be given ‘phase 2’. The reason is that in
order to estimate the variation, one first needs to have fitted the mean
part.

• In order to estimate the variation function, one first needs to have fitted
the mean part. Parameter associated with f should thus be given ‘phase
1’ in ADMB, while those associated with σ should be given ‘phase 2’.

Files http://otter-rsch.com/admbre/examples/lidar/lidar.html
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Figure A.2: LIDAR data (upper panel) used by Ruppert et al. (2003) with
fitted mean. Fitted standard deviation is shown in the lower panel.
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A.1.4 Weibull regression in survival analysis

Model description A typical setting in survival analysis is that we observe
the time point t at which the death of a patient occurs. Patients may leave the
study (for some reason) before they die. In this case the survival time is said
to be censored, and t refers to the time point when the patient left the study.
The indicator variable δ is used to indicate whether t refers to the death of the
patient (δ = 1) or to a censoring event (δ = 0). The key quantity in modelling
the probability distribution of t is the hazard function h(t), which measures
the instantaneous death rate at time t. We also define the cumulative hazard
function Λ(t) =

∫ t
0
h(s)ds, implicitly assuming that the study started at time

t = 0. The log likelihood contribution from our patient is δ log(h(t)) −H(t).
A commonly used model for h(t) is Cox’s proportional hazard model, in which
the hazard rate for the ith patient is assumed to be on the form

hit = h0(t) exp(ηi), i = 1, . . . n.

Here, h0(t) is the “baseline” hazard function (common to all patients) and
ηi = Xiβ, where Xi is a covariate vector specific to the ith patient and β is
a vector of regression parameters. In this example we shall assume that the
baseline hazard belongs to the Weibull family: h0(t) = rtr−1 for r > 0.

In the collection of examples following the distribution of WinBUGS this
model is used to analyse a dataset on times to kidney infection for a set of
n = 38 patients (Kidney: Weibull regression with random effects, Examples
Volume 1, WinBUGS 1.4). The dataset contains two observations per patient
(the time to first and second recurrence of infection). In addition there are
three covariates: age (continuous), sex (dichotomous) and type of disease (cat-
egorical, four levels), and an individual-specific random effect ui ∼ N(0, σ2).
Thus, the linear predictor becomes

ηi = β0 + βsex · sexi + βage · agei + βD xi + ui,

where βD = (β1, β2, β3) and xi is a dummy vector coding for the disease type.
Parameter estimates are shown in the table below.

β0 βage β1 β2 β3 βsex r σ
ADMB-RE -4.3440 0.0030 0.1208 0.6058 -1.1423 -1.8767 1.1624 0.5617
Std. dev. 0.8720 0.0137 0.5008 0.5011 0.7729 0.4754 0.1626 0.2970
BUGS -4.6000 0.0030 0.1329 0.6444 -1.1680 -1.9380 1.2150 0.6374
Std. dev. 0.8962 0.0148 0.5393 0.5301 0.8335 0.4854 0.1623 0.3570

Files http://otter-rsch.com/admbre/examples/kidney/kidney.html
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A.2 Block-diagonal Hessian

This section contains models with grouped or nested random effects

A.2.1 Nonlinear mixed models; a NLME comparison

Model description The orange tree growth data was used by Pinheiro &
Bates (2000, Ch.8.2) to illustrate how a logistic growth curve model with
random effects can be fit with the S-Plus function nlme. The data contain
measurements made at seven occasions for each of five orange trees:

tij Time point when the jth measurement was made on tree i
yij Trunk circumference of tree i when measured at time point tij

The following logistic model is used:

yij =
φ1 + ui

1 + exp [− (tij − φ2) /φ3]
+ εij,

where (φ1, φ2, φ3) are hyper-parameters, and ui ∼ N(0, σ2
u) is a random effect,

and εij ∼ N(0, σ2) is the residual noise term.

Results Parameter estimates are shown in the following table.

φ1 φ2 φ3 σ σu
ADMB-RE 192.1 727.9 348.1 7.843 31.65
Std. dev. 15.658 35.249 27.08 1.013 10.26
nlme 191.0 722.6 344.2 7.846 31.48

The difference between the estimates obtained with ADMB-RE and nlme is
small. The difference is caused by the fact that the two approaches use differ-
ent approximations to the likelihood function. (ADMB-RE uses the Laplace
approximation, and for nlme the reader is referred to (Pinheiro & Bates 2000,
Ch. 7).)

The computation time for ADMB was 0.58 seconds, while the computation
time for nlme (running under S-Plus 6.1) was 1.6 seconds.

Files http://otter-rsch.com/admbre/examples/orange/orange.html
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A.2.2 Pharmacokinetics; a NLME comparison

Model description The ‘one-compartment open model’ is commonly used
in pharmacokinetics. It can be described as follows. A patient receives a dose
D of some substance at time td. The concentration ct at a later time point t
is governed by the equation

ct =
D

V
exp

[
−Cl
V

(t− td)
]

where V and Cl are parameters (the so-called ‘Volume of concentration’ and
the ‘Clearance’). Doses given at different time points contribute additively to
ct. Pinheiro & Bates (2000, Ch. 6.4) fitted this model to a dataset using the
S-Plus routine nlme. The linear predictor used by Pinheiro & Bates (2000,
p. 300) is:

log (V ) = β1 + β2Wt+ uV ,

log (Cl) = β3 + β4Wt+ uCl,

where Wt is a continuous covariate, and uV ∼ N(0, σ2
V ) and uCl ∼ N(0, σ2

Cl)
are random effects. The model specification is completed by the requirement
that the observed concentration y in the patient is related to the true concen-
tration by y = ct + ε, where ε ∼ N(0, σ2) is a measurement error term.

Results Estimates of hyper-parameters are shown in the following table:

β1 β2 β3 β4 σ σV σCl
ADMB-RE -5.99 0.622 -0.471 0.532 2.72 0.171 0.227
Std. Dev 0.13 0.076 0.067 0.040 0.23 0.024 0.054
nlme -5.96 0.620 -0.485 0.532 2.73 0.173 0.216

The differences between the estimates obtained with ADMB-RE and nlme are
caused by the fact that the two methods use different approximations of the
likelihood function. ADMB-RE uses the Laplace approximation, while the
method used by nlme is described in Pinheiro & Bates (2000, Ch. 7).

The time taken to fit the model by ADMB-RE was 17 seconds, while the
computation time for nlme (under S-Plus 6.1) was 7 seconds.

Files http://otter-rsch.com/admbre/examples/pheno/pheno.html
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A.2.3 Frequency weighting in ADMB-RE

Model description Let Xi be binomially distributed with paramters N = 2
and pi, and assume that

pi =
exp(µ+ ui)

1 + exp(µ+ ui)
, (A.3)

where µ is a parameter and ui ∼ N(0, σ2) is a random effect. Assuming
independe, the loglikelihood function for the parameter θ = (µ, σ) can be
written:

l(θ) =
n∑
i=1

log [p(xi; θ)] . (A.4)

In ADMB-RE p(xi; θ) is approximated using the Laplace approximation. How-
ever, since xi only can take the values 0, 1 and 2, we can re-write the loglike-
lihood as

l(θ) =
2∑
j=0

nj log [p(j; θ)] , (A.5)

where nj is the number xi being equal to j. Still the Laplace approximation
must be used to approximate p(j; θ), but now only for j = 0, 1, 2, as opposed
to n times above. For large n this can give large savings.

To implement the loglikelihood (A.5) in ADMB-RE you must organize your
code into a SEPARABLE FUNCTION (see the section ”Nested models” in the
ADMB-RE manual). Then you should do the following

• Formulate the objective function in the weighted form (A.5).

• Include the statement !! set multinomial weights(w) in the PARAMTER SECTION,
where w is a vector (with indexes starting at 1) containg the weights, so
in our case w = (n0, n1, n2).

Files http://otter-rsch.com/admbre/examples/weights/weights.html
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A.2.4 Ordinal logistic regression

Model description In this model the response variable y takes on values
from the ordered set {y(s), s = 1, . . . , S − 1}, where y(1) < y(2) < · · · < y(S).
For s = 1, . . . , S − 1 define Ps = P (y ≤ y(s)) and κs = log[Ps/(1 − Ps)]. To
allow κs to depend on covariates specific to the ith observation (i = 1, . . . , n)
we introduce a disturbance ηi of κs:

P (yi ≤ y(s)) =
exp(κs − ηi)

1 + exp(κs − ηi)
, s = 1, . . . , S − 1.

with
ηi = Xiβ + uji ,

where Xi and β play the sample role as in Example 1-3, the uj (j = 1, . . . , q) are
independent N(0, σ2) variables, and ji is the latent variable class of individual
i.

Files http://otter-rsch.com/admbre/examples/socatt/socatt.html
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A.3 Banded Hessian (state-space)

Examples of state-space models.

A.3.1 Stochastic volatility models in finance

Model description Stochastic volatility models are used in mathematical
finance to describe the evolution of asset returns, which typically exhibit chang-
ing variances over time. As an illustration we use a time series of daily pound/-
dollar exchange rates {zt} from the period 01/10/81 to 28/6/85, previously
analyzed by Harvey, Ruiz & Shephard (1994). The series of interest are the
daily mean-corrected returns {yt}, given by the transformation

yt = log zt − log zt−1 − n−1

n∑
i=1

(log zt − log zt−1).

The stochastic volatility model allows the variance of yt to vary smoothly
with time. This is achieved by assuming that yt ∼ N(µ, σ2

t ), where σ2
t =

exp(µx + xt). The smoothly varying component xt follows the autoregression

xt = βxt−1 + εt, εt ∼ N(0, σ2).

The vector of hyper-parameters is for this model is thus (β, σ, µ, µx).

Files http://otter-rsch.com/admbre/examples/sdv/sdv.html
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A.3.2 A discrete valued time series; The polio dataset

Model description Zeger (1988) analyzed a time series of monthly num-
bers of poliomyelitis cases during the period 1970–1983 in the US. We make
comparison to the performance of the Monte Carlo Newton-Raphson method
as reported in Kuk & Cheng (1999). We adopt their model formulation.

Let yi denote the number of polio cases in the ith period (i = 1, . . . , 168).
It is assumed that the distribution of yi is governed by a latent stationary
AR(1) process {ui} satisfying

ui = ρui−1 + εi,

where the εi ∼ N(0, σ2) variables. To account for trend and seasonality
the following covariate vector is introduced

xi =

(
1,

i

1000
, cos

(
2π

12
i

)
, sin

(
2π

12
i

)
, cos

(
2π

6
i

)
, sin

(
2π

6
i

))
.

Conditionally on the latent process {ui}, the counts yi are independently
Poisson distributed with intensity

λi = exp(xi
′β + ui).

Conditionally on the latent process {ui}, the counts yi are independently
Poisson distributed with intensity

λi = exp(xi
′β + ui).

Results Estimates of hyper-parameters are shown in the following table.

β1 β2 β3 β4 β5 β6 ρ σ
ADMB-RE 0.242 -3.81 0.162 -0.482 0.413 -0.0109 0.627 0.538
Std. dev. 0.270 2.76 0.150 0.160 0.130 0.1300 0.190 0.150
Kuk & Cheng (1999) 0.244 -3.82 0.162 -0.478 0.413 -0.0109 0.665 0.519

We note that not the standard deviation is large for several regression
parameters. The ADMB-RE estimates (which are based on the Laplace ap-
proximation) very are very similar to the exact maximum likelihood estimates
as obtained with the method of Kuk & Cheng (1999).

Files http://otter-rsch.com/admbre/examples/polio/polio.html
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A.4 Generally sparse Hessian

A.4.1 Multilevel Rasch model

The multilevel Rasch model can be implented using random effects in ADMB.
As an example we use data on the responses of 2042 soldiers to a total of 19
items (questions), taken from Doran et al (2007). This illustrates the use of
crossed random effects in ADMB. Further, it is shown how the model easily
can be generalized in ADMB. These more general models cannot be fitted with
standard GLMM software such as ”lmer” in R.

Files http://admb-project.org/community/tutorials-and-examples/ random-
effects-example-collection/item-response-theory-irt-and-the-multilevel-rasch-model-
1



Appendix B

Which ADMB features are not
in ADMB-RE

• Profile likelihoods cannot be used.

• Certain functions, especially for matrix operations, have not been imple-
mented.

You will find that not all the functionality of ordinary ADMB has yet been
implemented in ADMB-RE. Functions are being added all the time.
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Appendix C

Command line options

A list of command line options accepted by ADMB programs can be obtained
using the command line option -?, for instance

$ simple -?

Those options that are specific to ADMB-RE are printed after line the ”Ran-
dom effects options if applicable”:
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Option Explanation
-nr N maximum number of Newton-Raphson steps
-imaxfn N maximum number of fevals in quasi-Newton inner optimization
-is N set importance sampling size to n for random effects
-isf N set importance sampling size funnel blocksto n for random effects
-isdiag print importance sampling diagnostics
-hybrid do hybrid Monte Carlo version of MCMC
-hbf set the hybrid bounded flag for bounded parameters
-hyeps mean step size for hybrid Monte Carlo
-hynstep number of steps for hybrid Monte Carlo
-noinit do not initialize random effects before inner optimzation
-ndi N set maximum number of separable calls
-ndb N set number of blocks for derivatives for random effects (reduces temporary file sizes)
-ddnr use high precision Newton-Raphson for inner optimization for banded hessian case ONLY even if implemented
-nrdbg verbose reporting for debugging newton-raphson
-mm N do minimax optimization
-shess use sparse Hessian structure inner optimzation
-l1 N set the size of buffer f1b2list1 to N

-l2 N set the size of buffer f1b2list12 to N

-l3 N set the size of buffer f1b2list13 to N

-nl1 N set the size of buffer nf1b2list1 to N

-nl2 N set the size of buffer nf1b2list12 to N

-nl3 N set the size of buffer nf1b2list13 to N

The last section (following the horisontal bar) are not printed, but can still be
used (se earlier).
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Appendix D

Quick references

D.1 Compiling ADMB programs

To compile model.tpl in a DOS/Linux terminal window: 
 
  admb [-s] [-r] model 
 
where the options 
  -s   yields the ”safe” version of the exe-file 
  -r is used to invoke the random effect module 
 
Two stages of compilation: 

1. Preprosessor: tpl2cpp or tpl2rem (ADMB-RE) 
2. C++ compiler (Borland, Visual C++, gcc, etc.) with two stages: 

o Compilation: adcomp 
o Linking: adlink 

 
Location of all scripts/functions: %ADMB_HOME%\bin 

• ADMB_HOME is the environment variable pointing to the home directory 
of the ADMB installation 

 
Illustration of compilation process (nicely integrated in the ADMB-IDE) 
 

correct 

Insepect 

Inspect & correct 

tpl-file 

Preprosessor: 
tpl2cpp 
tpl2rem 

Error Message from tpl2xxx: 
cpp-file  

Error in line 26 

C++ compiler 

exe-file Error message from C++ comp. 
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D.2

 

 
The ADMB primer 

ADMB project 
test.tpl

Executable file 
test.exe  

Input files Output files 

Compilation  
admb [-re] test

Data file 
test.dat 

Initial values 
test.pin 

Estimates 
test.par

Standard deviations
test.std

Corelation matrix 
test.cor 

Report file 
test.rep

File hierarchy 

DATA_SECTION 
 
  init_int n 
 
  init_number a      
  init_vector y(2,n) 
  init_matrix z(1,n,2,10) 
 
  int M 
  vector x(1,n)      
 
PARAMETER_SECTION 
 
  init_number alpha 
  init_bounded_number beta(0,a,2) 
    
  init_bounded_vector mu(3,8,0,a,3) 
   
  random_effects_vector u(1,n,2) 
 
  objective_function_value g 
 
PROCEDURE_SECTION 
 
  g = 0.5*norm2(u); 
 
  for(int i=2;i<=n;i++) 
  { 
    tmp = beta*(y(i)-u(i)-alpha);  
    g += log(beta) 
           + 0.5*square(tmp/beta); 

Declaration of data objects, and programming 
variables derived from these. 

Two blanks indentation 
of each line. 

init here means 
”read from dat-file”. 

Valid index range: 2,…,n 

Row range: 1,…,n 
Col. range:  2,…, 10

Declaration of independent parameters, random 
effects and variables derived from these.

init here means  
independent variable, i.e. 
parameter to be estimated. 
Starting value read from 
pin-file. Bounds: 0 < beta < a 

Parameter beta  
activated in 
phase 2, 

Vector of random 
effects. Valid index 
range: 1,…,n. 
Activated in phase 2.

Objective function / negative log-
likelihood 

Assigns value to the 
log-likelihood function, 
in terms of data, 
parameters and random 
effects. 
Pure C++ code. 

ADMB function that calculates the 
squared norm of the vector u. 

Temporary variable 
defined in 
PARAMETER SECTION 

C++ incremental operator 

Likelihood contribution 
from y(i), corresponding 
to assumption that y(i) is 
normally distributed with 
mean u(i)-alpha and 
standard deviation beta. 

Valid indices: 3,…,8 
Bounds: 0 < mu(i) < a 
Activated in phase 3 

Contribution from N(0,1) 
variables placed on random 
effects 

TPL file 
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