PBS Modelling 1.58: User’s Guide

Jon T. Schnute, Alex Couture-Beil, and Rowan Haigh

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station

3190 Hammond Bay Road
Nanaimo, British Columbia
VOT 6N7

2007

User’s Guide Revised from
Canadian Technical Report of
Fisheries and Aquatic Sciences 2674

Fisheries and Oceans Péches et Océans 1%l
Ikl Coc A Canada

© Her Majesty the Queen in Right of Canada, 2007

Revised from Cat. No. Fs97-6/2674E ISSN 0706-6457

Last update: August 28, 2007
Correct citation for this publication:
Schnute, J.T., Couture-Beil, A., and Haigh, R. 2007. PBS Modelling 1.58: user’ s guide revised

from Canadian Technical Report of Fisheries and Aquatic Science 2674: vi + 123 p.
Last updated August 28, 2007

TABLE OF CONTENTS

N 0 1 o PP i
S 0T SRR iii
== o= USSP RPRR iv
IO g 0o [F o1 o o PSP 1
2. GUI toolS fOor model EXPlOratioN..........cueieeiueieeiieeieseeseeeesee e s e reeaesee e eeesneesseeeesreesseeneeens 3
2.1, EXAMPIE: LISSAOUS CUINVES.......cciuieieieeeitiesieeeesseesteeeesseesseestesseesseesseessssseessesnsessesssesssessesssens 4
2.2. WINAOW AESCITPLION FIlE.....ccuieieieiciee ettt ee e sneeaesneennens 6
2.3. WINAOW SUPPOIt FUNCLIONS.........ceiiiiiiiiiesieesie ettt sttt e e e e nneas 8
2.4. Internal data for WINAOWScoeiiiiiiiie et 11
3. FUNCLIONS fOr dat@ EXCRANGEciiieeieeeese e bbb e 13
4. Functions for graphics and analySiS.........cocueieeiiiiesice e 14
A1, GraphiCS ULHTTIES.....cceeieeeieeee ettt st b e et sre e e e e e 14
4.2, Data MaANAgEMENL.......ccueie ittt st s b e st e e sse e e s saeeesnaeeesbeeesabeeesreeesnneeennes 15
4.3. Function minimization and maximum liKelihood............cccoceiiiiiniinenneeeee e 15
N 0o VA == 17
B EXAIMPIES. ..ttt e bttt b et ae e nb et et e eae e be e nnes 17
5.1, RANOM VAINTADIES.......cceiiiiiiieeee et 18
5.1.1. RanVars — RandOM VariableS...........cocuviiiniriiieee e 18
5.1.2. RanProp — RaNdOM PropOrtioNS..........c.ccoererieiieniesesie s 19
5.1.3. SIneNoOrm — SINENOIMMAociiiiiiieiesee et sre e e e 20
5.1.4. CalcVor — Caculate Voronoi tessellations..........ccoeveveneienineniiniee e 21

5.2, StAtiStICAl @NAIYSESecveieieiecie ettt re e b e reeneennennes 22
5.2.1. LinReg — LiNEAr FEQIESSIONcccuiiiiiiieieeiesieesteeee sttt see et e e sbe e sneesre e 22
5.2.2. MATKREC — MaAK-TECOVEIYeciuieeieeieeieeeeseesie e te e et ae e ste e sneenneeneeeneenes 23
5.2.3. CCA — CaCh-CUINVE @NAIYSIS......coiiieriisiesieeiiete ettt 24

5.3. Other @pPlICALIONS......cuiieeitirieeiiee ettt e e bbbt r e se e e e s 25
5.3.1. FIShRES — FISNEIY MESEIVEcoiiieieceesteerte et te et e e teenaesneenne e e 25
5.3.2. F1ShTOWS — FISNEIY TOWS....ccuiiiiieieie et 26
REFEIEINCES.....ccuee ettt e s re et e st e s se e teeseesse e seeseeeseeseeseesseenseenseaneensens 27
Appendix A. Widget dESCIIPLIONS.......c.ccveiieieciesteeie st ete et e e ae e s reene e e e eneens 29
BULLON. ...ttt et e st e e e st e e e s at e e e e ar e e e aeeeene e e saneeesabeeesnneeennneeea 29

[ot 30

[F= = DTS T RSP PPRROPRRRPPIN 30
11 YT RPPRPOPRROPIN 32
o PSSR 33

[TS (0 YOS 34
0o, SO PRPRRRRS 35

AV £ USSPV PRPRPRRSOR 36
IVLEINU ..ttt h e bt e bt e et et e e st e e e eae e e e RE e e e RR e e s Re e e aRe e e nRe e nne e e nneeea 37
IVLEINUITEIM ...ttt n e e e n e s me e e r e e eme e e neeane e e neenneeennis 38

N SRR 38

L@ o] = o ST RORRR 39

S o L= USROS P R 41
SHABPIUS ...ttt bbbt a et e e e b e bbbt e ne e nes 42
1= TP 43
T2 o o PR PR 44
WVINOOW ...ttt bbbt e e e e et e b e bt e Rt e he e e e e e s e b e eb e b e nreene e e 45
Appendix B. Building PBSmodel1ling and other packages...........ccoovvererereneneeiieneese e a7
B.1. Installing reqUIred SOfIWEIE...........coiuiiieiiese e 47
B.2. BUIldING PBSMOAEL LANG tiitiiiiriieriieieeiesieeieseesseessesseesseesesseesseessssseessessssssesssessesseessens 49
B.3. Creating anew R PACKAGE.ccviiiieeiese sttt 50
R0 g o7= [o [e T @ oo L= TSRS 53
Appendix C. PBSModelling functions and data.............ccoereririreiienesesesieseseeee e 57
C.1. Objectsin PBSMOUEINGccueeieiieiiece ettt ettt ene 57
C.2. FUNCLION JEPENAENCIES......ccueeueeieierteste sttt sttt s et sr e sb e ene e e 61
C.3. PBSMOalling ManUAL............ccceiieiieiecie ettt e e ens 65

Tablel. LiSSOUS PrOJECE TIlES... .o 4
Table2. R source code with GUI definition StriNgS.........cccviveiieie e 9
Table3. Datafilein PBSTOMMELcooiiiieiieeceere e 12
TableB1l. Crepresentationsfor R datatyPesS........cceevueiieiieiecie et 53
TableB2. . C () eXampPleiN PBSEIY ciiiiiierieeiesierie sttt st sttt sre e 54
TableB3. .Call () example adapted from PBSEIY ..coieiieiecieciee e 55

LIST OF FIGURES

Figurel. Tangled relationShiPs.........cccoeieiicieiie ettt st esre e 2
FIgure2. GUI OFganIiZAHONcceiuirierieeiieieie ettt bbb e e sn e b e sne s eneas 2
FIQUre 3. LiSSAIOUS GUIueiiiiceiciiecieee ettt sttt et e enteeaesne e neenneeneenas 5
Figure4. LiSSaiOUS GrapNcco it 5
Figure5. RanVars GUI and density PlOt........cccoveoeiiieieeiesieese e e see e ee e 18
Figure6. RanProp GUI and pairs plot for DiriChlet...........cooiiiriiieniee e 19
Figure7. SineNorm GUI and PlOt........cccooiiieiiiie e 20
Figure8. CalcVor GUI and tessallation PIOtccceveeieiieeiicie e 21
Figure9. LinReg GUI and regression PIOLccooereririeiienieniesie e 22
Figure 10. MarkRec GUI and density PlOLS.......cccvcveiieieiieieeie e 23
Figure 11. ccA GUI and parameter PairS PlOL........cccveveeiieieereeiesieeseesesee e sie e sre e e eeesneeneens 24
Figure12. FishRes GUI and population timMe SEMES.......ccceieierererereeieee e 25

Figure 13. FishTows GUI and simulated tOW tracks...........ccooveieriiieenine e 26

ABSTRACT

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2007. PBS Modelling 1.58: user’ s guide revised
from Can. Tech. Rep. Fish. Aquat. 2674: vi + 123 p. Last updated August 28, 2007.

This report describes the R package PBS Modelling, which contains software to facilitate the
design, testing, and operation of computer models. The initials PBSrefer to the Pacific
Biological Station, amajor fisheries laboratory on Canada' s Pacific coast in Nanaimo, British
Columbia. Initially designed for fisheries scientists, this package has broad potential application
in many scientific fields. PBS Modelling focuses particularly on tools that make it easy to
construct and edit a customized graphical user interface (GUI) appropriate for a particular
problem. Although our package depends heavily on the R interface to Tcl/Tk, a user does not
need to know Tcl/Tk. In addition to GUI design tools, PBS Modelling provides utilities to
support data exchange among model components, conduct specialized statistical analyses, and
produce graphs useful in fisheries modelling and data analysis. Examples implement classical
ideas from fishery literature, as well as our own published papers. The examples also provide
templates for designing customized analyses using other R libraries, such as PBS Mapping,
odesolve, and BRugs. Users interested in building new packages can use PBS Modelling and a
simpler enclosed package PBS Try as prototypes. An appendix describes this process completely,
including the use of C code for efficient calculation.

RESUME

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2006. PBS Modelling 1.58: guide de I’ utilisateur
révise de Can. Tech. Rep. Fish. Aquat. Sci. 2674: vi + 123 p. Dernier mis ajour August
28, 2007.

Le présent rapport décrit latrousse R PBS Modelling qui contient des logiciels permettant de
rendre plus aisés la conception, les essais et I’ utilisation des modéles numériques. L’ acronyme
PBSfait référence ala Pacific Biological Sation (Station biologique du Pacifique), un grand
laboratoire axé sur I’ étude des péches sur la cote canadienne du Pacifique a Nanaimo, en
Colombie-Britannique. Initialement congue pour les chercheurs travaillant sur les péches, cette
trousse peut étre utilisée dans de nombreux domaines scientifiques. PBS Modelling contient
principalement des outils qui facilitent la construction et la modification d' une interface
graphique (GUI) sur mesure, adaptée a un probleme particulier. Bien que cette trousse S appuie
sur I'interface R pour Tcl/Tk, ses utilisateurs n’ ont pas besoin de connaitre le langage Tcl/Tk. En
plus d offrir des outils de conception de GUI, PBS Modelling propose des logiciels permettant

d’ échanger plus facilement des données entre les composants de divers modeles, d’ effectuer des
analyses statistiques spécialisées et de produire des graphiques utiles pour la modélisation et

I” analyse des données concernant |es péches. L es exemples fournis mettent en application des
idées classiques glanées dans les articles publiés sur les péches ainsi que dans nos propres
articles publiés. Ces exemples fournissent également des modéles dont I’ utilisateur peut
s'inspirer pour concevoir des protocoles d’ analyse sur mesure al’ aide d autres librairies R telles
gue PBS Mapping, odesolve et BRugs. Les utilisateurs qui désirent construire de nouvelles
trousses peuvent utiliser PBS Modelling et la trousse simple PBS Try comme prototypes. Ce
procédé est décrit de maniere détaillée en annexe, y compris|’ utilisation du langage C pour les
caculs.

—ijv -

Preface

After working with fishery models for more than 30 years, I’ ve used a great variety of
computer software and hardware. Currently, the free distribution of R (R Development Core
Team 2006a) provides an excellent platform for software development in an environment
designed to support multiple computers and operating systems. Furthermore, an associated
network of contributed libraries on the Comprehensive R Archive Network (CRAN:
http://cran.r-project.org/) gives access to awealth of agorithms from many usersin various
fields. Thisdisciplined system allows users, like the authors of this package, to distribute
software that extends the utility of R in new directions.

Previoudly I’ ve used software in Basic (Schnute 1982), Fortran (Mittertreiner and
Schnute 1985), Pascal, C, and C++ to implement ideas in published papers. Usually this software
goes stale in time, due to minimal documentation, changing operating systems, the lack of
portable libraries, and many other factors. Because R includes arich library of statistical
software that operates on multiple platforms, my colleagues and | can now distribute software
that actually works when other people try it. The user community includes us, because we often
find that we can’'t remember how to operate our own software after a few weeks or months, let
alone years. Although writing a good R package requires considerable effort, the result often
pays off in portability, communication, and long term usage.

PBS Modelling tries to accomplish several goals. First, it anticipates the need for model
exploration with agraphical user interface, a so-called GUI (pronounced gooey). We make this
easy by encapsulating key features of the Tcl/Tk library into convenient tools fully documented
here. A user need not learn Tcl/Tk to use this package. Everything required appearsin
Appendix A. You might want to start by running the function testWidgets () . Co-author
Rowan Haigh likes the subtitle: “modelling the world with gooey substances.”

Second, we want to demonstrate interesting analyses related to our work in fishery
management and other fields. The function runExamples () illustrates some of these, as
described further in Section 5. The code for all of them appearsin the R library directory
PBSmodelling\Examples. We demonstrate the power of other R libraries, such as BRugs
(to perform Bayesian posterior sample with the application WinBUGS), odesolve (to solve
differential equations numerically), ddesolve (to solve delay differential equations), and
PBSmapping (to draw maps and perform spatial analyses).

Third, PBS Modelling serves as a prototype for building anew R package, as summarized
in Appendix B. We illustrate two methods of calling C code (. c and . Cal1l), and discuss many
other technical issues encountered while building this library.

Finally, to use R effectively, we' ve found it convenient to devise a number of “helper”
functions that facilitate data exchange, graphics, function minimization, and other analyses. We
include these here for the benefit of our users, who may choose to ignore them. We hope that
PBS Modelling inspires interest in interactive models that demonstrate applications in many
fields.

Aswith our earlier package PBS Mapping, Rowan and | employed a bright student who
could learn quickly and implement creative ideas. Dr. Jim Uhl (Computing Science) and Dr. Lev
|dels (Mathematics), both from Malaspina University-College (MUC) here in Nanaimo, drew my
attention to the student Alex Couture-Beil, who has strong credentials in both fields. Rowan and
| gave him afew initial specifications, and he quickly got ahead of us by extending our ideasin
new and useful directions. PBS Modelling version 1 represents the result of an evolutionary
process, as we experimented with design concepts that would support our modelling goals. Users
familiar with the earlier version 0.60 (posted on CRAN in August, 2006) may need to revise their
code slightly to make it work with this version.

Since 1998, | have maintained aformal relationship with the Computing Science
Department at MUC, where | find kindred spirits in developing projects like this one. |
particularly want to thank Dr. Jim Uhl for his suggestions and support on this project.
Conversations with Dr. Peter Walsh have also stimulated my interest in the theory and
application of computing science.

Fishery management depends on models with a great range of complexity, starting from
some fairly simple ideas. Unfortunately from a coding perspective, “industrial strength” models
can't run exclusively in R. Algorithms with high computational requirements don’t run fast
enough in R for practical application, due to interpretive code and other technical limitations.
Examplesin PBS Modelling often illustrate ideas at the simple end of the spectrum, although the
package can certainly be used to manage external software designed to deal with greater
complexity.

Scientificaly, | like to work from both ends of the spectrum. The behaviour of a complex
model sometimes mimics a much simpler model, and it helps to become well versed in some of
the simpler cases. | appreciate the motto of Canadian storyteller and humorist Stuart McLean,
who hosts a CBC radio broadcast The Vinyl Cafe (http://www.cbc.calvinylcafe/), “We may not
be big, but we' re small.”

Jon Schnute, December 2006

This page has been left intentionally left blank for printing purposes.

1. Introduction

This report describes software to facilitate the design, testing, and operation of computer
models. The package PBS Modelling is distributed as afreely available library for the popular
statistical program R (R Development Core Team 2006a). Theinitials PBSrefer to the Pacific
Biological Station, amajor fisheries laboratory on Canada' s Pacific coast in Nanaimo, British
Columbia. Previously, we produced the R library PBS Mapping (Schnute et a. 2004), which
draws maps and performs various spatial operations. Although both packages (which can run
separately or together) include examples relevant to fishery models and data analysis, they have
broad potential application in many scientific fields.

Computer models allow us to speculate about reality, based on mathematical assumptions
and available data. The full implications of amodel usually require numerous runs with varying
parameter values, data sets, and hypotheses. A customized graphical user interface (or GUI,
pronounced “gooey”) facilitates this exploratory process. PBS Modelling focuses particularly on
tools that make it easy to construct and edit a GUI appropriate for a particular problem. Some
users may wish to use this package only for that purpose. Other users may want to explore the
examples included, which demonstrate applications of likelihood inference, Bayesian analysis,
differential equations, computational geometry, and other modern technologies. In constructing
these examples, we take advantage of the diversity of algorithms available in other R libraries.

In addition to GUI design tools, PBS Modelling provides utilities to support data
exchange among model components, conduct specialized statistical analyses, and produce graphs
useful in fisheries modelling and data analysis. Examples implement classical ideas from fishery
literature, as well as our own published papers. The examples also provide templates for
designing customized analyses using the R libraries discussed here. In part, PBS Modelling
provides a (very incomplete) guide to the variety of analyses possible with the R framework. We
anticipate many revisions of our library, as we find time to include more examples.

PBS Modelling depends heavily on Peter Dalgaard’ s (2001, 2002) R interface to the
Tcl/Tk package (Ousterhout 1994). This combines a scripting language (Tcl) with an associated
GUI toolkit (TK). In our library, we ssimplify GUI design with the aid of a“window description
file” that specifies the layout of all GUI components and their relationship with variablesin R.
We support only a subset of the possibilities available in Tcl/Tk, but we customize them in ways
intended specifically for model design and exploration (Appendix A). A user of PBS Modelling
does not need to know Tcl/Tk.

Computer models typically involve avariety of components, such as code, data,
documentation, and a user interface. Figure 1 illustrates the tangled relationships that sometimes
accompany computer model design. PBS Modelling alows the GUI to become a device for
organizing components, as well as running and testing software (Figure 2). The project might
involve other applications, aswell as R itself. In addition to itsinteractive role, the GUI becomes
an archival tool that reminds the developer how components, functions, and data tie together.
Consequently, it facilitates the process of restarting a project at afuture date, when details of the
design may have been forgotten.

R
GUI Code Data
Files Other
Applications
Documentation

Figure 1. Tangled relationships among computer model components.

R
Code Data
GUI
Files Applications
Documentation

Figure 2. Computer model components organized with a graphical user interface (GUI).

In PBS Modelling, project design normally begins with atext file that describes the GUI.
Additional files may contain code for R and other applications, which sometimes require
languages other than R. For example, the R BRugs library (to perform Bayesian inference using
Gibbs sampling) requires afile with the intended statistical model, written in the language of a
separate program WinBUGS. In other contexts, a user might write C code to get acceptable
performance from model components that require extensive computer calculations. This code
might be compiled as a separate program or linked directly into a customized R package.

Section 2 of this report describes the process of designing a GUI to operate a computer
model. Components can share data through text files in a specialized “PBS format” presented in

—-3-

Section 3. These correspond naturally to 1ist objects within R. Section 4 describes additional
tools for customized graphics and data analysis. In Section 5, we highlight briefly some of the
examplesin our initial release, although we expect the list to expand in future versions. This
guide explains the context and general purpose of al functionsin PBS Modelling. Consult the
help files for complete technical details.

Appendix A gives the complete syntax for all visual components (called widgets)
available for writing awindow description file to construct a customized GUI. Appendix B
describes the process of building PBS Modelling in a Windows environment. A simple enclosed
package PBS Try gives a prototype for building any R package, including the use of C code to
speed calculations. Appendix C shows the help files included with the library.

To use PBSModelling, run R and install the package from the R GUI (click *Packages’,
“Install package(s)..., select amirror, and choose PBSmodel1ing from thelist of packages).
Windows users can also obtain an appropriate compressed file from the authors of this report or
directly from the CRAN web site http://cran.r-project.org/.

The R GUI normally runs as a Multiple Document Interface (MDI), in which child
windows like the R console and graphics screens all appear within the GUI itself and a menu
item can be used to tile the sub-windows. Unfortunately, in this configuration, windows
generated by Tcl/Tk sometimes disappear mysteriously when an application runs. They can be
recovered by clicking the appropriate “ 7k" icon on the taskbar. Y ou can avoid this problem by
using the Single Document Interface (SDI), in which the operating system manages all R
windows (console, graphics, Tcl/Tk, etc.) independently on the desktop. Set this configuration by
running the R GUI, choosing the menu items <Edit> and <GUI Preferences>, and then selecting
and saving the SDI option. Alternatively, go to the master configuration file Rconsole inthe
\ etc subdirectory of the R installation, and use atext editor to select the option MDI = no.

2. GUI toolsfor model exploration

The practical task of writing appropriate code for the R Tcl/Tk package can sometimes
become daunting, particularly if the GUI window requires extensive design and change. For a
restricted set of Tk components (called widgets), PBS Modelling makes it much easier to design
and use GUIsfor exploring modelsin R. A user needs to supply two key parts of a GUI-driven
analysis:

e awindow description file (an ordinary text file) that completely specifies the desired layout
of widgets and their relationship with functions and variablesin R, and

¢ R codethat defines relevant functions, variables, and data.

This section begins with an example to illustrate the main ideas, and then gives complete details
for constructing window description files that can be used to generate GUIs.

2.1. Example: Lissajous curves

A Lissgjous curve (http://mathworld.wolfram.com/LissajousCurve.html), named after one
of itsinventors Jules-Antoine Lissgous, represents the dynamics of the system

X =sn(2zmt), y=sin[2z(nt+¢)], 1)

wheretimet varies from 0 to 1. During thistime interval, the variables x and y go through m and
n sinusoidal oscillations, respectively. The constant ¢, which lies between 0 and 1, represents a
cycle fraction of phase shift iny relative to x. We want to design a GUI that allows us to explore
this model by plotting Lissajous curves (y vs. X) for various choices of the parameters (m, n, @) .

We also want to vary the number of time steps k and choose a plot that is either lines or points.

Table 1. Two text files associated with the “ Lissgjous Curve” project. Thefirst givesa
description of the GUI window used to manage the graphics. The second contains R code to
draw a Lissgjous curve.

Filel: LissajousCurve. txt

window title="Lissajous Curve"

vector length=4 names="m n phi k" \
labels="'x cycles' 'y cycles' 'y phase' points" \
values="2 3 0 1000"

radio name=ptype text=lines wvalue="1" mode=character

radio name=ptype text=points value="p" mode=character

button text=Plot function=drawLiss

File2: LissajousCurve.r

drawLiss <- function() {
getWinVal (scope="L") ;
tt <- 2*pi*(0:k)/k;
X <- sin(2*pi*m*tt); y <- sin(2*pi* (n*tt+phi)) ;
plot (x,y, type=ptype) ;
invisible (NULL); }

This analysis can be accomplished with the R code and window description file shownin
Table 1. Assume that these two files reside in the current working directory and that
PBS Modelling has been installed in R. Start an R session from this directory, and type the
following three lines of code in the R command window:

> require (PBSmodelling)
> source ("LissajousCurve.r")
> createWin ("LissajousCurve.txt")

Thefirst line assures that PBS Modelling is loaded, the second defines the function drawLiss
for drawing Lissgjous curves, and the third creates a window that can be used to draw curves
corresponding to any choice of parameters. Figure 3 shows the resulting GUI window interface.
When the <Plot> button is clicked, the curve in Figure 4 appears in the R graphics window. This
corresponds to the default parameter values:

m=2,n=3 ¢=0, k=1000. (2)

The GUI allows different Lissgjous figures to be drawn easily. Simply change parameter values
in any of the four entry boxes, and click <Plot>.

Lissajous Curve Rl S [=]

n oycles Y oycles y phaze points
|2 |3 [i {1000
% lines
" paints

Pia

Figure 3. GUI generated by the description file LissajousCurve. txt in Table 1. It
contains five widgets: the window titled “Lissgous Curve”, avector of four entries, two linked
radio buttons (<lines> and <points>), and a <Plot> button.

1.0

0.5

0.0

-0.5

-1.0

T T T T T
-1.0 -0.5 0.0 0.5 1.0

X

Figure 4. Default graph for the “Lissajous Curve’ project, obtained by clicking the <Plot>
button in Figure 3. The x variable goes through two cycles while the y variable goes through 3
cycles. A line graph is drawn through 1000 points generated by the algorithm (1).

—6-—

The description file (Table 1) specifiesawindow titled “Lissgjous Curve’ with a
vector of four entries. These correspond to quantities with the R variable namesm, n, phi,
and k. The corresponding window (Figure 3) will contain four entry boxes that allow these
guantities to be changed. A label for each quantity emphasizes its conceptual role: the number of
cyclesfor x or y, the phase shift for y, and the number of points plotted. Initial values correspond
to those listed in (2). The backslash (\) character indicates that a widget description (in this case,
avector) continues on the next line. A pair of radio buttons, both corresponding to an R
variable named ptype, alow selection between “lines’ and “points” when drawing the plot.
The graph (Figure 4) is actually drawn (i.e., the R function drawLiss is called) when the user
presses abut ton that contains the text “Plot”. In general, we use the symbols <...> to designate
abutton or keystroke, such as the <Plot> button or the radio buttons <lines> and <points>.

Thefile of R code (Table 1) implements the algorithm (1) for computing k points on a
Lissgjous curve. The function drawLiss has no arguments, but gets values of the R variables
m, n, phi, k, and ptype from the GUI window via acall to the PBS Modelling function
getWinVal. The argument scope="L" impliesthat these variables have local scope within
this function only. (Another choice scope="G" would give the variables global scope by
writing them to the user’ s global environment . GlobalEnv.)

2.2. Window description file
A window description file currently supports the following 18 widgets:

window — an entire new window;

menu — amenu grouping;

menuitem—aniteminamenu;

grid —arectangular block for placing widgets,

label —atext |labd;

button —abutton linked to an R function that runs a particular analysis and generates a

desired output, perhaps including graphics;

7. check —acheck box used to turn avariable on or off, with corresponding values TRUE or

FALSE;

radio —one of aset of mutually exclusive radio buttons for making a particular choice;

9. null —ablank widget that can occupy an empty spacein agrid;

10. entry —afieldinwhich ascalar variable (number or string) can be altered;

11. text —an entry box that supports multiple lines of text;

12. vector —an aligned set of entry fields for all components of a vector;

13. matrix —analigned set of entry fields for all components of a matrix;

14. data —an aligned set of entry fields for all components of a data frame, where columns can
have different modes,

15. object —an aligned set of entry fields defined by an existing R-object (vector, matrix, or
dataframe);

16. slide —adide bar that setsthe value of avariable;

Sk~ wpdhpE

©

—7—

17. slideplus —an extended slide bar that also displays a minimum, maximum, and current
value;

18. history —adevicefor archiving parameter values corresponding to different model
choices, so that a*“dlide show” of interesting choices can be preserved.

The description file is an ordinary text file that specifies each widget on a separate line.
However, any one widget description can span multiple lines by using a backslash character (\)
to indicate the end of an incomplete line. For example, the single line:
label text="Hello World!"
isequivalent to:

label \
text="Hello World!"

Meaningful indentation is highly recommended, but not compulsory. The three-line description
of avector widget in Table 1 illustrates a readable style.

Each widget has named arguments that control its behaviour, analogous to the named
arguments of afunction in R. Some (required) arguments must be specified in the widget
description. Others (not required) can take default values. All widgets have a t ype argument
equal to one of the 18 names above, athough the word type can be omitted in the description
file. Appendix A gives an alphabetic list of all these widgets, along with detailed descriptions of
all arguments. Asin callsto R functions, argument names can be omitted as long as they
conform to the order specified in the detailed widget descriptions given below. Nevertheless, we
recommend that all argument names be specified, except possibly the name type, whichis
always the first argument for each widget. Unlike R functions, where commas separate
arguments, the arguments in a widget description are separated by white space.

In adescription file, all argument values are treated initially as strings. In addition to
specifying aline break, the backslash can be used to indicate five special characters: single quote
\', double quote \ ", tab \ t, newline \n, and backslash \ \. If an argument value does not
include spaces or special characters, then quotes around the string are not required. Otherwise,
double quotes must be used to delineate the value of an argument. Single quotes indicate strings
nested within strings. For example, the vector in Table 1 has four labels specified by the string
argument

labels="'x cycles' 'y cycles' 'y phase' points"

A hash mark (#) that is not within a string begins a comment, where everything on aline
after the hash mark isignored. As mentioned above, an isolated backslash (not part of a special
character) indicates continuation onto the next line. A break can even occur in the middle of a
string, such as the long label
label text="This long label with spaces \

spans two lines in the description file"

In this case, leading spaces in the second line are ignored, to allow meaningful formatting in the

description file. Intentional spacesin along string should appear prior to the backslash on the
first line.

Although the type argument (like vector) for awidget can never be abbreviated,
other arguments follow the convention used with named argumentsin R function calls. For a
given widget type, the avail able arguments can be abbreviated, aslong as the abbreviations
uniquely identify each argument. For example, the vectoxr in Table 1 could be specified as:
vector len=4 nam="m n phi k" \
lab="'x cycles' 'y cycles' 'y phase' points" \
val="2 3 0 1000"

Unlike variable namesin R, widget names and their arguments are not case sensitive.
Some users may prefer to write all type variablesin upper case or with an initial capital letter.
For example, the names WINDOW, VECTOR, RADIO, and BUTTON could be used to
emphasize the widgetsin Table 1.

2.3. Window support functions

PBS Modelling includes functions designed to connect R code with GUI windows. Every
window hasaname argument (with default name=window), and windows with different
names can coexist. Window names must use only letters and numbers; they cannot contain a
period (dot) or any other punctuation. When running a program with multiple windows, only one
window will be current (i.e., selected by the user) at any particular time. Normally, a user selects
awindow by clicking on it, but the function focuswin allows program control of the window
currently in focus. Thus, activity in one window might be used to shift the focus to another.

The function createWin uses adescription file to generate one or more windows,
where each window has a distinct name (perhaps the default) taken from the file. If awindow
with the specified name already exists, it will be closed before the new window is opened. When
designing and testing a GUI, this feature ensures that a new version automatically replaces the
previous one. The function closeWin, which takes a vector of window names, closes all
windows named in the vector. With no arguments, closewWin () closesall windowsthat are
currently open.

Although createwWin normally builds a GUI from a description file, it will also accept
avector of strings equivalent to such afile. Thus, afile of R source code can define a GUI
directly, without the need for a separate description file. illustrates how this can be donein a
simple case. To see the character vectors equivalent to a given description file (say,
winDesc. txt), typethe R command:

scan ("winDesc.txt",what=character (), sep="\n")
In particular, if the description file includes a backslash or double quote character, the
corresponding R string must represent it as \ \ or \ ", respectively. Despite this alternative of

embedding window descriptionsin R source files, we recommend writing separate files to define
GUIs, except perhaps for very simple models.

—9-—

Table 2. A simplefile of R source code with character strings that define a GUI. No separate
window description fileisrequired.

File: Smpler

window description strings
winStr=c(
"window",
"entry name=n value=5",
"button function=myPlot text=\"Plot sinusoid\"");

function to plot a sinusoid
myPlot <- function() ({
getWinVval (scope="L") ;
X <- seq(0,500)*2*n*pi/500;
plot (x,sin(x),type="1"); };

commands to create the window
require (PBSmodelling) ; createWin(winStr,astext=TRUE)

Internally, PBS Modelling converts a description fileinto alist object that is used to
generate the corresponding GUI. The functions compileDescription and
parseWinFile giveliststhat correspond to description files. Just as createWin can act
directly on a character vector, it can also act on asuitably defined list, rather than afile. This
feature makes it possible to replace a description file with R code that defines the corresponding
list, although we recommend against this practice in most cases.

R programs need to share data with a GUI window. PBS Modelling provides six
functions that deal with values of R variables named in adescription file:

e getWinval returnsvaluesfrom the current window;

e setWinVal setsvaluesin the current window;

e getWinAct returnsall actions (up to a maximum of 50) invoked in the current window;
e setWinAct addsan action to the action vector for the current window;

e getWinFun returnsthe names of al R functions referenced in the current window;

e clearWinVal clearsglobal values associated with the current window.

Some models make use of a single parameter vector. In such cases the function
createVector generates a GUI directly, without the need for a corresponding description
file. We also offer afew “choosing” functions—getChoice and chooseWinVal —that
invoke a prompting GUI offering string choices. The latter writes the choice to avariablein a
GUI specified by the user.

After using createWin to produce a GUI, the functionsgetWinval and
getWinFun provide useful summaries of names declared in the current project. Furthermore,
the function getWinAct provides arecord of GUI actions taken by the user, starting with the
most recent and working backwards. By default, the act ion associated with awidget isits
type; for example abut ton hasdefault act ion=button. In general, however, the

—-10-—

description file could give a unique action name to each potential action, so that the vector would
give an unambiguous record of user actions.

Two functions provide support for selecting afile from a GUI:
e promptOpenFile showsthe current directory for choosing afile to open;
e promptSaveFile showsthe current directory for naming afile to save.

Files can be opened in programs external from R depending on their file extension:
e openFile opensalfileusing the default program for the file extension;

e setPBSext overridesthe default program associated with an extension;

e getPBSext showsthe overridden file extension and associated program.

If awidget invokes the function openFile, the associated act ion should be thefile
name. By definition, openFile hasthe default argument getWinAct () [1].

On aWindows platform, the native R function shell . exec (caled by openFile)
automatically chooses a default from the registry. For this reason, our distribution specifies an
empty list:

getPBSext () returnslist ().
The default can, however, be overwritten by specifying explicit list components, such as:
setPBSext ('html',
'"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f')

where % £ denotes the file name in the string passed to the operating system. On Unix platforms,

it may be essential to specify defaults this way. Future versions of our library may include other
options, such as default width for a data entry field or the maximum number of actions.

PBS Modelling includesahistory widget designed to collect interesting choices of
GUI variables so that they can be redisplayed |ater, rather like a slide show. This widget has
buttons to add and remove GUI settings from the current collection, to scroll backward and
forward, and to clear al entries from the collection. Other buttons alow entire history filesto be
saved or loaded. The history widget defines and usesthelist PBS . history inthe global
environment to store a saved history.

Normally, auser would invoke ahistory widget ssimply by including areference to it
in the description file. However, PBS Modelling includes some support functions for customized
applications:

e initHistory initializes datastructuresfor holding a collection of history data;

e addHistory savesthe current window settings to the current history record;

e rmHistory removesthe current record from the history;

e backHistory and forwHistory move backward and forward between successive
history records;

e firstHistoryandlastHistory moveto thefirst andlast recordsin the history;

e jumpHistory movesto aspecified record in the history;

e exportHistory and importHistory saveand load histories from files;

—-11-

e clearHistory removesall recordsfrom the current collection.
Thehelpfilefor initHistory showsan example that uses these functions directly.

2.4. Internal data

PBS Modelling uses the hidden list variable . PBSmod in the global environment to store
current settings and internal information needed to communicate with the tc1 / tk interface.
Thisvariable isintended for exclusive use by PBS Modelling, and users should not alter or delete
it while PBS Modelling is active. We include the material in this section for advanced users and
developers interested in further details about the internal data used to manage GUI windows.

Thelist . PBSmod contains a named component for each open window, where the
component name matches the window name. Recall that, if awindow is not named explicitly, it
receives the default name=window. In addition to window names, . PBSmod contains two
other named components. $.activeWin and $.options. These names do not conflict with
the window names, because the latter cannot include adot (.).The $.activeWin component
stores the name of the window that has most recently received user input. The $. options
component currently has only one element Sopenfile, with information that links programs to
file extensions for the function openFile.

Any named component of . PBSmod that does not start with a dot stores information
related to the corresponding window. Each window uses alist with the following named
components:

e widgetPtrs
A list containing widget pointers. Each component has a name that matches widget name.
Only widgets with aname argument and a corresponding tk widget will appear in thislist.

e widgets
A list containing information from the window description file relevant to each widget. This
list includes every widget that has aname or names argument. Widgets without names will
never be referenced again after the window has been created; consequently, information
about them is not stored for later usage.

o tkwindow
A pointer to the window created by tktoplevel ().

e functions
A vector of all function names referenced in the window description.

e actions
A vector containing act ion strings corresponding to the most recent user actionsin the
window, up to amaximum of 50. (Theinternal constant . maxActionSize Ssetsthis upper
limit. Seethefiledefs.R inthedistribution source code.)

Users can explore the contents of . PBSmod with the R structure command st r. For
example, from the R console, type runExamples () and select the example “CalcVor”. Then
type the command str (. PBSmod, 2) to showsthelist structure to adepth of 2. Thisreveals

—-12 —

al the list components discussed above. Further details appear by exploring the structure to
depths 3, 4, or more. Notice aso how the contents change as different examples are sel ected.

ThefunctionsgetWinval, setWinVal, getWinAct, setWinAct,
getWinFun, getPBSext, and set PBSext (discussed in Section 2.3) provide methods for
manipulating and retrieving variables stored in . PBSmod. Use these, rather than direct access, to
ater the internal data. Future design modifications to PBS Modelling might change the
architecture for storing the data components, but the methods functions will continue to have
their current effect.

Table 3. Sample data file for PBS Modelling. The function readList convertsthisfileto a
11ist object with six components: ascalar $x, alogical vector Sy, two matrices ($z, $a), and
two dataframes (Sb1, $b2). The matrix $a isread by column, and $b1=$b2.

SxX
0

Sy
T F TRUE FALSE

Sz
11.1 12.2 13.3 14.4
15.5 16.6 17.7 1.88e+01

Sa
$Smatrix ncol=2 byrow=FALSE colnames="a b"
5123

Sbl

$Sdata ncol=3 modes="numeric logical character" \
byrow=TRUE colnames="N L C"

5T aa

3 F bb

8 T cc

10.5 F dd

Sb2

$$data ncol=3 modes="numeric logical character" \
byrow=FALSE colnames="a b c¢"

5 3 8 10.5

TFTTF

aa bb cc dd

—13—

3. Functionsfor data exchange

Computer models usually require data exchange between model components. For
example, as described above, the functionsgetWinval and setWinval move data between
an R program and the GUI. Other applications, such as those written separately in C, may have
the ability to write data to files that R can read. In cases like this, it would be convenient to have
variable namesin the C code correspond to variables with the same namesin R. PBS Modelling
can facilitate this process with the functions readList and writeList, which convert atext
filetoan R 1ist and vice-versa. Another function unpackList createsloca or global
variables with names that match the list components.

Table 3illustrates adatafilein PBS format, legible by readList. Thefile contains
lineswith an initial dollar sign (like $x in Table 3) that specify alist component namein R,
followed by one or more lines of data. Data items are separated by white space. A single item of
data corresponds to ascalar in R, multiple items on a single line correspond to a vector, and
multiple lines of data correspond to a matrix with the number of columns determined by the first
line of data. Thus, in Table 3, sx isascalar, Sy isavector of length 4, and $z isa2x4 matrix.
The format also supports four possible data type definitions on aline preceded by $$:

SS$ vector mode=numeric names=""

S matrix mode=numeric ncol rownames="" colnames="" byrow=TRUE
S data modes=numeric ncol rownames="" colnames byrow=TRUE

S array mode=numeric dim fromright=TRUE

Table 3 illustrates their use in specifying $a, $b1, and $b2. Matrices and data frames can be
read by row or column. This choice determines the order of reading the data, and white space
(including line breaks) merely signifies breaks between dataitems. Array objects with three or
more dimensions can be read in two ways, with indices varying first from the right or from the
left. For example, datafor an array indexed by [1, j, k] areread by varying i first with fixed ;
and k if fromright=TRUE. Similarly, k variesfirst if fromright=FALSE

Asin widget descriptions, arguments may be omitted in favour of their defaults, and the
$$ line may be continued across multiple lines by using a backslash character \. For amatrix,
the argument ncol isrequired. Similarly, adata object (i.e., adataframe) must specify ncol
and avector colnames of length ncol. Also, modes must have length 1 (so that all entriesin
the data frame have the same mode) or length ncol. An array must have acomplete dim
argument, a vector giving the number of dimensions for each index.

Asindicated earlier, PBS Modelling can use this specialized dataformat as a convenient
means of capturing data from other programs. For example, to export data from an external C
program, write C code that generates a datafile in PBS format, where component namesin the
file match the C variable names. Then read the resulting file into an R session with the function
readList, and use unpackList to producelocal or globa R variables. At this point, both R
and C share data with the same variable names. This method works well with programs written
for AD Model Builder (http://otter-rsch.ca/admodel .htm), a package used extensively in fishery
research and other fields. It uses reverse automatic differentiation (AD; Griewank 2000) for
highly efficient calculation of maximum likelihood estimates.

—14-

To considerable extent, R has native support for reading and writing a variety of text
files, including the functions scan, cat, source, dump, dget, dput, read, write,
read.table,andwrite.table. Externa programs sometimes utilize R formats for their
input data. For example, the program WinBUGS (Speigelhalter et al., 2004), which implements
Bayesian inference using Gibbs sampling, uses data files written in alist format closely related to
the R syntax produced by the dput function. If thefilemyData . txt hasdput format, then
either of the two R commands

myData <- dget ("myData.txt");
myData <- eval (parse("myData.txt")) ;

produces a corresponding R list object named myData.

We should, however, add aword of caution here. When R saves array datain dput
format, it converts the array to avector by varying the indices from left to right. For example, a
matrix with indices [1, j] issaved asavector in which 1 variesfor each fixed ;. In effect, the
data are stored by column. This sometimes gives an unnatural visual appearance. In English, the
eye reads naturally from |eft to right, then down. Matrices are normally displayed by row, with
column index j varying for each fixed 1. WinBUGS, supported by the R package BRugs
(Thomas 2004), requires input data formatted in this visually meaningful way. More generally,
WinBUGS reads arrays by varying the indices from right to left. The BRugs function bugsData
writes data in this format, but users must take special care in reading WinBUGS data with the
dget function.

4. Support functionsfor graphicsand analysis

As mentioned in the preface, we have devised a number of functions that make it easier
for usto work in R. Some of them, such asplotBubbles, relate to techniques discussed in our
published work (e.g., Richards et al. 1997; Schnute and Haigh 2007). Othersjust provide
convenient utilities. For example, testCol ("red") showsall coloursin the palette
colors () that contain the string "red". We aso provide support for afew analytical
methods, such as function minimization. This section gives a brief description of PBS Modelling
support functions. See the help files for further information.

4.1. Graphics utilities

resetGraph............ Reset various graphics parameters to defaults, withmfrow=c (1, 1).
expandGraph......... Set various graphics parameters to make graphs fill out available space.
drawBars ... Draw alinear bar plot on the current graph.

genMatriX......... Generate atest matrix for usein plotBubbles.
PLOtACF...covceereeennns Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.
PLOLASD ivereerieens Plot a graph with a prescribed aspect ratio, preserving x1imand ylim.
plotBubbles......... Construct a bubble plot for a matrix.

plotCsum ... Plot cumulative sum of avector, with value added.

—15—

plotDens ... Plot density curves from a data frame, matrix, or vector.
plotTrace........... Plot trace lines from a data frame, matrix, or vector.

addATrTOWS .ecveeneee. Call the arrows function using relative (0:1) coordinates.
addLegend.............. Add alegend using relative (0:1) coordinates.

addLabel Add apanel label using relative (0:1) coordinates.

PickCOl . Pick a colour from a complete palette and get the hexadecimal code.
testCol.iieennen. Display named colours available based on a set of strings.
teStLEY e Display line types available.

teStLwd. e, Display line widths.

testPch.neenee. Display plotting symbols and backslash characters.

4.2. Data management

clearAll ... Function to clear al datain the global environment.

joX=Te [0 U Pad numbers with leading zeroes (string).

5] s o) 140 J Show decimal places including zeroes (string).

unpackLisSt......... Unpack the objectsin alist and make them available locally or globally.
VIieW. e View thefirst n rows of a dataframe or matrix.

4.3. Function minimization and maximum likelihood

Three functionsin the stat library support function minimization in R: n1lm, nlminb,
and opt im. These tend to perform slowly compared with other software alternatives, due partly
to R’ sinterpretive function evaluation. Nevertheless, for small problems they offer a convenient
means of analysis, based entirely on code written in R. Our examplesillustrate some of the
possibilities. For large problems coded in other software, we still like to write independent code
for afunction in R, based only on the model documentation. If both versions of the software
produce the same function values at selected values of the function arguments, then we have
greater confidence that we have represented our model correctly in code. In that context, R
serves as a valuable debugging tool.

PBS Modelling provides a support function calcMin that can use any method available
inthe stat library to find the vector (X,...,X,) of length n that minimizes the function

y = f(x,...,X,). Inpractice, we usually apply thisto the negative log likelihood for a statistical
model, where the variables x are parameters. We define anew class parvec, which isadata

frame with four columns:
e val —theactual value of parameter X ;

e min-—aminimum allowablevalue of X ;
e max —amaximum alowable value of x ; and

—16—

e active —alogical value that determines whether or not the minimization algorithm should
vary thevalueof x . If active=F, then x remainsunchanged at the value val.

Internally, calcMin scales active variables x to surrogate variable sin the range [0,1],
where x and s are related by the inverse formulas (Schnute and Richards 1995, p. 2072):

> 1— C(;S(WS)

S = laCOS [Xmax + Xmin — 2X] — zasin X— Xmin . (43b)
™ Xmax - xrnin ™ Xrnax - Xmin

All these formul as represent equivalent forms of a one-to-one relationship x <~ s, where

Xom < X< X, and 0 <s<1.Readers may find the second versions of (4.3a) and (4.3b) more
intuitive (with afamiliar “arc sine square root” transformation in (4.3b)), but the code uses the
first versions for a possible improvement in computational efficiency by avoiding square and
square root functions. The minimization algorithm works entirely with surrogate variables,
which may have dimension smaller than n if some variables x are not active. The function

scalePar scalesan object x of classparVec X to avector s of surrogates via the formula
(4.3b). Smilarly, restorePar recovers x from svia(4.3a).

X= Xmin + (Xmax - Xmin = Xmin + (Xmax - Xmin) Sin2 [%S]' (43a)

We aso provide a convenient function GT0 that restricts a numeric variable x to a
positive value defined by

T, T >E
3 $2
GTO(z,e) = 51+[—] , O<z<e. (4.3¢c)
9
E, x<0
[2

The notation GT0 denotes “greater than zero”. This function preservesthe value of xif x> ¢,
and for smaller values x it is always true that GT0(z,¢) > % The function (4.3c) also hasa

continuous first derivative that makes sense locally on asmall scale of size . This property
makes it useful for avoiding unrealistic numbers that might be negative or zero, particularly
when the minimization algorithm uses derivatives of the objective function.

In summary, PBS Modelling has four functions that facilitate function minimization.

calcMin........ Calculate the minimum of a user-defined function.
scalePar ... Scale parametersto surrogatesin therange [0,1].
restorePar......... Restore actual parameters from surrogate values.

GTO veeereeeeerreeree e Restrict anumeric variable to a positive value (“ Greater Than 0).

—17 -

4.4. Handy utilities

calcFib.nnn. Calculate Fibonacci numbers (included only to illustrate the use of C code).
calcGM...venennen. Calculate the geometric mean of a vector of numbers.

findPat....ceen. Find all strings that include any string in a vector of patterns.

PAUSE .o Pause, typically between graphics displays.

ShOWATgS ..cccceeeee Show the arguments for a specified widget in Appendix A.
testWidgets.....GUI totest all widgetslisted in Appendix A.

VIieW.iiriiiieieeinen, View thefirst few lines of a (potentially large) matrix or data frame.

5. Examples

As mentioned in the Preface, PBS Modelling includes a variety of examples that illustrate
applications based on this and other libraries. Generally, each example contains documentation,
R code, awindow description file, and (if required) other supporting files. All relevant files
appear in the R library directory PBSmodelling\Examples. An example named xxx
typically has corresponding files xxxDoc . txt or xxxDoc .pdf (documentation), xxx . r
(R code), and xxxWin . txt (awindow description). In the GUI for each example, buttons
labelled Docs, R Code, and Window open these files provided that suitable programs have
been associated with the file extensions * . txt, * .pdf, and *. r. In particular, the Acrobat
Reader must be installed for reading * . pd £ files, and you may need to associate atext file
editor with * . r. On some systems, it may be necessary to use the function set PBSext to
define these associations, as discussed earlier in Section 2.3.

Use the function runExamples () toview al examples available in PBS Modelling.
This procedure copies al relevant files to atemporary directory located on the path defined by
the environment variable Temp. It then opens awindow in which radio buttons alow you to
select any particular case. Closing the menu window causes the temporary files and related data
to be cleaned up, and returns to the initial working directory.

Alternatively, you can copy all thefilesfrom PBSmodelling\Examples toa
directory of your choice and open R in that working directory. To run example xxx, type
source ("xxx.r") onthe R command line. For instance, source ("LissFig.r") creates
awindow (from the description file LissFigWin. txt) that can be used to draw the Lissgous
figures described in Section 2.1. The built-in example also includes a history widget for
collecting settings that the user wishes to retain.

The examples documented here illustrate only some of those availablein version 1 of
PBS Modelling. For instance, we also include a Test Funs GUI that we have used as atool for
debugging various functions in the package. In future versions, we plan to add more examples
that illustrate important modelling concepts and provide convenient supplementary materials for
university courses in fisheries, biology, ecology, statistics, and mathematics. The function

—-18—

runExamples () should always represent the complete list currently available, and the Docs
button for each case should link to the appropriate documentation.

The nine examples presented in this section illustrate some of the possibilities available
in PBS Modelling, athough the documentation may be somewhat out of date. For example, the
figuresin this report may not correctly represent current versions of the GUIs and their
associated graphical output. Use the Docs button to read the most current information for each
example. If this seems rather primitive, please wait for improvements in future versions.

5.1. Random variables

5.1.1. RanVars — Random variables

=loix —
: Xl | Normal
View: DocslHEodelWindowl — Lognormal

— Gamma
Sample Size Mean SD CV
|500 1 |1 |1

1.0

True Estimated
Normal: mean | [0.981
sd |1 [n98a7

0.6

True Estimated
mean |1 J1.0221
Lognormal: sd [1 Jogg22
mu |-0.3466 |-0.2911
sigma |0.8325 [EEEE

pdf

0.4

True Estimated

0.2
I

mean |1 [z
Gamma: sd |1 Josz
shape [1 [11432
scale |1 [nge37 2

T T T T T I
Simulate | 2 o 2 4 6 s

Density Plot | Cummulative Plot | Pairs Plot |

Figure5. Ranvars GUI (left) and density plot (right). Simulations are based on 500 random
draws with mean =1 and SD = 1.

The RanVars example draws samples from three continuous random distributions
(normal, lognormal, and gamma) with acommon mean x# and standard deviation o . The
documentation (“Docs’ button) shows relevant formulas that connect distribution parameters
with the moments ¢ and o Estimated parameter values from a simulation (invoked by
“Simulate”) are displayed in the GUI alongside the true values (Figure 5). We use only the
straightforward moment formulas in the documentation, without sample bias correction formulas
like those described by Aitchison and Brown (1969). Three buttons at the bottom of the GUI
portray the data visually as density curves, cumulative proportions, and paired scatter plots.

5.1.2. RanProp — Random proportions

=
View: Doc:sl R Eodel Windowl
Distributions
© M= Mulinomial # Simulations [200
& D =Dirichlet Sample size (M,D)|10
© L = Logistic-normal Sigmail) |01
Proportion Vector
[e}=1e mean S0
1 [0.2000 1 [0z131 1|n1285
2 |0.3000 202915 A REE]
3 05000 2 |0.4353 3[014s7
4[o 4o 4o
5|0 5[5o
G 6o GI[E
o]

—-19—

01 02 03 04 05 06 0.7
L I I I I I 1

pl

0.1 02 03 04 05 06 0.7
L I I I I I I

p2

p3

00 01 02 03 04 05 06 0.7

T
0.2

0.4

T T
0.6 08

Figure 6. RanProp GUI (left) and pairs plot (right). Simulations are based on 200 random

draws where n = 10 for the multinomial and Dirichlet distributions and o= 0.1 for the logistic-

normal distribution. The pairs plot portrays results for the Dirichlet.

00 01 02 03 04 05 06 0.7

0.4 0.6 0.8

0.2

The RanProp example simulates up to five random proportions drawn from one of three

distributions — multinomial, Dirichlet, and logistic-normal. The observed proportion means and

standard deviations are reported in the GUI (Figure 6), and a graphical display renders the points
as a paired scatter plot. After defining optionsin the GUI, including the vector “pvec” of true

underlying proportions, press“ Go”. Schnute and Haigh (2007) provide further technical details

about these three distributions.

—-20-—

5.1.3. SineNorm — Sine norma

ol o

View: Docs | R Code| window|

rieat |0
Pars: :d |01 9
points | 500
==l 2d
M ~ 24

<4 2

< *
Sort [|0 IEI Empty g _

|nzert Deletel Impu:urtl E wpart

{~ bafore % after - owr

History:

" curve S

r\- pairs Plot | I I I I I I I

02 0.0 0.2 04 06 08 10
" histogram

x(xm=0,xs=0.1)

Figure7. SineNorm GUI (left) and plot (right). Simulations are based on 500 random draws
of y=sin(2zx), where x isnormal with mean ¢ =0 and standard deviation o =0.1. Blue
points portray jittered values of x, and red points show corresponding values of y.

The SineNorm exampleillustrates a somewhat unconventional random variable
y =sin(2zX) , where x isnormal. The GUI allows you to specify the mean # and standard
deviation o of x. If £ =0 and o issmal, the transformation is nearly linear, sothat y is
approximately normal. If o islarge, the transformation concentratesy near -1 and 1. Figure 7
illustrates the transformation when o has the moderate value 0.1. Try o =10 to see how values
y tend to occur near the peaks and troughs of the sine function, where the slope isrelatively flat.

21—

5.1.4. CalcVor — Calculate Voronoi tessellations

o]

View: Docz|R Code | Window

Input Controls
L
argl |0
n|1IIIIII ag2 |1
Distributions
X-axis Y-axis
" Unrifarm " Unifarm
" Mormal " Mommal
" Gamma % Gamma
™ LogMamal © LogMormal
" Logistic ™ Logistic
" Paizson " Paizzon

o)

Figure 8. calcvor GUI (left) and plot (right). Tessellation of random points (red) that are
normally distributed on the x-axis (mean=0, sd=1) and gamma-distributed on the y-axis
(shape=8, rate=2).

The calcvor example calls PBSMapping's calcVoronoi function, which calculates
the Voronoi (Dirichlet) tessellation for a set of points using the del1dir function in the CRAN

package deldir. The GUI accepts two arguments for each random distribution represented on
each axis. The underlying functions and their arguments are:

Distribution Function Argument 1 Argument 2

Uniform runif min max
Normal rnorm mean sd
Gamma rgamma shape rate
Log normal rlnorm meanlog sdlog
Logistic rlogis location scale

Poisson rpois lambda N

—22 —

5.2. Statistical analyses

5.2.1. LinReg — Linear regression

I=TEY
View: Docs | Model| Data| R Code | window|
o
S
Choose Example S
Data Sets ¢ sim cars " tees (swiss (attitude
Fields Sim
Rrecords = 50 -~ Choose N [15
1 = speed
2 = dist a ID
b |1
b |1
v |z _
S|gma|2 o
prlewel |0.95 X o]
Fmin ID "(7)'
= XmaxI‘ID =
E S
Pairs F'Iotl Clazsic Hegressionl
BRugs Linear Regression
c il a b =g # chains o
ompile
P V¥ ¥ v |2_ Eompilel Datal
Length Thin Tatal -
Update [1000 1 |5000 Updatel /// a=-17.6
_ _ - b =3.93
Stat End Thin First Last -~
Report |501 |5000 |13 Chains |1 |2 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25
Tracel Densityl AEFl F'airsl Histograml Hegressionl Speed

Figure 9. LinReg GUI (left) and regression plot (right). The linear regression usesthe cars
dataset (n=50) to predict dist vs. speed. The plot shows observations (green circles), fitted
line (solid blue line), the 95% confidence limits of the fitted model (solid red lines), the 95% CL

of the data (dashed purple lines), and the fits using the Bayes posterior estimates of (a,b) (gold
lines).

The example LinReg estimates parametersin alinear regression y = a+bx using either

simulated data or data objects that come with the R-package. We compare a classical frequentist
regression with results from Bayesian analysis, using the BRugs library to interface with the
program WinBUGS. After selecting various data options, “Pairs Plot” shows a pairs plot (X, Y)
and “ Classic Regression” adds confidence limits (at “p-level”) from regression theory. Red and
violet curves show bounds for a prediction or a new observation, respectively, each conditional
on X. If the data came from simulation, a blue line portrays the truth, with specified values a and
b, that must be estimated from the data.

A corresponding Bayesian analysis uses the WinBUGS model shown by pressing
“Model”. Choose parameters to monitor (normally all of them): the intercept a, the slope b, and
the predictive standard deviation o . After specifying a number of sample chains for the MCMC
sample, press“ Compile” to compile the model with these settings. “Update” generates samples
in “Length” increments. Additional buttons at the bottom of the GUI allow you to explore the
MCMC output. Posterior samples of (a,b) correspond to sample lines. The “Regression” button

illustrates these in relationship to confidence limits from a frequentist analysis (Figure 9).

23—

5.2.2. MarkRec — Mark-recovery

_ioi N
View: Du:uc:&l Mu:udell Datal R Codel Windowl
Data 8
fo
Marked | 500 o
—

Sampled |5000 m
Recovered |5
E pzilon [prior] | 0.001

Chainz 2 Compile |

0.0 e+00
|

0 500000 1000000 1500000 2000000 2500000
E stimate |5&+I35
Chain
Length | 1000 P
Thin |1 B
Tatal |3000 Updatel
§]
Report
Start |1 o
End [3000 S
Thir |1 o
| T T T T
Tracel Densityl .~’-‘«EF| F'air$| 0.000 0.001 0.002 0.003 0.004

Figure 10. MarkRec GUI (left) and density plots (right). A low recovery of marked fish can
lead to fat tailsin N due to occasional large spikes in the population estimate.

The example MarkRec performs a Bayesian analysis of a mark-recovery experiment in
which M fish are marked and allowed to disperse randomly in the population. Later, a sample of
size Sisremoved from the population and R marks are recovered. Both the total population N

and the marked proportion p are unknown, where
oM _R
N~ S

In one version of the theory, Risbinomially distributed with probability p in asample of size S
and the above approximation suggests the estimate
S M

N="M=-—°2S5.
R R

When recoveries are low (R=0), the posterior distribution of N exhibits afat tail (Figure 10).

AsinLinReg, “Model” showsthe MarkRec model for WinBUGS, which
(deliberately) includes an illegitimate prior that depends on the data. By increasing an initially
small quantity &, thisfake prior allowsthetail of N valuesto be arbitrarily clipped. Schnute
(2006) gives some historical perspective to this analysis, in the context of work by W.E. Ricker.

—24—

5.2.3. cca — Catch-curve analysis

Catch-Curve Analysis 101 x| 5| ‘ 1|5) 25 05 |1'\5 |2'\5 ‘ 5 1|0 1|5

View: Docsl Modell Datal R Eodel Windowl 71

Age File|CCAgbr ’mﬁl
Data vea[2004 MI 1564,1985,1956,1987.1988, =
val minh max active

zfm 0~
alpha ,5—’2_’T I
betak’?’ﬂ_h— I~

wl | F F
Eois '1_’0—’3— = betak.1 |
o [[0 [ow @ m ' -

‘N‘ N‘
ol o
2
5 10 15 20 25
1 1 1 Il
%IJ :
> : 3
[>
> 3
P >
= 3
T T
005 040 045

Design Model
k
2
B
b0

eps

‘m‘

[
o

=
=
ol
o

‘N‘.

m
b1
b2
b3
b4
b5

05

P o B R oy I
tho2 '1—’0_’T v
thod '1_’0—’T r
thod '1_’0—’T r
thaG '1—’0_’T [

w

B
| 3
B
{ 3
T T
a0 0.4

tau.1

D‘D‘D‘
25

14

. Multinomial Dirichlet Logistic-nomal
Distribution Auto A ¥
13 u

n1
Set NLMl Plot | W pa T pi T wmi 4 (& & i & &

q

05

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E
=}
[t=]
w
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
50 150 250 350

Distribution Dirichlet [Case 4 anly)

Z alpha betak tau sigma n thol tho2 rho3 rhod rthob thol.1

V F M F T F VIO TCTC

Compile # chains [Eompilel Datal T " 3 & G ‘L,

Length Thin

hoz.1
Update [200 |1 Total [300 Update el

Start End Thin First Last i 5 & o a a
Report |10 300 1 Chains |1 |1 i SR L A a La AN -

B . T I‘ T - T | T 17T - TT | TTTT - T T T
T"3CE|I:)E”S'U'l‘“‘c':lF'a"slH'Smg'a"“l 005 045 00 04 08 50 200 350 510 15

5 10 15

Figure11l. cca GUI (left) and parameter pairs plot (right). Comparison of Bayes posterior
distribution of CCA model parameter estimates from chain 1 (N=100). Symbols indicate means
(blue sguares) and modes (red triangles). Diagonal shows parameter estimate distributions.

The example cca illustrates a catch-curve model proposed by Schnute and Haigh (2007).
It incorporates effects of survival, selectivity, and recruitment anomalies on age structure data
from asingle year. After making various model choices, press“Set”, “NLM” (which may take
severa seconds), and “Plot” to view the maximum likelihood estimates and their relationship
with the data. A WinBUGS model (“Model”) alows us to calculate posterior distributions.
(Seethelast few linesof “Model”.) Asin MarkRec, select parameters to monitor, specify a
number of chains, and “Compile” the model. “Update” s may be slow, but eventually they
produce interesting posterior samples (Figure 11). “Docs’ gives details of the deterministic
model, and the Dirichlet distribution is used to describe error in the observed proportion.

We include this example to illustrate a somewhat realistic WinBUGS model that can be
used to estimate parameters for a population dynamics model. We will provide further
information when the paper (Schnute and Haigh 2007) is published. PBS Modelling includes the
data for this example as the matrix CCA. gbr.

5.3. Other applications

5.3.1. FishRes — Fishery reserve

_loix]

View: Docsl R Eodel Windowl

------ Simulation
Model:

& 1 Continuous ¢ 2 Discrete

Inputs

Biological
k100

Control

Fres

0

1]

04

0492

k0.1

0035

a|lB

gamma
k.
«10
%20

0195

0
2
0.5
0.5

F rnin
F max|0.55

pl
tres
t max

L step

035 |0.295

0.423

cycle |8

07y abg tal| 1e-06

& Time Series ¢ Pairs
" Erforce Constraints

...... Equilibrium

15 1el bal |1e-04
80
0z

®maw |2 Plat g[x]l
Plat tlaiectoriesl

from to by

x1 |0.05 [0.95 [0.02
pl |0 095 |0.02
max F |1 B3z

Pairs

C#Cmax|0.975
arid cellz | 100 Image

cntr levels |8 Canbaur

Crnax pl F2 w1 w2

[519 |0.08

j0.135

[0.41 |0.405

Figure 1. Right o
Recovering fisherny

Sart

Ingert | Delete | Import

Export

Contiruous rmodel R1
Figure 2.
Left - press Image

{ before % after (& our

Right - presz Pairs

dN/dt

501

401

30

201

o1

o

&

-101
-151

0.6f
05}
0.4t
0.3f
0.2t
01f
0.0f
5[20 20 50 20
20f

157

10r

o

—25_

= Resene = Fishery == Total

///_/_/\W

0 20 40 60 80

0 20 40 60 80

0 20 40 60 80

time

Figure12. FishRes — Recovery of aheavily fished population after establishing areserve.
The GUI (left) shows all input values (parameters and controls). The selected continuous time
model uses input values common to both models (white background) and values specific to the
continuous model (blue background). Corresponding values are computed for the discrete model
(yellow background). Output trajectories (right) trace various results (N = population,

dN/dt = instantaneous change in population, F = instantaneous fishing mortality,

C = instantaneous catch) for the reserve and fishery. Fishing mortality follows a sinusoid
determined by F,,, F.., , andthecyclelength n.

The example FishRes (Figure 12) models a fish popul ation associated with a marine
reserve in continuous or discrete time (delay differential or difference equations, respectively).
For details see Schnute et al. (2007), which can be viewed by pressing the Docs| button in the
GUI. TheR librariesakima, ddesolve, and odesolve arerequired.

5.3.2. FishTows — Fishery tows

Random Fishing Tos

=10l x|

View: Du:u:sl Fi Eu:u:lel Windnwl

rio. of bowg
Input: tow width

zide af square

mean length
polygohs
hioles
Output: vertices

swept area

impacted area | 3455, 2013338¢

total area

40
2
100

Fl
7
el

10000

—26—

55.568513385:

4445 4515935:

Generate Tows

Flot Lines
Plot Tows

Plot Union

Compare

40 60 80 100

0 20

Figure 13. FishTows GUI (left) and simulated tow track (right). Tow track plots show 40
random tows in a square with side length 100. Each tow has width 2, and the rectangle
encompasses 10,000 square units. Top: Theindividual rectangles, with 160 vertices, have areas
that sum to 4,445 square units. Bottom: The union includes a complex polygon (red) and three
isolated rectangles (blue, green, yellow) that cover only 3,455 square units. The complex
polygon (red) has 547 vertices and 91 holes.

The example FishTows provides asimulator of fishery tow tracks using the
PBSmapping library. The example demonstrates the difference between swept area and area
impacted by trawls that often cover the same ground repeatedly. This application can be regarded
an exotic random number generator, where tows initially join two points picked from a uniform
random distribution within a square of a given side length. Three parameters (the number of
tows, the tow width, the side length) determine several random variables, including the mean tow
length, the areas swept and impacted, the numbers of polygons and holes in the union set of
tows, and the number of verticesin the union. Each of these would also have a variance and an
overall distribution generated by many runs of this example.

—27 —

Refer ences

Aitchison, J., and Brown, J.A.C. 1969. The lognormal distribution, with special referencetoits
uses in economics. Cambridge University Press. Cambridge, UK. xviii+176 p.

Daalgard, P. 2001. A primer onthe R Tcl/Tk package. R News 1 (3): 27-31, September 2001.
URL.: http://CRAN.R-project.org/doc/Rnews/

Daalgard, P. 2002. Changesto the R Tcl/Tk package. R News 2 (3): 25-27, December 2002.
URL: http://CRAN.R-project.org/doc/Rnews/

Griewank A. (2000) Evaluating derivatives:. principles and techniques of algorithmic
differentiation. Frontiersin Applied Mathematics 19. Society for Industrial and Applied
M athematics

Ligges, U. 2003. R Help Desk: Package Management. R News 3 (3), 37-39. URL.:
http://CRAN.R-project.org/doc/Rnews/

Ligges, U, and Murdoch, D. 2005. R Help Desk: Make 'R CMD' work under Windows — an
example. RNews 5 (2), 27-28. URL: http://CRAN.R-project.org/doc/Rnews/

Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy
nonlinear parameter estimation and interpretation in fishery research. Canadian Technical
Report of Fisheries Aquatic Sciences 1384 xi+90 p.

Ousterhout, JK. 1994. Tcl and the Tk toolkit. Addison-Wesley, Boston, MA. 458 p.

RDCT: R Development Core Team (2006a). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0. URL http://www.R-project.org. (Available in the current R GUI
from “Help”, “Manualsin PDF”, “R Reference Manua”)

RDCT: R Development Core Team (2006b). Writing R extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9. URL http://www.R-project.org.
(Availablein the current R GUI from “Help”, “Manualsin PDF”, “Writing R
extensions”)

Richards, L.J., Schnute, J.T., and Olsen, N. 1997. Visualizing catch-age analysis: a case study.
Canadian Journal of Fisheries and Aquatic Sciences 54: 1646-1658.

Schnute, J. 1982. A manual for easy nonlinear parameter estimation in fishery research with
interactive microcomputer programs. . Canadian Technical Report of Fisheries and
Aquatic Sciences 1140. xvi+115 pp.

Schnute, J.T. 2006. Curiosity, recruitment, and chaos: atribute to Bill Ricker’sinquiring mind.
Environmental Biology of Fishes 75: 95-110.

—28—

Schnute, J.T., Boers, N.M., and Haigh, R. 2003. PBS software: maps, spatial analysis, and other
utilities. Canadian Technical Report of Fisheries and Aquatic Sciences 2496. viii+82 pp.

Schnute, J.T., Boers, N.M., and Haigh, R. 2004. PBS Mapping 2: user’s guide. Canadian
Technical Report of Fisheries and Aquatic Sciences 2549. viii+126 pp.

Schnute, J.T., and Haigh, R. 2007. Compositional analysis of catch curve datawith an
application to Sebastes maliger. ICES Journal of Marine Science 64: 218-233.
Available at http://icesms.oxfordjournals.org/content/vol 64/issue?/index.dtl, reference
number doi:10.1093/icesms/fsl024.

Schnute, J.T., Haigh, R., and Couture-Beil, A. 2007. Mathematical models of fish populationsin
marine reserves. Report on a Collaborative Project between Malaspina University-
College and the Pacific Biological Station. February 2007, 24 pp.

(FileFishResDoc . pdf availablein the package PBSmodelling.)

Schnute, J.T., and Richards, L.J. 1995. The influence of error on population estimates from
catch-age models. Canadian Journal of Fisheries and Aquatic Sciences, 52: 2063-2077.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. 2004. WinBUGS User Manual, version
2.0. Available at http://mathstat.hel sinki.fi/openbugs/.

Thomas, N. 2004. BRugs User Manual (the R interface to BUGS), version 1.0. Available at
http://mathstat.helsinki.fi/openbugs/.

—29_

Appendix A. Widget descriptions

This appendix lists PBS Modelling widgets in aphabetical order. Details for each widget
include a description, usage, arguments, and an illustrated example. In specifying a widget, the
user can arrange named arguments in any order. If arguments are not named, they must appear in
the order specified by the argument list, similar to named arguments in an R function.

Button

Description

A button linked to an R function that runs a particular analysis and generates a desired
output, perhaps including graphics.

Usage
type=button text="Calculate" font="" fg="black" bg="" width=0
function="" action="button" sticky="" padx=0 pady=0
Arguments
EEeXE i text to display on the button
font . font for labels — specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), inany order
i< SN colour for label fonts
oY PN background colour for widget
width.eeee. button width, the default O will adjust the width to the minimum required
function.......... R function to call when the button is pushed (i.e., clicked by the mouse)
action ... string value associated whenever this widget is engaged
Sticky e option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
PAAX e space used to pad the widget on the left and right
PAAY e space used to pad the widget on the top and bottom
Example

window title="Widget = button"
button text="Push Me"

=
Puzh Mel

—-30-

Check

Description

A check box to turn avariable off or on, with corresponding values FALSE or TRUE (0 / 1).

Usage
type=check name mode="logical" checked=FALSE text="" font=""
fg="black" bg="" function="" action="check" sticky=""
padx=0 pady=0
Arguments
NAME vevereerieeeeens name of R variable altered by this check box (required)
MOAE cuveveerreereennen R mode for the associated variable, where valid modes are
logical Of numeric
checked............. if TRUE, the box is checked initially and the variableis set to TRUE or 1
teXt wivvriieieenns identifying text placed to the right of this check box
font .. font for labels — specify family (Times, Helvetica, or Courier),
size (aspoint size), and style (bold, italic, underline,
overstrike), in any order
e SRR colour for label fonts
oY PN background colour for widget
function.......... R function to call when the check box is changed
action ... string value associated whenever this widget is engaged
Sticky i option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
joX=To b SUNUR space used to pad the widget on the left and right
PAAY e space used to pad the widget on the top and bottom
Example

window title="Widget = check"
check name=junk checked=T text="Check Me"

™ Vidget = check SR I=TEY

¥ Check Me

Data

Description

An aligned set of entry fields for all components of adataframe. The data widget can
accept avariety of modes. The user must keep in mind that rowlabels and collabels

31—

should conform to R naming conventions (no spaces, no special characters, etc.). If modeis
logical, fields appear as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=data nrow ncol names modes="numeric" rowlabelg=""
collabels="" rownames="X" colnames="Y" font="" fg="black"
bg="" entryfont="" entryfg="black" entrybg="white"
values="" byrow=TRUE function="" enter=TRUE action="data"

width=6 sticky="" padx=0 pady=0

Arguments
NYOW eveereeeeenneeees number of rows (required)
Ncol .vvvereeeene number of columns(required)
NAMES..eveeerrreenees either one name or a set of nrow*ncol names used to store the data
framein R (required)
MOdES..cvvvererrnennn R modes for the data frame, where valid modes are:

numeric, integer, complex, logical, character
rowlabels........ either one label or a vector of nrow labels used to label rows of this data
frame in the display
collabels....... either one label or avector of ncol labels used to label columns of this
data frame in the display

YOWNAames string scalar or vector of length nrow to name the rows of the data frame

colnames string scalar or vector of length ncol to name the columns of the data
frame

font .. font for labels — specify family (Times, Helvetica, Or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), inany order

e SRR colour for label fonts
o1 PN background colour for widget
entryfont........ font of entries appearing in input/output boxes
entryfg..... font colour of entries appearing in input/output boxes
entrybg...... background colour of input/output boxes
values default values (either one value for all data frame components or a set of
nrow*ncol values)
bYTrow...coeeveenen, if TRUE and nrow*ncol names are used, interpret the names by row;
otherwise by column. Similarly, interpret nrow*ncol initial values.
function.......... R function to call when any entry in the data frame is changed
enter..... if TRUE, call the function only after the <Enter> key is pressed
action ... string value associated whenever this widget is engaged
width.eeee, character width to reserve for the each entry in the dataframe
sticky . option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
joX=To b SUNUR space used to pad the widget on the left and right

PAAY ceeeieieriene space used to pad the widget on the top and bottom

—32-

Example

window title="Widget = data"

data nrow=3 ncol=3 names=Census byrow=FALSE \
modes="character logical numeric" width=10 \
rowlabels="Recl Rec2 Rec3" collabels="City Smell Popn" \
values="Nanaimo Vancouver Spuzzum T T F 80000 600000 50"

=T

City Smel FPopn
Recl [Nanaimo v |30000

HecEIUancnuver v |EEIEIEIEIEI
HecSISpuzzum | |5EI

Entry

Description
A field in which a scalar variable (number or string) can be atered.

Usage

type=entry name value="" width=20 label="" font="" fg="" bg=""
entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE action="entry" mode="numeric" sticky="" padx=0
pady=0

Arguments

NAME ..vvvrveeeeeeeenees name of R variable corresponding to this entry (required)

value....ene. default value to display in the entry

width.eee, character width to reserve for the entry

label....enne. text to display above the entry box

font .. font for labels — specify family (Times, Helvetica, Or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), inany order

e SRR colour for label fonts

o1 PN background colour for widget

entryfont........ font of entries appearing in input/output boxes

entryfg..... font colour of entries appearing in input/output boxes

entrybg...... background colour of input/output boxes

function.......... R function to call when the entry is changed

enter..... if TRUE, call the function only after the <Enter> key is pressed

action ... string value associated whenever this widget is engaged

MOAE c.veveerrierrennes R mode for the value entered, where valid modes are:

numeric, integer, complex, logical, character

—-33-

sticky i option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
PAAK ceiieeiieriene space used to pad the widget on the left and right
PAAY e space used to pad the widget on the top and bottom
Example

window title="Widget = entry"
entry name=junk value="Enter something here" width=20
mode=character

=

|Enter zomething here

Grid

Description

Creates space for arectangular block of widgets. Spaces must be filled. Widgets can be any
combination of available widgets, including grid.

Usage
type=grid nrow=1l ncol=1 toptitle="" sidetitle="" topfont=""
sidefont="" byrow=TRUE borderwidth=1 relief="flat"
sticky="" padx=0 pady=0
Arguments
NYOW eevieeriennennens number of rowsin the grid
Nncol .vieiiiiennne, number of columnsin the grid
toptitle title to place above grid
sidetitle...... title to place on the left side of the grid
topfont....... font for top labels — specify family (Times, Helvetica, Or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), inany order

sidefont font for side labels — specify family (Times, Helvetica, Or
Courier), Size (aspoint size), and style (bold, italic, underline,
overstrike), inany order

DY TrOW...covereene. if TRUE, create widgets across rows, otherwise down columns
borderwidth...width of the border around the grid
relief .o type of border around the grid, where valid styles are:

raised, sunken, flat, ridge, groove, solid
Sticky cennn option for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
joX=To b SRR space used to pad the widget on the left and right

—34-

PAAY e space used to pad the widget on the top and bottom

Example

grid 2 2 relief=groove toptitle=Columns sidetitle=Rows
topfont="Helvetica 12 bold" sidefont="Helvetica 12 bold"
label text="Cell 1" font="times 8 italic"
label text="Cell 2" font="times 10 italic"
label text="Cell 3" font="times 12 italic"
label text="Cell 4" font="times 14 italic"

o

Columns

R Cell I Cell 2
OWS
Cell 3 Cell 4

History

Description

Allows the user to manage atemporary archive (history) of widget settings (records) through
apanel of buttons:

<< Go directly to the first record of the history.

< Go to the previous record in the history.

> Go to the next record in the history.

>> Go directly to the last record in the history.

Sort Sort the order of the records in the history.

n Display window (white background) shows the current record.

N Display window (grey background) shows total number of records in the history.

Empty Remove all records from the history.

Insert Addanew record (current widget settings) to the history, either before, after or
overtop the current record.

Delete Remove the current record from the history.

Import Importapreviousy saved history (text file) to the history, either before or after
the current record.

Export Export the history to atext file.

Usage
type=history name="default" function="" import="" sticky=""
padx=0 pady=0
Arguments
NAME ..vverveervrereeees name of history archive

function.......... R function to call when the history record counter is changed

—-35-—

import ... file name of a saved history to load when the widget is called
Sticky e option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
joX=To b RN space used to pad the widget on the left and right
PAAY e space used to pad the widget on the top and bottom
Example

window title="Widget = history"
vector length=3 names="alpha beta gamma" values="2 5 15"

history padx=20 pady=5

=

alpha beta gamma
|2 |5 |15

L < ¥ b

Sart |EI IEI E mipty

Inzert | Delete | Import | Export

i before e after { owr

L abel

Description

Creates atext label. If the text argument isleft blank, 1abel emulatesthenull widget.

Usage
type= label text="" font="" fg="black" bg="" sticky="" padx=0
pady=0
Arguments
teXt e text to display in the label
font ., font for labels — specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), inany order
e SRR colour for label fonts
oY RN background colour for widget
sticky . option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
joX=To b SUNUR space used to pad the widget on the left and right

PAAY ceeeerieriene space used to pad the widget on the top and bottom

—-36-

Example

window title="Widget = label™
label text="Information Label™"

_IBi x|

|nformation Label

M atrix

Description

An aligned set of entry fields for all components of amatrix. If the modeislogical, the
matrix appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=matrix nrow ncol names rowlabels="" collabelg=""
rownames="" colnames="" font="" fg="black" bg=""
entryfont="" entryfg="black" entrybg="white" values=""
byrow=TRUE function="" enter=TRUE action="matrix"
mode="numeric" width=6 sticky="" padx=0 pady=0
Arguments
NYOW evveireeveareenees number of rows (required)
NCOl .ovvviieerrreenne number of columns(required)
NAMES..cevvereerrennnns either one name or a set of nrow*ncol names used to store the matrix in

R (required)

rowlabels........ either one label or a vector of nrow labels used to label rows of this
matrix in the display

collabels........ either one label or avector of ncol labels used to label columns of this
matrix in the display

YOWNames string scalar or vector of length nrow to name the rows of the matrix
colnames string scalar or vector of length ncol to name the columns of the matrix
font . font for labels — specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), inany order

e SRR colour for label fonts

oY PN background colour for widget

entryfont........ font of entries appearing in input/output boxes

entryfg..... font colour of entries appearing in input/output boxes

entrybg...... background colour of input/output boxes

values ... default values (either one value for all matrix components or a set of
nrow*ncol vaues)

bYyTrow...coeeeeenen, if TRUE and nrow*ncol names are used, interpret the names by row;

otherwise by column. Similarly, interpret nrow*ncol initial values.

—37-

function.......... R function to call when any entry in the matrix is changed
enter..... if TRUE, call the function only after the <Enter> key is pressed
action ... string value associated whenever this widget is engaged
MOAE c.veverrriereennes R mode for the matrix, where valid modes are:
numeric, integer, complex, logical, character
width. . character width to reserve for the each entry in the matrix
Sticky cennn option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
PAAK ceiieeiieriene space used to pad the widget on the left and right
PAAY e space used to pad the widget on the top and bottom
Example

window title="Widget = matrix"

matrix nrow=2 ncol=3 rowlabels="'Row A' 'Row B'"
collabels="'Col 1' 'Col 2' 'Col 3'" wvalues="10 20 30 100
200 300" names="a b ¢ d e f" font="times 10 italic"

=
Col I Col 2 Col 3
Row A|10 [20 30
Fow E[100 200 300

Menu

Description
A menu grouping. Submenus can either be menu or menuitemn.
Usage

type=menu nitems=1 label font=""

Arguments
nitems.....cccco.... number of items or submenus to include in the menu
label...ee... text to display as the menu label (required)
font . font for labels — specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), inany order

Example (assuming that the R functions have been defined)

window title="Widget = menu"
menu nitems=1 label="Widgetsg"

menuitem label="Show arguments" func=showArgs
menu nitems=4 label="Test functions"

menuitem label="Colours" func=testCol

—-38-

menuitem label="Line types" func=testLty
menuitem label="Line widths" func=testLwd
menuitem label="Point symbols" func=testPch

Widget = menu O] x|
Widgets | Test funckions

Colours

Line types
Line widths
Point symbols

Menultem

Description
Oneof nitems following amenu command.

Usage
type=menuitem label font="" function action="menuitem"
Arguments
label...eeee. text to display as the menu item label (required)
font ., font for labels — specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), inany order
function.......... R function to call when the menu item is clicked (required)
action ... string val ue associated whenever this widget is engaged
Null
Description

Creates a null widget, useful for padding a grid with blank cells that appear as empty space.
Usage
type=null padx=0 pady=0

Arguments
PAAK e space used to pad the label on the left and right
joX=To VAU space used to pad the label on the top and bottom
Example

grid 2 2 relief=raised toptitle=Top sidetitle=Side
topfont="Courier 10 bold" sidefont="courier 10 bold"
label text="Here" font="courier 8"

—-39-—

null

null

label text="There" font="courier 8"

" widoet = null SMSTeTE]
Top
Here
Side
There

Object
Description

A widget that represents the R-object specified — a vector becomes avector widget, a
matrix becomes amatrix widget, and a data frame becomes a data widget. transpose

Usage
type=object name font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" vertical=FALSE byrow=TRUE
function="" enter=TRUE action="data" width=6 sticky=""
padx=0 pady=0
Arguments
NAME ..vverveervrereeees name of object (vector, matrix, or dataframe) to convert to awidget
(required)
font ., font for labels — specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), inany order
i< SRR colour for label fonts
oY RN background colour for widget
entryfont........ font of entries appearing in input/output boxes
entryfg..... font colour of entries appearing in input/output boxes
entrybg.......... background colour of input/output boxes
vertical ... if TRUE , display the vector as a vertical column with labels on the left;
otherwise display it as a horizontal row with labels above
function.......... R function to call when any entry in the vector is changed
enter..... if TRUE, call the function only after the <Enter> key is pressed
action ... string value associated whenever this widget is engaged
width.eee, character width to reserve for the each entry in the vector
sticky . option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
joX=To b RN space used to pad the widget on the left and right

PAAY e space used to pad the widget on the top and bottom

—40-—

Example

window bg="#ffd2a6" title="Object: longley"

label text="Longley\'s Economic Regression Data" font="bold
12" f£g="#400080" pady=0 sticky=S

object name=longley width=7 pady=5

_iafx]
Longley's Economic Regression Data
GMP.deflatar GNP Unemployed Armmed Forces Population Year Employed
1947 |83 234289 |235E 159 107608 [1947 B0.323
1948|885 2h9.426 2325 1456 108.632 [1948 B1.122
1949 |88.2 2hB.054 |3B8.2 1E61.6 108,773 [1945 E0.17
1950 189.5 284593 3351 165 110,929 1950 E1.187
1951 |96.2 328975 2099 309.9 112075 (1951 E3.21
1952|981 346993 1932 3594 11327 1982 E3.639
1953 |99 3EB.38R |187 3B4.7 115.094 [1953 E4.929
1954|100 363112 |357.8 335 116.219 1954 £3.7E1
1955 |101.2 397469 2904 304.8 117.388 [1955 EE.013
1956|1046 41918 2822 2887 118.734 [1956 E7.957
1957 |108.4 442 7E3 |293E 279.8 120,445 1957 E8.163
1958 |110.8 444 545 |468.1 2637 12195 [1958 EE.513
1953|1126 452704 |381.3 2882 123,366 1959 E8.655
19600 |114.2 502601 3931 251.4 125368 1960 £3.564
1961 |115.7 518173 |480E 257.2 127.852 [1961 £3.331
1962 |11E.9 5h4.894 14007 2827 130,081 [1962 70.551

Radio

Description

One of aset of mutually exclusive radio buttons for making a particular choice. Buttons with
the same value for name act collectively to define a single choice among the alternatives.

Usage
type= radio name value text="" font="" fg="black" bg=""
function="" action="radio" mode="numeric" sticky="" padx=0
pady=0
Arguments
NAME ..vverveereareenees name of R variable atered by this radio button, where radio buttons with
the same name define a mutually exclusive set (required)
value.....ceoen. value of the variable when this radio button is selected (required)

EeXE i identifying text placed to the right of this radio button

—41 -

font .. font for labels — specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), inany order

e SRR colour for label fonts

oY RN background colour for widget

function.......... R function to call when this radio button is selected

action ... string value associated whenever this widget is engaged

11ToTe [N R mode for the value associated with this button, where valid modes are:
numeric, integer, complex, logical, character

Sticky cininn option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW

joX=To b SRR space used to pad the widget on the left and right

PAAY e space used to pad the widget on the top and bottom

Example
window title="Widget = radio"
grid 1 4

radio name=junk value=0 text="None"

radio name=junk value=1 text="Option A"
radio name=junk value=2 text="Option B"
radio name=junk value=3 text="Option C"

=

" Mone ¢ Optiond ¢ OptionB ¢ Option C

Slide

Description
A dlide bar that sets the value of avariable. Thiswidget only accepts integer values.

Usage
type= slide name from=0 to=100 value=NA showvalue=FALSE
orientation="horizontal" font="" fg="black" bg=""
function="" action="glide" sticky="" padx=0 pady=0
Arguments
NAME evvevveeereeianen name of the numeric R variable corresponding to this slide bar (required)
froM. e, minimum value of the variable (must be an integer)
{5 JRR maximum value of the variable (must be an integer)
valu€...coeenen. initial slide value, where the default is the specified £ rom value
showvalue........ if TRUE, display the current slide value above the dlide bar

orientation...directionfor orienting thedidebar: horizontal or vertical

—42—

font .. font for labels — specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), inany order

e SRR colour for label fonts
oY RN background colour for widget
function.......... R function to call when the slide value is changed
action ... string value associated whenever this widget is engaged
Sticky e option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
PAAX i space used to pad the widget on the left and right
PAAY e space used to pad the widget on the top and bottom
Example

window title="Widget = slide"
slide name=junk from=1 to=1000 value=225 showvalue=T

=T
225

[

SlidePlus

Description

An extended dlide bar that also displays a minimum, maximum, and current value. This
widget accepts real numbers.

Usage
type= slideplus name from=0 to=1 by=0.01 value=NA function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0
Arguments
NAME ..vvvreeerreeeeenns name of the numeric R variable corresponding to this slide bar (required)
from. e minimum value of the variable
(o JUNURNRRR maximum value of the variable
o)A minimum amount for changing the variable’ s value
value....coeene. initial slide value, where the default is the specified £ rom value
function......... R function to call when the slide value is changed
enter....... if TRUE and the dide value is changed via the entry box, call the function
only after the <Enter> key is pressed
action ... string value associated whenever this widget is engaged
Sticky e option for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
PAAX ceieieieen space used to pad the widget on the left and right

—43-—
PAAY e space used to pad the widget on the top and bottom

To facilitate retrieving and setting the minimum and maximum values, two additional
variables are created by suffixing " .max" and " . min" to the given name.
Example

window title="Widget = slideplus"
slideplus name=junk from=0 to=1 by=0.01 value=0.75

_lolx]
| |

Mins |0 075 |1 <-Max

Text

Description

An information text box that can display messages, results, or whatever the user desires. The
displayed information can be either fixed or editable.

Usage
type= text name height=8 width=30 edit=FALSE scrollbar=TRUE
fg="black" bg="white" mode="character" font="" value=""
borderwidth=1 relief="sunken" sticky="" padx=0 pady=0
Arguments
NAME ..evvrveeerereenees name of the R variable containing the text (required)
height ..cceueeee. text box height
width. . text box width
edit e, if TRUE, the user can edit the value stored in name
scrollbar....... if TRUE, ascroll bar is added to the right of the text box
e SRR colour for label fonts
o1 FOUNTRUPRTR background colour specified in hexadecimal format; e.g.,
rgb (255,209,143, maxColorValue=255) yields"#FFD18F"
11ToTe [-NN R mode for the value associated with this widget, where valid modes are:
numeric, integer, complex, logical, character
font . font for labels — specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), inany order

value....ceoene. default value to display in the text

borderwidth...width of the border around the text box

—44—

relief ... type of border around the text, where valid styles are:
raised, sunken, flat, ridge, groove, solid
sticky . option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW
joX=To b SRR space used to pad the widget on the left and right
PAAY ceeeeieriene space used to pad the widget on the top and bottom
Example

window title="Widget = text"

text name=mytext height=2 width=55 bg="#FFD18F" \
font="times 11" borderwidth=1 relief="sunken" edit=TRUE \
value="You can edit the text here and change the value of
\ "mytext\ nn

_ioix

|Tx’nu can edit the text here and change the value of "mytesxt"

Vector

Description

An aligned set of entry fields for all components of avector. If the modeislogical, the vector
appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=vector names length=0 labels="" values="" vecnames=""
font="" fg="black" bg="" entryfont="" entryfg="black"
entrybg="white" vertical=FALSE function="" enter=TRUE
action="vector" mode="numeric" width=6 sticky="" padx=0
pady=0
Arguments
NAMES..cceerrerreenne either one name (for awhole vector) or a vector of names for individual
variables used to store the valuesin R (required)
length............ required only if asingle nameis given for avector of length greater than 1
labels..c.. labels for the vector display — either one label, avector of 1ength labels,
or NULL for no labels (default " " labels with names and, if number of
specified names is one, numbered elements)
values default values (either one value for al vector components or a vector of
length values)
vecnames string vector of length 1ength to name the scalars or vector
font ., font for labels — specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

—45—

e SRR colour for label fonts

oY RN background colour for widget

entryfont........ font of entries appearing in input/output boxes

entryfg....... font colour of entries appearing in input/output boxes

entrybg........ background colour of input/output boxes

vertical ... if TRUE , display the vector as a vertical column with labels on the left;
otherwise display it as a horizontal row with labels above

function.......... R function to call when any entry in the vector is changed

enter...... if TRUE, call the function only after the <Enter> key is pressed

action ... string value associated whenever this widget is engaged

MOAE c.evvevrrierienne R mode for the vector, where valid modes are:
numeric, integer, complex, logical, character

width.e. character width to reserve for the each entry in the vector

Sticky i option for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW

PAAX i space used to pad the widget on the left and right

PAAY oo space used to pad the widget on the top and bottom

Example

window title="Widget = vector"

vector length=4 names="a b g d" labels="alpha beta gamma
delta" values="100 0.05 1 5" font="times italic" width=6

vector length=5 mode=logical names=chosen labels=choose
values="F T F T T"

=T

alpha beta garuma delfa
{100 fo.0s [1 |5

chooze
1 2 3 4 4]
VO ¥V~

Window

Description

Create a new window. Windows are used as a pal ette upon which widgets are placed. Each
open window has a unique name. The function closewWin closes all windows unless a
specific name (or vector of names) is provided by the user. Also, if createWin opensa
window with aname already in use, the older window is closed before the new window is
opened.

— 46—

Usage
type=window name="window" title="" vertical=TRUE bg="#D4D0C8"
fg="#000000" onclose=""
Arguments
NAME vevereeireeinens unigue name identifying an open window
title. .. text to display in the window’ stitle line
vertical if TRUE, arrange widgets vertically, top to bottom, within the window
o7 PN background colour for window
e SRR colour for label fonts
onclose........... name of function called when user closes the window by pressing E
Example

window title="Widget = window (upon which all other widgets
are placed)™"

Widget = window {upon which all other widgelz - |I:I|£|

—47 -

Appendix B. Building PBSmodelling and other packages

The R project defines a standard for creating a package of functions, data, and
documentation. Y ou can obtain a comprehensive guide to “Writing R Extensions’
(R Development Core Team 2006b, R-exts . pdf) from the CRAN web site or the R GUI
(see the References above). Ligges (2003) and Ligges and Murdoch (2005) provide useful
introductions. We have designed PBSmode11 ing and avery simple enclosed package
PBStry as prototypes for package development. This Appendix summarizes the steps needed
to:

B.1. install the required software;

B.2. build PBS Modelling from source materials,

B.3. write source materials for a new package and compile them;
B.4. include C code in a package.

Our discussion applies only to package development on a computer running Microsoft
Windows 2000, XP, or (maybe) later. We particularly highlight issues that have proved
troublesome for us. The R 1ibrary directory PBSmodelling\PBStools contains batch
filesthat can assist the process. For example, you might locate this directory as
C:\Utils\R\R-2.5.0\1library\PBSmodelling\PBStools.

B.1. Installing required software

Building R packages requires five pieces of free software. Duncan Murdoch currently
maintains their availability and installation instructions at:
http://www.murdoch-sutherland.com/Rtools/

Users should periodically check this website for changes to the various software packages. We
recommend installing each package on a path that does not include spaces. For example, avoid
using C:\Program Files, evenif that happensto be part of a package’s default path. In this
appendix, weuse C: \Utils asaroot directory for all required software. Thelist below givesa
brief summary of the required software (Murdoch provides links to these products).

1. Ritself, currently version 2.5.0 (C: \Uti1s\R\R-2.5.0). Weassume that R is aready
installed from the CRAN web site http://cran.r-project.org/ and that it runs correctly on your
computer. We also assume that the package PBSmodellingisinstaledin R.

2. ActivePerl: text scripting language (C: \Utils\Perl\).

3. Rtoolsinstaller: Command linetools (C: \Utils\Rtools\) and MinGW compilers, etc.
Download and run thefileRtools . exe. Theinstallation should create the subdirectories
\bin for command line programs and \MinGW for the minimalist GNU C compiler for
Windows. These tools are essential. DO NOT plan to use programs with the same namein an
installation of Cygwin or any other UNIX emulator that happens to be installed on your
computer.

4. TheMicrosoft HTML Help Workshop (C: \Utils\HHW\). Run theinstallation file
HtmlHelp.exe. After installation, we think you can safely ignore a message that “This

— 48—

computer already has a newer version of HTML Help”. (If anyone has different information,
please let us know.)

5. MiKTeX: aLaTeX and pdftex package (C: \Utils\MiKTeX). Thelink takes the user to
http://www.miktex.org/. This processor for TeX and LaTeX files helps typeset help files
within a package. Download the “basic” installation file, and install these components only.
Y ou can add more LaTeX packages from the Internet later, as required. (MiKTeX often does
this automatically.) Take some time to investigate the MiKTeX package manager (mpm. exe
or go to the “Programs’ menu and select “MiKTeX 2.5”, “Browse Packages”).

We recommend enhancing MiKTeX dlightly, so that it can independently process the LaTeX
files produced from R documentation files.

a) Create a new subdirectory \R under the MiKTeX’ s directory for storing LaTeX styles and
font definitions (e.g., C: \Utils\MiKTeX\tex\latex).

b) Copy into it al filesfrom \ texmf inthe R instalation tree (e.g., C: \WinApps\R\R-
2.5.0\share\texmf). These shouldincludeRd. sty

¢) Go to the " Start” menu, select “Programs’ then “MiKTeX 2.5”, and run the program
“Settings’. In the “General” tab, click the button marked “Refresh FNDB”. This refreshes
MiKTeX’sfile name database, so that it recognizesfilesin the new \R subdirectory.

Thetext editor WinEdt (available from http://www.winedt.com/) provides a convenient GUI
for editing LaTeX files and operating MiKTeX. Combined with the R package RWinEdt, it
can also serve as an editor and interface for R. However, it isavailable only as shareware that
requires afee for long-term use, unlike any other software mentioned here.

PBStools for building R packages

After these five pieces of software are installed, you' re ready to start building R
packages. For this purpose, create a new directory (e.g., D: \Rdevel)\) that will contain your
packages. Within the R library directory (C:\Utils\R\R-2.5.0\1library\), find the
subdirectory PBSmodelling\PBStools. Copy al the batch files there into your new
packages directory. Y ou should have these 11 files:

e definePaths.bat, checkPaths.bat related to the installation;

e unpackPBS.bat, checkPBS.bat,buildPBS.bat, packPBS.bat, related to
PBS Modelling;

e unpack.bat, check.bat,build.bat, pack.bat, makePDF .bat related to the
construction of new packages.

IMPORTANT: You need to change def inePaths . bat so that it reflects the paths you chose
in the above six installations. For example, your version of this batch file might contain the lines

set R_PATH=C:\Utils\R\R-2.5.0\bin

set TOOLS PATH=C:\Utils\Rtools\bin

set PERL_ PATH=C:\Utils\Perl\bin

set MINGW PATH=C:\Utils\Rtools\MinGW\bin

—49—

set TEX PATH=C:\Utils\MiKTeX\miktex\bin
set HTMLHELP PATH=C: \Utils\HHW

Notice that each path, except the last, endsin abin subdirectory.

Hopefully, your installation is now complete. In your new packages directory, run
checkPaths.bat fromacommand line or double-click theicon. This script verifiesthat a
few essential fileslie on the indicated paths. If everything is correct, you should see the message
“All program paths look good”. Otherwise, you' [l see awarning about software that doesn’t
appear on your specified paths.

If you view all the batch files with atext editor, you will see that they don’t use your
system PATH environment variable. Instead, each one defines anew local path appropriate for
building R packages (viacheckPaths .bat). A SETLOCAL command ensures that this
change doesn’'t alter your system’s permanent environment.

B.2. Building PBSmodelling

Once all the required software isinstalled, the batch files discussed above make it fairly
easy to build PBSmodel1ing. We assume that you have aready created the directory
discussed in Appendix B.1, say D: \Rdevel, for building R packages and that it contains the
relevant eight batch files. In particular, def inePaths . bat should reflect your installation
paths and checkPaths .bat should report the message that “ All program paths look good”.
Then follow these steps:

1. Onthe CRAN web site http://cran.r-project.org/, go to “Packages’ on the left and find
PBSmodelling. Download thefile PBSmodelling x.xx.tar.gzintoD:\Rdevel
Then rename thisfile (or copy it and rename the copy) so that the version number is
removed. Y ou should now havethefile PBSmodelling.tar.gz inD:\Rdevel.

2. Inthe development directory D: \Rdevel, double-click the icon for unpackPBS .bat or
type the command unpackPBS in a corresponding command window. This should extract
the contents of PBSmodelling.tar.gz, preserving directory structure, into a
subdirectory \PBSmode11ing with five sudirectories. \data, \inst, \man, \R, and
\src.

3. Our batch fileusesthe command tar -xzvf PBSmodelling.tar.gz, where
tar.exe appearsinthe \Rtools directory (section B.1, step 3). The command line
parameters specify averbose (v) extraction (x) of the given file (£), after filtering with
gzip (z).

If you use other software for this extraction, please ensure that it is configured to handle

UNIX files correctly. For example, “WinZip” has an option to extract a“TAR file with smart
CR/LF conversion”. This must be turned off.

4. Inthebasedirectory D: \Rdevel, double-click theicon for checkPBS .bat or type the
command checkPBS in a corresponding command window. If all softwareisinstalled
correctly and D: \Rdevel \PBSmodel1ing correctly represents the contents of the

—-50-

.tar.gz file, you should see a series of DOS messages reporting “OK” to various tests. A
distinct pause might accompany the message: “checking whether package 'PBSmodelling'
canbeinstalled ...”.

5. You might also encounter adelay as MiKTeX downloads the LaTeX package 1modern,
part of alarger package 1m. If thisisreally slow, you can abort the process and install 1m
with the MiKTeX package manager, as discussed in step 5 of section B.1. Choose aremote
server near you. You only need to do thisonce. When it’ sfinished, run checkPBS.bat
again.

6. Examinethe new directory D: \Rdevel \PBSmodelling.Rcheck created by the
check processin step 2. Thetext fileso0check.logand 00install.out show
detailed results.

7. Inthebase directory D: \Rdevel, double-click theicon for bui1dPBS.bat or typethe
command buildPBS in acorresponding command window. This creates the file
D:\Rdevel\PBSmodelling. zip, which could be used to install PBSmodelling
fromalocal zip file.

8. Againinthebasedirectory D: \Rdevel, double-click theicon for packPBS.bat or type
the command packPBS in a corresponding command window. This creates a new package
distribution file PBSmodelling x.xx.tar.gz that replaces the one downloaded from
CRAN in step 1.

9. Finally, type the command makePDF PBSmodelling inacommand window for
D:\Rdevel. This generates an indexed documentation file PBSmodelling.pdf.
See Appendix C.3 for further details about the use of thisfile for producing this report.

If these steps all work without problems, you can feel confident that the requisite softwareis
installed correctly and that you understand the basic steps needed to build R packages.

B.3. Creating a new R package

R packages require a special directory structure. The R function package . skeleton
automatically creates this structure, but (without further work) it does not produce a package that
can be compiled. Although PBSmode11ing hasthe requisite structure, it is perhaps too
complicated to serve as a convenient prototype. For this reason, we include a small subset
PBStry that illustrates the key details. Y ou can make a new package simply by editing the files
in PBStry. You need asuitable editor (e.g., UltrakEdit, WinEdt, or Notepad) to view and change
various text files.

1. Start by locating thefile PBStry x.xx.tar.gz intheR library directory
\PBSmodelling\PBStools. Copy thisfileinto your development directory
(D:\Rdevel), and renameit (or copy and rename the copy) to obtain the file
PBStry.tar.gz.

2. Remove any previous traces of PBStry in your development directory, such as
subdirectories PBStry , PBStry.Rcheck, and .Rd2dvi, aong with the documentation
filePBStry.pdf.

—51—

3. Follow steps similar to those in section B.2 to unpack, check, build, re-package, and
document PBStry. Y ou must now use a DOS command window in D: \Rdevel toissue
the five commands
unpack PBStry
check PBStry
build PBStry
pack PBStry
makePDF PBStry
which invoke the batch filesunpack .bat, check .bat, build.bat, pack.bat and
makePDF . bat. Thefirst command should give you a new subdirectory \ PBStry, along
with its five sudirectories: \data, \inst, \man, \R, and \src

4. Useyour editor to open thefile DESCRIPTION in theroot directory \PBStry. Thisfile,
essential in every R package, contains key information in a specia format (RDCT 2006b,
section 1.1.1). The following example illustrates aminimal set of required fields.

5. Package: MyPack
Version: 1.00
Date: 2006-12-31
Title: My R Package
Author: User of PBS Modelling
Maintainer: User of PBS Modelling
Depends: R (>= 2.3.0)
Description: My customized R functions
License: GPL version 2 or newer (recommended)

6. The package namein DESCRIPTION must agree with the directory namein which thisfile
lies. For example, if you change PBStry to MyPack in DESCRIPTION and rename the
directory from \ PBStry to \MyPack, you have effectively changed the package name.
Similarly, if you change the versionto 1. 01, you have effectively changed the version
number that appears in the file names for distributing your package.

7. Thesubdirectory \PBStry\R containsall R code used by the package. For example,
PBStry includes seven R functions (calcFib, calcFib2, calcGM, calcSum,
findPat, pause, and view). The seven files could be combined into asingle file (such as
PBStry.R), but we use separate files here for clarity. The functions al have relatively
simple code, hopefully comprehensible to users with limited R experience. Five of them
come from PBSmodel1ing. Three of them (calcFib, calcFib2, calcSum) cal
compiled C code, as we discuss more completely in section B.4 below.

8. By convention, thedistinct file zzz . R defines code for initializing the package. In this case
thefunction .First.1lib, calslibrary.dynam toload adynamic link library
(PBStry.dl11l) created from compiled C code during the build process.

9. When aversion number changes, the DESCRIPTION file must be changed accordingly. We
also like to make a corresponding change in zzz . R, so that the version number appears on
the R console when the library isloaded. PBStry illustrates this possibility for zzz . R.

52—

10. The subdirectory \PBStry\data contains all data objects that come with the package.
Here, the binary file QBR . rda holds a matrix of quillback rockfish (Sebastes maliger)
sample data used in the CCA example above (section 5.2.3). The same data matrix is called
CCA.gbr.hl in PBSmodelling.

11. If you want to add data to a new package, first create the object (e.g., myData) in R and then
execute the command:
save (myData, file="myData.rda")

The object name must match the prefix in the file name, and the suffix must be . rda.
Include the resulting file in your package’s \ data subdirectory.

12. The subdirectory \ PBSt ry\man contains a documentation file for every object in the
package. PBStry has six functions and one data set, so the \man subdirectory has seven
corresponding R documentation files (* . Rd). An additional file PBStry . Rd documents the
package as awhole. Rd files use arather complex scripting language (RDCT 2006b,
section 2) that can be converted to help filesin severa formats (PDF, HTML, text). For
many packages, the examplesin PBStry may provide adequate prototypes. They represent
three distinct cases. functions (e.g., calcGM.Rd, findPat . Rd), data sets (QBR . Rd), and
complete packages (PBStry . Rd).

13. The subdirectory \PBStry\ src contains source code for C code to be compiled into the
dynamic link library PBStry.d11. Weinclude sample files to calculate Fibonacci numbers
iteratively (fib.c, £ib2. c¢) and to add the components of a numeric vector (sum. c). In
section B.4, we discuss the linkage between R code and compiled C functions.

14. Finally, the subdirectory \PBStry\inst containsfilesthat areto beincluded directly in
the R library tree for PBStry when the packageisinstalled. Thefile PBStry-Info. txt
briefly describes the context and purpose of the trial package.

If you have successfully followed the steps above, you have actually built two R
packages, PBSmodelling and PBStry. Furthermore, you' re reasonably familiar with the
contents of PBStry. You can use thefilesin that small package as prototypes for writing your
own R package, which might contain R code in the subdirectory \R. datain \data, C source
codein \src, and R documentation in \man.

The larger package PBSmode11 ing offers more prototypes and uses a somewhat
different style. The main directory includes the required DESCRIPTION file, plus asecond file
NAMESPACE that lists all objects available to a user of the package. Effectively, the namespace
mechanism distinguishes between objects provided by the package and other (hidden) objects
required for the implementation, but not intended for public use. Our NAMESPACE file contains
therather cryptic instruction: exportPattern ("* [*\\.1").TheRstring"* [*\\.1"
trandates to the regular expression * [*\ .] that designates any pattern not starting with a period
(.).- Wedon't export “dot” objects, whose names in R start with a period. (For more complete
information on these functions, see Appendix C2.) The NAMESPACE file must al'so import
functions required from other packages. Because PBSmodel1ling relieson tcltk, thefile
includes the command: import (tcltk).

—B53-—

In PBStry, without a namespace, thefile zzz . R defines the initializing function
.First.lib, asmentioned in step 8 above. By contrast, the namespace protocol in
PBSmodelling requires adifferent name for theinitializing function: . onLoad in zzz.R.

In summary, we recommend building a new package by editing, adding, and deleting
prototypefilesin PBStry. Our batch files can facilitate tests and debugging. For more advanced
work, particularly packages with a namespace protocol, ook at PBSmodelling. Havea
current version of RDCT (2006b) available, and consult that manua when necessary. We find it
useful to keep the PDF file open and to use Acrobat’ s search feature (Ctrl-F) to find topics of
interest.

B.4. Embedding C code

R providestwo functions, .C () and.cCall (), for invoking compiled C code. PBStry
includes two simple examplesthat use . C (), probably the method of choice for simple
packages. The .call () function uses amore complex interface that offers better support for R
objects, and another exampleillustrate that calling convention.

Table B1. C representations of R data types.

R Object C Type

logical int *

integer int *

double double *
complex Rcomplex * !
character char **

! Rcomplex isdefined in Complex.h.

Calling C functionsfrom R using . C ()

The . c () caling convention uses the following key concepts:

e R must allocate the appropriate length and type of variables before calling a C function.

e R objectsare transformed into an equivalent C type (Table B.1), and a pointer to the valueis
passed into the C function. All values are returned by modifying the original values passed in.

e A Cfunctioncaled by .cC () must have return type void, because values are returned only
by accessing the predefined R function arguments.

e C code written for the shared DLL must not contain amain function.

e Within a C function, dynamically allocated memory must be de-allocated by the programmer
before the function returns. Otherwise a memory leak will likely occur.

e .C()returnsalist similar tothe'..." list of arguments passed in, but reflecting any changes
made by the C code. (See the help filefor . C)

54—

Table B2. Two text filesassociated witha . C () call in PBStry. R codein thefirst filecalsC
code in the second.

File1: calcFib.R

calcFib <- function(n, len=1) {
if (n<0) return(NA) ;
if (len>n) len <- n;
retArr <- numeric (len) ;
out <- .C("fibonacci", as.integer(n), as.integer(len),
as.numeric (retArr), PACKAGE="PBStry")
x <- out[[3]]
return(x) }
File 2: fib.c

void fibonacci(int *n, int *len, double *retArr) {
double xa=0, xb=1, xn=-1; int i,7j;
/* iterative loop */
for (i=0;i<=*n;i++)
/* initial conditions: fib(0)=0, fib(1)=1 */
if (i <= 1) { xn = 1i; }
/* fib(n) = fib(n-1) + fib(n-2) */
else {xn = xa + xb; xa = xb; xb = xn; }
/* save results if iteration i is within the
range from n-len to n */
j =1 - *n + *len - 1;
if (j »>= 0) retArr[j] = xn;
} /* end loop */
} /* end function */

Thefunction calcFib in PBStry illustrates an application of these concepts
(Table B2). The R function uses C code to calculate the first n Fibonacci numbersiteratively,
where a vector holdsthe last 1en numbers calculated. After ensuring that n and 1en satisfy
obvious constraints, the R code creates areturn array retArr of the appropriate length. The . C
call passesn, 1en, and retArr by reference to the C function f ibonacci. On exit, the
vector out containsalist corresponding to the input variablesn, 1en, and retArr, so that the
third component out [[3] 1 holds the modified vector of values calculated by fibonacci.
We encourage you also to examine a second example in PBStry , associated the files
calcSum.R and sum.c.

—-55—

TableB3. .call () example adapted from PBStry, with two associated text files. R code in
thefirst file calls C code in the second.

File 1: calcFib2.R
calcFib2 <- function(n, len=1) {

out <- .Call("fibonacci2", as.integer(n),
as.integer(len), PACKAGE="PBSmodelling")

return (out) }
File 2: fib2.c

#include <R.h>
#include <Rdefines.h>
SEXP fibonacci2 (SEXP sexp n, SEXP sexp len) ({
/* ptr to output vector that we will create */
SEXP retVals;
double *p retVals, xa=0, xb=1, xn;
int n, len, i, j;
/* convert R variables into C 'int's */
len = INTEGER VALUE (sexp len);
n = INTEGER VALUE (sexp n) ;
/* Allocate space for the output vector */
PROTECT (retVals = NEW NUMERIC(len)) ;
p_retVals = NUMERIC POINTER (retVals) ;
/* iterative loop */
for (i=0; i<=n; i++) {
/* initial conditions: fib(0)=0, fib(1)=1 */
if (4 <= 1) { xn = i; }
/* fib(n) = fib(n-1) + fib(n-2) */
else { xn = xa + xb; xa = xb; xb = xn; }
/* save results if iteration i is within the
range from n-len to n */
j =1 -n+ len - 1;
if (j »>= 0) p retvals[j] = xn;
} /* end loop */
UNPROTECT (1) ;
return retVals;
} /* end fibonacci2 */

Calling C functionsfrom R using .Call ()

The . () convention requires afairly simple conversion of R objectsinto C types
(Table B.1). By contrast, .Call () provides extrastructure that enables C to handle R objects
directly (RDCT 2006b, section 4.7). This function uses “S-expression” SEXP types defined in
rinternals.h., afileinthe \include directory of the R installation. An SEXP pointer can
reference any type of R object. The . Call () convention uses the following key concepts:

e Cfunctionscalled by R must accept only SEXP typed arguments. These arguments should be
treated as read only.

—-56-—

e Similarly, C functions called by R must have SEXP return types.

e The Programmer must protect R objects from the R garbage collector, and must release
protected objects before the function terminates. R provides macros for this task.

e C code written for the shared DLL must not contain amain function.

e Within a C function, dynamically allocated memory must be de-allocated by the programmer
before the function returns. Otherwise a memory leak will likely occur.

Thefunction calcFib2 in Table B3 illustrates an application of these concepts. As
before, the R function uses C code to calculate the first n Fibonacci numbersiteratively, where a
vector holdsthe last 1en numbers calculated. (To save space, we' ve removed R code that checks
constraintson n and 1en). Thesimple . Call to fibonacci?2 looks very natural. Input values
n and 1en produce the output vector out, where the C code must somehow determine what
out should be. Not surprisingly, it requires more complicated C code to make this happen.

The C function f ibonacci2 (Table B3) first loads header files that include the
required definitions from R. All input and output variables belong to type SEXP. Other internd
variables have the standard C types double and int. Functionslike INTEGER VALUE ()
convert R typesinto C types. The SEXP vector retVals of return valuesis created by the R
constructor NEW NUMERIC () and then protected from garbage collection by PROTECT ().
After al required variables are defined and type cast correctly, the iterative loop of calculations
followsthe earlier example in Table B2. Finaly, the only protected vector retvals isreleased
by UNPROTECT (1), and the standard closing command return retVals returnsthe output
vector from fibonacci?2.

Obvioudly, it takes some time and effort to become familiar with the specialized R types,
constructors, and conversion functions. For this reason, it’s probably easier at firsttouse . C (),
rather than . call ().

—57—

Appendix C. PBS Modelling functions and data

This appendix documents the objects currently available in PBS Modelling, along with a
list of function dependencies for exported functions and hidden “dot” functions. The latter are
hidden through R's NAMESPACE but can be seen through the triple colon convention
(e.0., PBSmodelling: : : .addslashes). Raso providesafunction called
fixInNamespace () for modifying NAMESPACE objects. The final section of this appendix
details how a user can generate a standard R manual for PBS Modelling, that includes a Table of
Contents, help pages for al objects, and an index. The manual itself is also appended.

C.1. Objectsin PBS Modelling

addArrows
addHistory
addLabel
addLegend
backHistory
calcFib
calcGM
calcMin
CCA.gbr
chooseWinVal
clearAll
clearHistory
clearWinval
closeWin
compileDescription
CreateVector
createWin
drawBars
expandGraph
exportHistory
findPat
firstHistory
focusWin
forwHistory
genMatrix
getChoice
getPBSext
getPBSoptions
getWinAct
getWinFun
getWinVal
GTO

Add arrows to aplot using relative (0:1) coordinates

Add current window settings to the current history record
Add alabel to aplot using relative (0:1) coordinates

Add alegend to aplot using relative (0:1) coordinates
Move back one step in the saved values for a history widget
Calculate Fibonacci numbers by several methods
Calculate the geometric mean, allowing for zeroes
Calculate the minimum of user-defined function

Dataset: sampled counts of quillback rockfish (Sebastes maliger)
Choose and set a string item in a GUI

Remove all R objects from the global environment

Clear saved values for a history widget

Remove al current widget variables

Close GUI window(s)

Convert and save awindow description asalist

Create a GUI with avector widget

Create a GUI window

Draw alinear barplot on the current plot

Expand the plot area by adjusting margins

Export a saved history

Search a character vector to find multiple patterns

Jump to the first history record

Set the focus on a particular window

Move forward one step in the saved values for a history widget
Generate test matricesfor plotBubbles

Choose one string item from alist of choices

Get acommand associated with a filename

Retrieve a user option

Retrieve the last window action

Retrieve names of functions referenced in a window
Retrieve widget values for usein R code

Restrict a numeric variable to a positive value

importHistory
initHistory
jumpHistory
lastHistory
openFile
pado
parseWinFile
pause
pickCol
plotACF
plotAsp
plotBubbles
plotCsum
plotDens
plotTrace
promptOpenFile
promptSaveFile
readList
resetGraph
restorePar
rmHistory
runDemos
runkExamples
scalePar
setPBSext
setPBSoptions
setWinAct
setWinval
show0
showArgs
sortHistory
testCol
testLty
testLwd
testPch
testWidgets
unpackList
vbdata
vbpars

view
writeList

—58—

Import a history list from afile

Create structures for anew history widget

Jump to a particular history record

Jump to the last history record

Open afile with the associated program

Pad numbers with leading zeroes

Convert awindow description fileinto alist object
Pause between graphics displays or other calculations
Pick acolour from a palette and get the hexadecimal code
Plot autocorrelation bars from a data frame, matrix, or vector
Construct a plot with a specified aspect ratio

Construct a bubble plot from a matrix

Plot cumulative sum of data

Plot density curves from a data frame, matrix, or vector
Plot trace lines from a data frame, matrix, or vector
Display an “Open File” dialogue

Display a“Save File’ dialogue

Read alist from afilein PBS Modelling format
Reset par valuesfor aplot

Get actual parameters from scaled values

Remove arecord from the history

Run GUI to access demos from any R package installed
Run GUI examplesincluded with PBS Modelling

Scale parametersto [0,1]

Set a command associated with a filename extension
Set a user option

Add awindow action to the saved action vector

Update widget values

Convert numbers into text with specified decimal places
Display expected widget arguments

Sort the history records

Display named colours available based on a set of strings
Display line types available

Display line widths

Display plotting symbols and backslash characters
Display sample GUIs and their source code

Unpack 1ist elementsinto variables

Dataset: Length-at-age data for a von Bertalanffy curve
Dataset: Initial parameters for avon Bertalanffy curve
Display first n rows of an object

Writealist toafilein PBSModelling format

—59—

Dot functions (and two list objects. .pFormatDefs and .widgetDefs)

.addslashes Escape special characters from a string
.autoConvertMode Convert x into a numeric mode
.buildgrid Attach child widgetsto agrid
.catError Display parsing errors

.catError2 Display parsing error (from C code)

.convertMatrixListToDataFrame
Convert alist into a data frame
.convertMatrixListToMatrix
Convert alist to amatrix (or ahigher dimensional array)
.convertMode Convert avariable into a mode without showing any warnings
.convertPararmStrToList
Convert a string representing a widget into a vector
.convertPararmStrToVector
Convert a string representing data into a vector
.convertVecToArray Convert avector to an array
.createTkFont Creates ausable TK font from a given string
.createWidget Call the appropriate sub-function (below) to create a given widget
.createWidget .button
.createWidget.check
.createWidget.data
.createWidget.entry
.createWidget.grid
.createWidget.history
.createWidget.label
.createWidget .matrix
.createWidget.null
.CreateWidget.object
.createWidget.radio
.createWidget.slide
.createWidget.slideplus
.createWidget.text
.createWidget.vector

.dClose Function to execute on closing runDemos ()
.extractData Receive events from TK, and extract datafor getWinAct
.extractFuns Extract alist of called functions

.extractVar Extract valuesfromthe tclvar ptrs of awindow
.fibcC Call Fibonacci C codeviac

.fibcall Call Fibonacci C codeviacall

.fibClosedForm Close form equation for Fibonacci numbers

.fibR Calculate Fibonacci numbersin R using iteration
.getArrayPts Return al possible indices of an array

.getMatrixListSize Determinethe minimum required size of the required array

—-60-

.getParamFromStr Convert a string representing awidget into alist including default
vauesasdefined inwidgetDefs.r

.inCollection Find aneedle in a haystack (may be removed in future)

.initPBSoptions Initialization function when PBSmodel1ing isloaded

.isReallyNull Test if akey existsinalist

.map .add Save anew value for agiven key, if no current valueis set

.map.get Returns a value associated with akey

.map.getAll Return all values of the map

.map.init Initialize the data structure that holds the map(s); a map is another
name for hash table (implemented using an R list)

.map.set Save avalue, even if acurrent one exists

.mapArrayToVec Determine the index to use for avector, given the indices for an
element of ahigher dimensional array

.matrixHelp Store an element in matrix list (or ahigher dimensional array list)

.parsegrid Create a branch in the parse tree for children widgets of agrid

.parsemenu Create a branch in the parse tree for children widgets of a menu

.PBSdimnameHelper Adddimnames to an object

.pFormatDefs A list defining accepted parameters (and default values) for "p
format of readList andwriteList

.readList.P Read alist in P format

.readList.P.convertData Convert data into a proper mode

.searchCollection Search ahaystack for aneedle, or asimilar longer needle
.setMatrixElement Assignvaluesfrom alist into amatrix (or a higher dimensional

array)
.setWinValHelper Update widget valueswhen setWinval iscaled
.sortActHistory Use window action as history name
.sortHelper Helper function to sort history
.sortHelperActive Helper function to sort history
.sortHelperFile Help history with input from and output to an archivefile
.stopWidget Display fatal post-parsing errors and halt
.stripComments Remove comments from a string
.stripSlashes Removes escape backd ashes from a string
.stripSlashesVec Convert agrouping of strings representing an argument into a
vector of strings
.trimWhiteSpace Remove leading and trailing white space
.updateHistory Update widget values
.updateFile Coordinate file transfers

.validateWindowDescList
Check for avalid PBS Modelling description list and set any
missing default values

.validateWindowDescWidgets Validate a single widget
.viewPkgDemo Display a GUI to display something equivalent to R'sdemo ()
.widgetDefs A list defining widget parameters and default values

.writeList.P Savesalist to disk using the "p" format

61—

C.2. Function dependencies

This appendix documents function dependencies within PBS Modelling. All functions

appear as underlined entries in alphabetic order. If afunction depends on others, the list of
dependencies appears below the underlined name. Following a standard in UNIX and R,

functions whose name begins with a period (dot functions) are considered hidden from the user.

PBS Modelling enforces this standard through NAMESPACE discussed in section B.3.

.addslashes .createWidget.data .dClose
.createWidget.grid etWinAct
.autoConvertMode . +ag grs g * .
.stopWidget closeWin
;Egi%ggig%kF nt .createWidget.entry .extractData
-ereatetrnro .createTkFont setWinAct
.createWidget . .
.CcreateWidget.grid
.extractFuns
.catError .extractData
. . .map.add .extractVar
.convertMatrixList Y . .
. . .convertMatrixList
ToDataFrame .createWidget.grid
— . . : . ToDataFrame
.getMatrixListSize .buildgrid .
) .convertMatrixList
.setMatrixElement .createTkFont
ToMatrix
.convertMatrixList .createWidget.history .convertMode
ToMatrix .createWidget .grid .isReallyNull
.getMatrixListSize initHistory .map.getAll
. i . .matrixHel
setMatrixElement .createWidget.label \ p
.PBSdimnameHelper
.convertMode .createTkFont
. . .fibC
.convertPararmStr .createWidget.matrix I
ToList .createWidget .grid .fibCall
. .stopWidget
caFEerr 12 g .fibClosedForm
.trimWhiteSpace
.createWidget.null £ibR
-convertPararmstr .createWidget.object N
ToVector n .getArrayPts
—_— .CreateWidget
-catError etMatrixListSize
.trimWhiteSpace .createWidget.radio = — 3
.getMatrixListSize
.createTkFont
.convertVecToArray
.extractData .getParamFromStr
.getArrayPts
.map.add .catError
.mapArrayToVec
. . .convertPararmStr
.createWidget.slide ,
.createTkFont ToList
.createTkFont ,
.convertPararmStr .isReallyNull
.extractData .
ToVector .searchCollection
.map.add
createWidaet .stripSlashes
: isRealfHNull .createWidget.slideplus .stripSlashesVec
’ Y .extractData .trimWhiteSpace
i .map.add .
.CreateWidget .button P inCollection
.createTkFont .map.set
.extractData .createWidget . text .1nitPBSoptions
.createWidget .check .createTkFont .isReallyNull
.createTkFont .map.add
extractData -map.add
’ .createWidget .vector .isReallyNull
.map.add . . .
.createWidget.grid .map.init

.stopWidget

.map.get

.map.getAll
.map.init

.map.set
.1sReallyNull
.map.init

.mapArrayToVec

.matrixHelp
.matrixHelp

.parsegrid
.parsegrid

.parsemenu
.parsemenu

.PBSdimnameHelper

.readList.P

.catError

.readList.P.convert
Data

.stripComments

.trimWhiteSpace

.readList.P.convertData

—62—

.stripComments

.stripComments

.stripSlashes

.catError

.stripSlashesVec

.catError

.trimWhiteSpace

.updateFile

getWinAct
getWinval
promptOpenFile
promptSaveFile
setWinval

.updateHistory

setWinval

.validateWindowDescList

.validateWindow
DescWidgets

.validateWindow

.autoConvertMode
.catError
.convertMode
.convertPararmStr
ToVector
.convertVecToArray
.getParamFromStr

.searchCollection

.setMatrixElement

.setMatrixElement

.setWinvValHelper

.map.get
.setWinvalHelper

.sortActHistory

getWinAct
sortHistory

.sortHelper
getWinAct
getWinval
.sortHelperActive
.sortHelperFile
sortHistory

.sortHelperActive

.updateHistory

.sortHelperFile

readList
writeList

.stopWidget

DescWidgets

.viewPkgDemo

getWinAct
getWinval
openFile
runDemos

.writeList.P

.addslashes

addArrows
addLabel
addLegend

addHistory
.updateHistory
getWinAct
getWinval

backHistory
.updateHistory
getWinAct
setWinval

calcFib
.fibC
.fibCall
.fibClosedForm
.fibR

calcGM

calcMin
restorePar
scalePar
show0

chooseWinVal
getChoice
setPBSoptions
setWinval

clearAll

clearHistory
.updateHistory
getWinAct
rmHistory

clearWinval
getWinval

closeWin
.isReallyNull

compileDescription
parseWinFile
writeList

createVector
createWin

—63-—

createWin
.createWidget
.initPBSoptions
.map.init
.validateWindow
DescList
parseWinFile

drawBars

expandGraph

exportHistory
getWinAct
promptSaveFile
writeList

findPat
focusWin

forwHistory
.updateHistory
getWinAct
setWinval

genMatrix

getChoice
createWin
focusWin
getPBSoptions
setPBSoptions

getPBSext
.1sReallyNull

getPBSoptions

getWinAct
getWinFun

getWinval
.extractVar
.isReallyNull

GTO

importHistory
.updateHistory
getWinAct
promptOpenFile
readList

initHistory

jumpHistory
.updateHistory
getWinAct
getWinval
setWinval

openFile
.initPBSoptions
.isReallyNull
getPBSext
getWinAct
openFile

pad0

parseWinFile
.getParamFromStr
.parsegrid
.parsemenu
.stripComments
.trimWhiteSpace

pause
pickCol
plotACF
plotAsp
plotBubbles

plotCsum
addLabel
resetGraph

plotDens
plotTrace

promptOpenFile
.trimWhiteSpace

promptSaveFile
promptOpenFile

readList
.readList.P

resetGraph
restorePar

rmHistory
.updateHistory
getWinAct
setWinval

runExamples
closeWin
createWin
getWinAct
getWinval
setWinAct
setWinval

scalePar
setPBSext

setPBSoptions

setWinAct

—64—

setWinval
.1sReallyNull
.setWinValHelper

show0
showArgs
testCol
testLty
testLwd

resetGraph

testPch

resetGraph

testWidgets
closeWin
createWin
getWinAct
getWinval
setWinval

unpackList
view

writeList
.writeList.P

—65-—

C.3. PBS Modelling manual

The following pages show the standard R manual for PBS Modelling, including help
pages for all objects, atable of contents, and an index. This manual also appears on the CRAN
web site:

http://cran.r-project.org/src/contrib/Descriptions/PBSmodel ling.html
(Or from CRANS sroot, locate “ Packages’ and find “PBSmodelling”.)

To generate the pages that follow, the user should first ensure that R’ s style and font files
have been copied to MiKTeX (see steps 5a-c in Section B1). This enhancement is essential for
the successful creation of a PDF manual.

Next we provide a choice of two methods that use the batch filesmakePDF . bat and
makePDF2 .bat to assist the user in building the manual. The first method alters a temporary
TEX file after R's Perl script isrun, and the PDF is built by calling MiKTeX commands. The
second method modifies R’ s Perl script before it builds the TEX and PDF files. The final result
of both methods yields a manual with letter (8.5” x 11”) rather than A4 paper, and renumbering
beginning on a specified page. This page number should be odd so that the next page becomes
the front of atwo-sided copy. Although the first method requires a redundant build of the
document, it is possibly more robust to future changesin R’s Perl script.

Method 1: On acommand line, type the command:

makePDF PBSmodelling 67

which automatically generates the PDF manual PBSmodelling.pdf from the package's
* . Rd files. Page numbering for this PDF begins with the number specified by the second
argument of the above command. If the argument is not supplied, it defaultsto 1.

The batch file uses R’ s Perl script by issuing the following command:

R CMD Rd2dvi --pdf --no-clean %1

This method creates atemporary directory called . Rd2dvi\ containing RA2 . tex with the
initial lines:

\nonstopmode({ }
\documentclass [letter] {book}
\usepackage [times, hyper] {Rd}
\usepackage {makeidx}
\makeindex{ }
\begin{document }
\setcounter{page}{67}

— 66—

where a boldface red font indicates changes that make PDF . bat makesto thefilerRd2 . tex.
Therevised TEX fileisthen copiedto D: \Rdevel \PDFmodelling.tex and thefollowing
MiKTeX commands are issued:

latex PBSmodelling
latex PBSmodelling
makeindex PBSmodelling
pdflatex PBSmodelling

(The second call to 1atex might not be needed, but it resolves a number of references. The
makeindex command creates the table of contents.) Y ou should now have the PDF manual
called PBSmodelling.pdf, which can be appended to the first 66 pages of this report.

Method 2: On acommand line, type the command:

makePDF2 PBSmodelling 67

which automatically generates the PDF manual PBSmodelling.pdf from the package's
* _Rd files. Page numbering for this PDF begins with the number specified by the second
argument of the above command. If the argument is not supplied, it defaultsto 1.

Essentially the script inmakePDF2 . bat modifiesR’'sRd2dvi . sh Perl script and
savesit tothefileRd2dvi4pbs. sh, whichsitsin R'sbin\ directory. The batch file then
issues the command:

R CMD Rd2dvi4dpbs.sh --pdf --no-clean %1

which builds and creates the manual PBSmodelling.pdf intheD:\Rdevel\ directory.
The batch file also retains the temporary directory .Rd2dvi\ and copiesthe TEX fileinto the
development directory. The PDF manual can be then be appended to this report
(PBSmodelling-UG.pdf).

Once the user is satisfied with the results, he/she may wish to remove the temporary
directory:

rm -rf .Rd2dvi

The techniques presented in this appendix can be applied to any package to produce a manual
based on the * . R4 files. Readers may wish to go further and append their manual to more
detailed instructions to produce a comprehensive User’ s Guide such as this one.

Package ‘PBSmodelling’

August 28, 2007

Version 1.58
Date 2007-08-28
Title PBS Modelling

Author Jon T. Schnute <Schnute] @pac.dfo-mpo.gc.ca>, Alex Couture-Beil <alex @mofo.ca>, and
Rowan Haigh <HaighR @pac.dfo-mpo.gc.ca>

Maintainer Jon Schnute <SchnuteJ @pac.dfo-mpo.gc.ca>
Depends R (>=2.3.0)
Suggests PBSmapping, odesolve, BRugs

Description PBS Modelling provides software to facilitate the design, testing, and operation of
computer models. It focuses particularly on tools that make it easy to construct and edit a
customized graphical user interface (GUI). Although it depends heavily on the R interface to the
Tcl/Tk package, a user does not need to know Tcl/Tk. The package contains examples that
illustrate models built with other R packages, including PBS Mapping, odesolve, ddesolvem, and
BRugs. It also serves as a convenient prototype for building new R packages, along with
instructions and batch files to facilitate that process. The root library directory of PBSmodelling
includes a complete user guide PBSmodelling-UG.pdf. To use this package effectively, please
consult the guide.

License GPL version 2 or newer

R topics documented:

CCA.QbT e e 69
GTO . . . e e e e e 70
PBSmodelling 71
addAITOWS o e e e e e 72
addLabel e e 72
addLegend e 73
calcFib e 74
calcGM e e e 74
calcMin e e 75

68

R topics documented:

chooseWinVal 77
clearAll L e 79
clearWinVal 79
closeWin 80
compileDescription L. e 80
CreateVeCtor i e e e e e e 81
createWin e e 82
drawBars e 83
expandGraph L 84
exportHistory L 84
findPat 85
focusWin L 86
genMatriX e e 87
getChoice e 87
getPBSext e e e 89
getPBSoptions 89
getWinAct 90
getWinFun e e 90
getWinVal 91
importHistory 92
IHIStOrY o e 92
openFile e 94
pad0 . . . e 95
parseWinFile 96
PAUSE . o o v e e e e e e e e e e e e e 97
pickCol e 97
PIotACF e 98
PIOLASD . . . o 98
plotBubbles e 99
plotCsum e 100
plotDens e 101
plotTrace e e e e e e e 102
promptOpenFile L 102
promptSaveFile 103
readlist L 104
resetGraph L L e 105
restorePar L. 105
runDemos e e 106
runExamples L e e 107
scalePar L 107
setPBSext 108
setPBSoptions e 109
SEtWINACE o e e 109
setWinVal L 110
ShowO . . . L 111
SNOWATES . . . o o e e e e e e e 112
SOrtHIStOTy e e e 112

testCol e e 113

CCA.qbr 69

teStLty e e 114
testLwd . . . e 114
testPch e 115
testWidgets 115
unpackList. 117
vbdata 118
VDPArs e e e e e 118
VIBW . o o e e e 119
writeList L e 119
Index 121
CCA.gbr Dataset: Sampled Counts of Quillback Rockfish (Sebastes maliger)
Description

Count of sampled fish-at-age for quillback rockfish (Sebastes maliger) in Johnstone Strait, British
Columbia, from 1984 to 2004.

Usage

data (CCA.gbr)

Format

A matrix with 70 rows (ages) and 14 columns (years). Attributes “syrs” and “cyrs” specify years of
survey and commercial data, respectively.

[,c(3:5,
1,2

, C 9,13,14)] Counts-at-age from research survey samples
[,c(l,2,6:8

,10:12)] Counts-at-age from commercial fishery samples

All elements represent sampled counts-at-age in year. Zero-value entries indicate no observations.

Details

Handline surveys for rockfish have been conducted in Johnstone Strait (British Columbia) and
adjacent waterways (126°37°W to 126°53’W, 50°32’N to 50°39’N) since 1986. Yamanaka and
Richards (1993) describe surveys conducted in 1986, 1987, 1988, and 1992. In 2001, the Rockfish
Selective Fishery Study (Berry 2001) targeted quillback rockfish Sebastes maliger for experiments
on improving survival after capture by hook and line gear. The resulting data subsequently have
been incorporated into the survey data series. The most recent survey in 2004 essentially repeated
the 1992 survey design. Fish samples from surveys have been supplemented by commercial hand-
line fishery samples taken from a larger region (126°35°W to 127°39°W, 50°32’N to 50°59°N) in
the years 1984-1985, 1989-1991, 1993, 1996, and 2000 (Schnute and Haigh 2007).

70 GTO

Note
Years 1994, 1997-1999, and 2002-2003 do not have data.

Source

Fisheries and Oceans Canada - GFBio database:
http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

References

Berry, M.D. 2001. Area 12 (Inside) Rockfish Selective Fishery Study. Science Council of British
Columbia, Project Number FS00- 05.

Schnute, J.T., and Haigh, R. 2007. Compositional analysis of catch curve data with an application
to Sebastes maliger. ICES Journal of Marine Science (in press).

Yamanaka, K.L. and Richards, L.J. 1993. 1992 Research catch and effort data on nearshore reef-
fishes in British Columbia Statistical Area 12. Canadian Manuscript Report of Fisheries and Aquatic
Sciences 2184, 77 pp.

Examples

Plot age proportions (blue bubbles = survey data, red = commercial)

data ("CCA.gbr", package="PBSmodelling")

z <— CCA.gbr; cyr <- attributes(z)S$cyrs;

z <— apply(z,2, function(x) {x/sum(x)}); z[,cyr] <- -z[,cyr];

X <— as.numeric (dimnames(z) [[2]]); xlim <- range(x) + c(-.5,.5);

y <- as.numeric (dimnames(z) [[1]]); ylim <- range(y) + c(-1,1);

plotBubbles (z, xval=x,yval=y,powr=.5,size=0.15,1lwd=1,clrs=c("blue", "red"),
xlim=xlim,ylim=ylim, xlab="Year",ylab="Age",cex.lab=1.5)

GTO Restrict a Numeric Variable to a Positive Value

Description

Restrict a numeric value x to a positive value using a differentiable function. GTO stands for “greater
than zero”.

Usage

GTO0 (x, eps=le—-4)

Arguments

X vector of values

eps minimum value greater than zero.

http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

PBSmodelling 71

Details
if (x >= eps) ... GTO0 = x
if (0 < x < eps) .ee.ne... GTO0 = (eps/2) = (1 + (x/eps)”2)
if (X <= 0) .. GTO0 = eps/2

See Also

scalePar, restorePar, calcMin

Examples

plotGTO <- function (eps=1,x1=-2,x2=10,n=1000,col="black") {
x <- seqg(xl,x2,len=n); y <- GTO(x,eps);
lines (x,y,col=col,lwd=2); invisible(list (x=x,y=y)); }

testGTO <- function (eps=c(7,5,3,1,.1),x1=-2,x2=10,n=1000) {
x <- seq(xl,x2,len=n); y <- Xx;
plot (x,y,type="1");
mycol <- c("red","blue","green", "brown", "violet", "orange", "pink");
for (i in 1l:length(eps))
plotGTO (eps=eps[i], x1=x1,x2=x2,n=n,col=mycol[i]);
invisible(); };

testGTO ()

PBSmodelling PBS Modelling

Description

PBS Modelling provides software to facilitate the design, testing, and operation of computer models.
It focuses particularly on tools that make it easy to construct and edit a customized graphical user
interface (GUI). Although it depends heavily on the R interface to the Tc1/Tk package, a user
does not need to know Tcl/Tk.

PBSmodelling contains examples that illustrate models built uisng other R packages, including
PBSmapping, odesolve, ddesolve, and BRugs. It also serves as a convenient prototype for
building new R packages, along with instructions and batch files to facilitate that process.

The root library directory of PBSmodelling includes a complete user guide “PBSmodelling-
UG.pdf”. To use this package effectively, please consult the guide.

PBS Modelling comes packaged with interesting examples accessed through the function runExamples ().
Additionally, users can view PBS Modelling widgets through the function testWidgets ().

More generally, a user can run any available demos in his/her locally installed packages through

the function runDemos ().

72 addLabel

addArrows Add Arrows to a Plot Using Relative (0:1) Coordinates

Description

Call the arrows function using relative (0:1) coordinates.

Usage

addArrows (x1, yl, x2, y2, ...)

Arguments
x1 x-coordinate (0:1) at base of arrow.
vl y-coordinate (0:1) at base of arrow.
X2 x-coordinate (0:1) at tip of arrow.
y2 y-coordinate (0:1) at tip of arrow.
additional paramaters for the function arrows.
Details

Lines will be drawn from (x1[i],y1[i]) to (x2[1i],y2[1])

See Also

addLabel, addLegend

Examples

tt=seq(from=-5,to=5,by=0.01)

plot (sin(tt), cos(tt)x(l-sin(tt)), type="1")
addArrows (0.2,0.5,0.8,0.5)

addArrows (0.8,0.95,0.95,0.55, col="#FF0066")

addLabel Add a Label to a Plot Using Relative (0:1) Coordinates

Description

Place a label in a plot using relative (0:1) coordinates

Usage

addLabel (x, y, txt, ...)

addLegend 73

Arguments
x x-axis coordinate in the range (0:1); can step outside.
y y-axis coordinate in the range (0:1); can step outside.
txt desired label at (x, y).
additional arguments passed to the function text.
See Also

addArrows, addLegend

Examples

resetGraph ()
addLabel (0.75,seq(from=0.9,to0=0.1,by=-0.10),c('a','b','c'), col="#0033AA")

addLegend Add a Legend to a Plot Using Relative (0:1) Coordinates

Description

Place a legend in a plot using relative (0:1) coordinates.

Usage
addLegend (x, v, ...)
Arguments
X x-axis coordinate in the range (0:1); can step outside.
v y-axis coordinate in the range (0:1); can step outside.
arguments used by the function legend, suchas 1ines, text,or rectangle.
See Also

addArrows, addLabel

Examples

resetGraph(); n <- sample(l:length(colors()),15); clrs <- colors() [n]
addLegend(.2,1,fill=clrs, leg=clrs,cex=1.5)

74 calcGM

calcFib Calculate Fibonacci Numbers by Several Methods

Description

Compute Fibonacci numbers using four different methods: 1) iteratively using R code, 2) via the
closed function in R code, 3) iteratively in C using the . C function, and 4) iteratively in C using the
.Call function.

Usage

calcFib(n, len=1, method="C")

Arguments
n nth fibonacci number to calculate
len a vector of length 1en showing previous fibonacci numbers
method select method touse: C, Call, R, closed

Value

Vector of the last 1en Fibonacci numbers calculated.

calcGM Calculate the Geometric Mean, Allowing for Zeroes

Description
Calculate the geometric mean of a numeric vector, possibly excluding zeroes and/or adding an offset
to compensate for zero values.

Usage

calcGM(x, offset = 0, exzero = TRUE)

Arguments
x vector of numbers
offset value to add to all components, including zeroes
exzero if TRUE, exclude zeroes (but still add the offset)
Value

geometric mean of the modified vector x + offset

calcMin

Note

75

NA values are automatically removed from x

Examples

calcGM(c(0,1,100))
calcGM(c(0,1,100),0ffset=0.01, exzero=FALSE)

calcMin

Calculate the Minimum of a User-Defined Function

Description

Minimization based on the R-stat functions nlm, nlminb, and optim. Model parameters are
scaled and can be active or not in the minimization.

Usage

calcMin (pvec,
steptol=le-6, temp=10, repN=0, ...)

Arguments

pvec

func

method

trace

maxit

reltol

steptol

temp

repN

func, method="nlm", trace=0, maxit=1000, reltol=le-8,

Initial values of the model parameters to be optimized. pvec is a data frame
comprising four columns ("val", "min", "max", "active") and as many
rows as there are model parameters. The "active" field (logical) determines
whether the parameters are estimated (T) or remain fixed (F).

The user-defined function to be minimized (or maximized). The function should
return a scalar result.

The minimization method to use: one of n1lm, n1minb, Nelder—-Mead, BFGS,
CG, L-BFGS—B, or SANN. Default is n1m.

Non-negative integer. If positive, tracing information on the progress of the min-
imization is produced. Higher values may produce more tracing information: for
method "L-BFGS—B" there are six levels of tracing. Default is 0.

The maximum number of iterations. Defaultis 1000.

Relative convergence tolerance. The algorithm stops if it is unable to reduce the
value by a factorof reltol * (abs(val) + reltol) ata step. Default
is le-8.

A positive scalar providing the minimum allowable relative step length. Default
is le—6.

Temperature controlling the " SANN" method. It is the starting temperature for
the cooling schedule. Default is 10.

Reports the parameter and objective function values on the R-console every
repN evaluations. Default is 0 for no reporting.

Further arguments to be passed to the optimizing function chosen: nlm, n1lminb,
or opt im. Beware of partial matching to earlier arguments.

76 calcMin

Details
See optim for details on the following methods: Nelder-Mead, BFGS, CG, L-BFGS-B, and
SANN.

Value

A list with components:

Fout The output list from the optimizer function chosen through method.
iters Number of iterations.
evals Number of evaluations.
cpuTime The user CPU time to execute the minimization.
elapTime The total elapsed time to execute the minimization.
fmins The objective function value calculated at the start of the minimization.
fminE The objective function value calculated at the end of the minimization.
Pstart Starting values for the model parameters.
Pend Final values estimated for the model parameters from the minimization.
AIC Akaike’s Information Criterion
message Convergence message from the minimization routine.

Note

Some arguments to calcMin have no effect depending on the met hod chosen.

See Also

scalePar, restorePar, calcMin, GTO
In the stats package: nlm, nlminb, and optim.

Examples

Ufun <- function(P) {
Linf <- P[1]; K <= P[2]; t0 <= P[3]; obs <- afileS$len;
pred <- Linf x (1 - exp(-Kx(afileS$Sage-t0)));
n <- length(obs); ssg <- sum((obs-pred) "2);
return (nxlog(ssq)); };

afile <- data.frame(age=1:16,len=c(7.36,14.3,21.8,27.6,31.5,35.3,39,
41.1,43.8,45.1,47.4,48.9,50.1,51.7,51.7,54.1));

pvec <- data.frame(val=c(70,0.5,0),min=c(40,0.01,-2),max=c(100,2,2),
active=c (TRUE, TRUE, TRUE) , row.names=c ("Linf", "K","t0"),
stringsAsFactors=FALSE) ;

alist <- calcMin (pvec=pvec, func=Ufun,method="nlm", steptol=1le-4, repN=10) ;

print (alist[-1]); P <- alist$Pend;

resetGraph (); expandGraph();

xnew <- seqg(afileS$Sage[l],afileSage[nrow(afile)],len=100);

ynew <— P[1] % (1 - exp(-P[2]* (xnew-P[3])));

plot (afile); lines(xnew,ynew,col="red", lwd=2);

addLabel (.05, .88, paste (paste(c("Linf","K","t0"), round(P,c(2,4,4)),
sep=" = "),collapse="\n"),adj=0,cex=0.9);

chooseWinVal 71

chooseWinval Choose and Set a String Item in a GUI

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI, then sets a
specified variable in a target GUIL.

Usage

chooseWinVal (choice, varname, winname="window")

Arguments
choice vector of strings from which to choose
varname variable name to which choice is assigned in the target GUI
winname window name for the target GUI

Details

chooseWinVal activates a setWinvVal command through an onClose function created by the
getChoice command and modified by chooseWinval.

Value

No value is returned directly. The choice is written to the PBS options workspace, accessible
through getPBSoptions ("getChoice™). Also set in PBS options is the window name from
which the choice was activated.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and
GUI windows. The latter frequently disappear from the screen and need to be reselected (either
clicking on the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from
MDI to SDI mode. From the R console menu bar, select <Edit> and <GUI preferences>, then
change the value of “single or multiple windows” to SDI.

See Also

getChoice, getWinVal, setWinVal

78 chooseWinVal

Examples

Not run:

dfnam <-
c("airquality", "attitude", "ChickWeight", "faithful", "freeny",
"iris","LifeCycleSavings", "longley", "morley", "Orange",
"quakes", "randu", "rock", "stackloss", "swiss", "trees")

wlist <—- c(
"window name=choisir title=\"Test chooseWinVal\"",
"label text=\"Press <ENTER> in the green entry box
\nto choose a file, then press <GO>\" sticky=W pady=5",
"grid 1 3 sticky=W",
"label text=File: sticky=W",
"entry name=fnam mode=character width=23 value=\"\"
func=chFile entrybg=darkolivegreenl pady=5",
"button text=GO bg=green sticky=W func=test",

n ")

chFile <- function (ch=dfnam, fn="fnam")
{chooseWinVal (ch, fn, winname="choisir") };

#-— Example 1 GUI test

test <- function() {
getWinVal (winName="choisir", scope="L")
if (fnam!="" && any (fnam==dfnam)) {

file <- get (fnam);
pairs(file,gap=0); }
else {
resetGraph () ;
addLabel (.5, .5, "Press <ENTER> in the green entry box
\nto choose a file, then press <GO>", col="red",cex=1.5)1}};

#—-— Example 2 Non-GUI test
#To try the non-GUI version, type 'test2()' on the command line
test2 <- function (fnames=dfnam) {
frame () ; resetGraph ()
again <- TRUE;
while (again) {
fnam <- sample (fnames,l); file <- get (fnam);
flds <- names (file);
xfld <- getChoice (paste("Pick x-field from", fnam), flds,gui=F);
yfld <- getChoice (paste("Pick y-field from", fnam), flds, gui=F)
plot (file[,xfld], file[,yfld], xlab=xfld, ylab=yfld,
pch=16,cex=1.2,col="red");
again <- getChoice ("Plot another pair?",gui=F) }
}
require (PBSmodelling)
createWin (wlist,astext=T); test();
End (Not run)

clearAll 79

clearAll Remove all R Objects From the Global Environment

Description

Generic function to clear .RData in R

Usage

clearAll (hidden=TRUE, verbose=TRUE)

Arguments
hidden if TRUE, remove variables that start with a dot (.)
verbose if TRUE, report all removed items
clearWinval Remove all Current Widget Variables
Description

Remove all global variables that share a name in common with any widget variable name defined
in names (getWinval ()). Use this function with caution.

Usage

clearWinval ()

See Also

getWinVal

80 compileDescription

closeWin Close GUI Window(s)

Description

Close (destroy) one or more windows made with createWin.

Usage

closeWin (name)

Arguments
name a vector of window names that indicate which windows to close. These names
appear in the Window Description File(s) on the line(s) defining WINDOW wid-
gets. If name is ommitted, all active windows will be closed.
See Also
createWin

compileDescription Convert and Save a Window Description as a List

Description

Convert a Window Description File (ASCII markup file) to an equivalent Window Description List.
The output list (an ASCII file containing R-source code) is complete, i.e., all default values have
been added.

Usage

compileDescription(descFile, outFile)

Arguments

descFile file name of markup file.

outFile file name of output file containing R source code.
Details

The Window Description File descFile is converted to a list, which is then converted to R code,
and saved to outFile.

See Also

parseWinFile, createWin

create Vector 81

createVector Create a GUI with a Vector Widget

Description

Create a basic window containing a vector and a submit button. This provides a quick way to create
a window without the need for a Window Description File.

Usage
createVector (vec, vectorLabels=NULL, func="",
windowname="vectorwindow")
Arguments
vec a vector of strings representing widget variables. The values in vec become

the default values for the widget. If vec is named, the names are used as the
variable names.

vectorLabels an optional vector of strings to use as labels above each widget.

func string name of function to call when new data are entered in widget boxes or
when "GO" is pressed.

windowname unique window name, required if multiple vector windows are created.

See Also

createWin

Examples

Not run:

#user defined function which is called on new data

drawLiss <- function () {
getWinVal (scope="L1L");
tt <= 2xpix(0:k)/k; x <- sin(2+pixm*tt); y <- sin(2+xpix (nxtt+phi));
plot (x,y,type="p"); invisible (NULL); };

fcreate the vector window

createVector (c(m=2, n=3, phi=0, k=1000),
vectorLabels=c ("x cycles","y cycles", "y phase", "points"),
func="drawLiss") ;

End (Not run)

82 createWin

createWin Create a GUI Window

Description

Create a GUI window with widgets using instructions from a Window Description (markup) File.

Usage

createWin (fname, astext=FALSE)

Arguments
fname file name of Window Description File or list returned from parseWinFile.
astext logical; if TRUE, interpret fname as a vector of strings with each element rep-
resenting a line in a Window Description File.
Details

Generally, the markup file contains a single widget per line. However, widgets can span multiple
lines by including a backslash (’\’) character at the end of a line, prompting the suppression of the
newline character.

For more details on widget types and markup file, see “PBSModelling-UG.pdf” in the installation
directory.

It is possible to use a Window Description List produced by compileDescription rather than
a file name for fname.

Another alternative is to pass a vector of characters to fname and set astext=T. This vector rep-
resents the file contents where each element is equivalent to a new line in the Window Description
File.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and
GUI windows. The latter frequently disappear from the screen and need to be reselected (either
clicking on the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from
MDI to SDI mode. From the R console menu bar, select <Edit> and <GUI preferences>, then
change the value of “single or multiple windows” to SDI.

See Also

parseWinFile, getWinVal, setWinVal
closeWin, compileDescription, createVector

initHistory for an example of using astext=TRUE

drawBars 83

Examples

Not run:
#see file testWidgets\LissWin.txt in PBSmodelling package directory

Calculate and draw the Lissajous figure

drawLiss <- function() {
getWinVal (scope="1L") ;
ti <= 2xpix(0:k)/k; x <— sin(2+pixm*ti); y <— sin(2xpix (n*xti+phi));
plot (x,y,type=ptype); invisible (NULL); };

createWin (system.file ("testWidgets/LissWin.txt", package="PBSmodelling")) ;
End (Not run)

drawBars Draw a Linear Barplot on the Current Plot

Description

Draw a linear barplot on the current plot.

Usage

drawBars (x, y, width, base = 0, ...)
Arguments

x x-coordinates

y y-coordinates

width bar width, computed if missing

base y-value of the base of each bar

... further graphical parameters (see par) may also be supplied as arguments
Examples

plot (0:10,0:10, type="n")
drawBars (x=1:9,y=9:1, col="deepskyblued", lwd=3)

84 exportHistory

expandGraph Expand the Plot Area by Adjusting Margins

Description

Optimize the plotting region(s) by minimizing margins.

Usage

expandGraph (mar=c(4,3,1.2,0.5), mgp=c(l.6,.5,0),...)

Arguments
mar numerical vector of the form ’c(bottom, left, top, right)’ specifying the margins
of the plot
mgp numerical vector of the form ’c(axis title, axis labels, axis line)’ specifying the
margins for axis title, axis labels, and axis line
additional graphical parameters to be passed to par
See Also
resetGraph
Examples

resetGraph (); expandGraph (mfrow=c(2,1));
tt=seq(from=-10, to=10, by=0.05);

plot (tt,sin(tt), xlab="this is the x label", ylab="this is the y label",
main="main title", sub="sometimes there is a \"sub\" title")
—_n

plot (cos(tt),sin(tt*2), xlab="cos(t)", ylab="sin(2 t)", main="main title",
sub="sometimes there is a \"sub\" title")

exportHistory Export a Saved History

Description

Export the current history list.

Usage

exportHistory (hisname="", fname="")

findPat

Arguments

hisname

fname

See Also

85

name of the history list to export. If setto " ", the value from getWinAct () [1]
will be used instead.

file name where history will be saved. If it is set to " ", a Save As window will
be displayed.

importHistory, initHistory, promptSaveFile

findPat

Search a Character Vector to Find Multiple Patterns

Description

Use all available patterns in pat to search in vec, and return the matched elements in vec.

Usage

findPat (pat,

Arguments

pat

vec

Value

vec)

character vector of patterns to match in vec

character vector where matches are sought

A character vector of all matched strings.

Examples

#find all strings with a vowel, or that start with a number
findPat (c (" [aeoiyl", "~[0-9]1"), c("hello", "WRLD", "11b"))

86 focusWin

focusWin Set the Focus on a Particular Window

Description

Bring the specified window into focus, and set it as the active window. focusWin will fail to
bring the window into focus if it is called from the R console, since the R console returns focus to
itself once a function returns. However, it will work if focusWin is called as a result of calling
a function from the GUI window. (i.e., pushing a button or any other widget that has a function
argument).

Usage

focusWin (winName, winVal=TRUE)

Arguments
winName name of window to focus
winVal if TRUE, associate winName with the default window for setWinval and
getWinval
Examples
Not run:
focus <- function() {

winName <- getWinVal () $select;

focusWin (winName) ;

cat ("calling focusWin(\"", winName, "\")\n", sep="");

cat ("getWinval () Smyvar = ", getWinvVal () $myvar, "\n\n", sep=""); };

#create three windows named winl, win2, win3
#each having three radio buttons, which are used to change the focus
for(i in 1:3) {
winDesc <- c(
paste ('window name=win',i,' title="Win',i,"'"', sep='"),
paste ('entry myvar ', i, sep='"),
'radio name=select value=winl text="one" function=focus mode=character',
'radio name=select value=win2 text="two" function=focus mode=character',
'radio name=select value=win3 text="three" function=focus mode=character');
createWin (winDesc, astext=TRUE); };
End (Not run)

genMatrix 87

genMatrix Generate Test Matrices for plotBubbles

Description
Generate a test matrix of random numbers (mu = mean and signa = standard deviation), primarily
for plotBubbles.

Usage

genMatrix (m,n,mu=0, sigma=1)

Arguments

m number of rows

n number of columns

mu mean of normal distribution

sigma standard deviation of normal distribution
Value

An m by n matrix with normally distributed random values.

See Also

plotBubbles

Examples

plotBubbles (genMatrix (20, 6))

getChoice Choose One String Item from a List of Choices

Description
Prompts the user to choose one string item from a list of choices displayed in a GUI. The simplest
case getChoice () yields TRUE or FALSE.

Usage

getChoice (question="Make a choice: ", choice=c("Yes","No"),
winname="getChoice", horizontal=TRUE, radio=FALSE,
gcolor="blue", gui=TRUE, quiet=FALSE)

88

Arguments

question
choice
winname
horizontal
radio
gcolor

gui

quiet

Details

getChoice

question or prompting statement

vector of strings from which to choose

window name for the getChoice GUI

if TRUE, display the choices horizontally, else vertically

if TRUE, display the choices as radio buttons, else as buttons
colour for question

if TRUE, getChoice is functional when called from a GUI, else it is functional
from command line programs

if TRUE, don’t print the choice on the command line

The user’s choice is stored in . PBSmodS$options$getChoice (or whatever winname is sup-

plied).

getChoice generates an onClose function that returns focus to the calling window (if applica-
ble) and prints out the choice.

Value

If called from a GUI (gui=TRUE), no value is returned directly. Rather, the choice is written to the
PBS options workspace, accessible through getPBSoptions ("getChoice") (or whatever
winname was supplied).

If called from a command line program (gui=FASLE), the choice is returned directly as a string
scalar (e.g., answer <- getChoice (gqui=F)).

Note

Microsoft Windows users may experience difficulties switching focus between the R console and
GUI windows. The latter frequently disappear from the screen and need to be reselected (either
clicking on the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from
MDI to SDI mode. From the R console menu bar, select <Edit> and <GUI preferences>, then
change the value of “single or multiple windows” to SDI.

See Also

chooseWinVal, getWinVal, setWinVal

Examples

Not run:

#-— Example 1

getChoice ("What do you want?", c("Fame","Fortune","Health",
"Beauty", "Lunch"),gcolor="red", gui=F)

#-— Example 2

getChoice ("Who's your daddy?",c("Homer Simpson","Pierre Trudeau",

getPBSext 89

"Erik the Red"),horiz=F,radio=T, gui=F)
End (Not run)

getPBSext Get a Command Associated With a Filename

Description

Display all locally defined file extensions and their associated commands, or search for the com-
mand associated with a specific file extension ext.

Usage

getPBSext (ext)

Arguments

ext optional string specifying a file extension (suffix)

Value

Command associated with file extension.

Note

These file associations are not saved from one PBS Modelling session to the next.

See Also

setPBSext, openFile

getPBSoptions Retreive A User Option

Description

Get a previously defined user option.

Usage

getPBSoptions (option)

Arguments

option name of option to retrieve. If omitted, a list containing all options is returned.

90 getWinFun

Value

Value of the specified option, or NULL if the specified option is not found.

See Also

getPBSext

getWinAct Retreive the Last Window Action

Description

Get a string vector of actions (latest to earliest).

Usage

getWinAct (winName)

Arguments

winName name of window to retrieve action from

Details

When a function is called from a GUI, a string descriptor associated with the action of the function
is stored internaly (appended to the first position of the action vector). A user can utilize this action
as a type of argument for programming purposes. The command getWinAct () [1] yields the
latest action.

Value

String vector of recorded actions (latest first).

getWinFun Retrieve Names of Functions Referenced in a Window

Description

Get a vector of all function names referenced by a window.

Usage

getWinFun (winName)

getWinVal 91

Arguments

winName name of window, to retrieve its function list

Value

A vector of function names referenced by a window.

getWinval Retreive Widget Values for Use in R Code

Description

Get a list of variables defined and set by the GUI widgets. An optional argument scope directs the
function to create local or global variables based on the list that is returned.

Usage

getWinVal (v=NULL, scope="", asvector=FALSE, winName="")

Arguments
v vector of variable names to retrieve from the GUI widgets. If NULL, v retrieves
all variables from all GUI widgets.
scope scope of the retrieval. The default sets no variables in the non-GUI environment;
scope="L" creates variables locally in relation to the parent frame that called
the function; and scope="G" creates global variables(pos=1).
asvector return a vector instead of a list. WARNING: if a widget variable defines a true
vector or matrix, this will not work.
winName window from which to select GUI widget values. The default takes the window
that has most recently received new user input.
Value

A list (or vector) with named components, where names and values are defined by GUI widgets.

See Also

parseWinFile, setWinVal, clearWinVal

92 initHistory

importHistory Import a History List from a File

Description

Import a history list from file fname, and place it into the history list hisname.

Usage
importHistory (hisname="", fname="", updateHis=TRUE)
Arguments
hisname name of the history list to be populated. The default (" ") uses the value from
getWinAct () [1].
fname file name of history file to import. The default (" ") causes an open-file window
to be displayed.
updateHis if true, update the history widget to reflect the change in size and index.
See Also

exportHistory,initHistory, promptOpenFile

initHistory Create Structures of a New History Widget

Description

PBS history functions (below) are available to those who would like to use the package’s history
functionality, without using the pre-defined history widget. These functions allow users to create
customized history widgets.

Usage

initHistory (hisname, indexname=NULL, sizename=NULL, modename=NULL, func=NULL, overwrites
rmHistory (hisname="", index="")

addHistory (hisname="")

forwHistory (hisname="")

backHistory (hisname="")

lastHistory (hisname="")

firstHistory (hisname="")

jumpHistory (hisname="", index="")

clearHistory (hisname="")

initHistory

Arguments
hisname name of the history "list" to manipulate. If it is omitted, the function uses the
value of getWinAct () [1] as the history name. This allows the calling of
functions directly from the Window Description File (except initHistory,
which must be called before createWin ()).
indexname name of the index entry widget in the Window Description File. If NULL, then
the current index feature will be disabled.
sizename name of the current size entry widget. If NULL, then the current size feature will
be disabled.
modename name of the radio widgets used to change addHistory$ mode. If NULL, then the
default mode will be to insert after the current index.
index index to the history item. The default (" ") causes the value to be extracted from
the widget identified by indexname.
func name of user supplied function to call when viewing history items.
overwrite if TRUE, history (matching hi sname) will be cleared. Otherwise, the imported
history will be merged with the current one.
Details

PBS Modelling includes a pre-built history widget designed to collect interesting choices of GUI

variables so that they can be redisplayed later, rather like a slide show.

Normally, a user would invoke a history widget simply by including a reference to it in the Win-
dow Description File. However, PBS Modelling includes support functions (above) for customized

applications.

To create a customized history, each button must be described separately in the Window Description

File rather than making reference to the history widget.

The history "List" must be initialized before any other functions may be called. The use of a unique
history name (hisname) is used to associate a unique history session with the supporting functions.

The indexname and sizename arguments correspond to the given names of entry widgets in
the Window Description File, which will be used to display the current index and total size of the
list. The indexname entry widget can also be used by jumpHistory to retrieve a target index.

See Also

importHistory, exportHistory

Examples

Not run:

EESpE &

Example of creating a custom history widget that saves wvalues
whenever the "Plot" button is pressed. The user can tweak the
inputs "a", "b", and "points" before each "Plot" and see the
"Index" increase. After sufficient archiving, the user can review
scenarios using the "Back" and "Next" buttons.

A custom history is needed to achieve this functionality since
the packages pre-defined history widget does not update plots.

94

openFile

To start, create a Window Description to be used with createWin
using astext=TRUE. P.S. Watch out for special characters which
must be "escaped" twice (first for R, then PBSmodelling).
winDesc <- '
window title="Custom History"
vector names="a b k" labels="a b points" font="bold" \\
values="1 1 1000" function=myPlot
grid 1 3
button function=myHistoryBack text="<- Back"
button function=myPlot text="Plot"
button function=myHistoryForw text="Next ->"
grid 2 2
label "Index"
entry name="myHistoryIndex" width=5
label "Size"
entry name="myHistorySize" width=5
Al
Convert text to vector with each line represented as a new element
winDesc <- strsplit (winDesc, "\n") [[1]]

Custom functions to update plots after restoring history wvalues
myHistoryBack <- function() {

backHistory ("myHistory");

myPlot (saveVal=FALSE); # show the plot with saved values
}
myHistoryForw <- function() {

forwHistory ("myHistory");

myPlot (saveVal=FALSE); # show the plot with saved values
}
myPlot <- function (saveVal=TRUE) ({

save all data whenever plot is called (directly)

if (saveVal) addHistory ("myHistory");

getWinVval (scope="1L");

tt <— 2xpi*(0:k)/k;

x <— (l+sin(axtt)); y <= cos(tt)x(l+sin(b*xtt));

plot (%, y);

initHistory ("myHistory", "myHistoryIndex", "myHistorySize")
createWin (winDesc, astext=TRUE)
End (Not run)

openFile Open a File with the Associated Program

Description

Open a file using the program associated with its extension defined by the Windows shell. Non-
windows users, or users wishing to overide the default application, can specify a program associa-

pad0 95
tion using setPBSext.

Usage

openFile (fname)

Arguments

fname file name of file to open.

Note

If a command is registered with setPBSext, then openFile will replace all occurrences of
"% £" with the absolute path of the filename, before executing the command.

See Also

getPBSext, setPBSext

Examples

Not run:

Set up firefox to open .html files

setPBSext ("html", '"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f")
openFile ("foo.html")

End (Not run)

pado Pad Numbers with Leading Zeroes

Description

Convert numbers to integers then text, and pad them with leading zeroes.

Usage

padl(x, n, £ = 0)

Arguments
X vector of numbers
n number of text characters representing a padded integer
£ factor of 10 transformation on x before padding

Value

A character vector representing x with leading zeroes.

96 parseWinFile

Examples

resetGraph(); x <- pad0(x=123,n=10,£f=0:7);
addLabel (.5, .5,paste (x,collapse="\n"),cex=1.5);

parseWinFile Convert a Window Description File into a List Object

Description

Parse a Window Description (markup) File into the list format expected by createWin ().

Usage

parseWinFile (fname, astext=FALSE)

Arguments
fname file name of the Window Description File.
astext if TRUE, fname is interpreted as a vector of strings, with each element repre-
senting a line of code in a Window Description File.
Value

A list representing a parsed Window Description File that can be directly passed to createWin.

Note

All widgets are forced into a 1-column by N-row grid.

See Also

createWin, compileDescription

Examples

Not run:

x<-parseWinFile (system.file ("examples/LissFigWin.txt", package="PBSmodelling"))
createWin (x)

End(Not run)

pause 97

pause Pause Between Graphics Displays or Other Calculations

Description

Pause, typically between graphics displays. Useful for demo purposes.

Usage
pause (s = "Press <Enter> to continue")
Arguments
S text issued on the command line when pause is invoked.
pickCol Pick a Colour From a Palette and get the Hexadecimal Code
Description

Display an interactive colour palette from which the user can choose a colour.

Usage

pickCol (returnvValue=TRUE)

Arguments

returnValue If TRUE, display the full colour palette, choose a colour, and return the hex value
to the R session. If FALSE, use an intermediate GUI to interact with the palette
and display the hex value of the chosen colour.

Value

A hexidecimal colour value.

See Also

testCol

Examples

Not run:
junk<-pickCol (); resetGraph(); addLabel (.5, .5, junk, cex=4,col=junk);
End (Not run)

98 plotAsp

plotACF Plot Autocorrelation Bars From a data frame, matrix, or vector

Description

Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.

Usage
plotACF (file, lags=20,
clrs=c("blue", "red", "green", "magenta", "navy"), ...)
Arguments
file data frame, matrix, or vector of numeric values.
lags maximum number of lags to use in the ACF calculation.
clrs vector of colours. Patterns are repeated if the number of fields exceeed the length
of clrs.
additional arguments for plot or lines.
Details

This function is designed primarily to give greater flexibility when viewing results from the R-
package BRugs. Use plot ACF in conjuction with samplesHistory ("+",beg=0, plot=FALSE)
rather than samplesAutoC which calls plotAutoC.

Examples

resetGraph(); plotACF (trees,lwd=2,lags=30);

plotAsp Construct a Plot with a Specified Aspect Ratio

Description

Plot x and y coordinates using a specified aspect ratio.

Usage

plotAsp(x, vy, asp=1l, ...)

plotBubbles 99

Arguments
X vector of x-coordinate points in the plot.
v vector of y-coordinate points in the plot.
asp y/x aspect ratio.
additional arguments for plot.
Details

The function plotAsp differs from plot (x,y,asp=1) in the way axis limits are handled.
Rather than expand the range, plotAsp expands the margins through padding to keep the aspect
ratio accurate.

Examples

x <- seq(0,10,0.1)

y <- sin(x)

par (mfrow=2:1)

plotAsp(x,y,asp=1,xlim=c(0,10),ylim=c(-2,2), main="sin(x)")
plotAsp(x,y"2,asp=1,x1lim=c(0,10),ylim=c(-2,2), main="sin"2(x)")

plotBubbles Construct a Bubble Plot from a Matrix

Description

Construct a bubble plot for a matrix z.

Usage

plotBubbles (z, xval=FALSE, yval=FALSE, dnam=FALSE, rpro=FALSE,
cpro=FALSE, rres=FALSE, cres=FALSE, powr=1l, size=0.2, lwd=2,
clrs=c("black", "red", "blue"), hideO=FALSE, debug=FALSE, ...)

Arguments
z input matrix
xval x-values for the columns of z. if xval=TRUE, the first row contains x-values
for the columns.
yval y-values for the rows of z. If yval=TRUE, the first column contains y-values
for the rows.
dnam logical; if TRUE, attempt to use dimnames of input matrix z as xval and

yval. The dimnames are converted to numeric values and must be strictly
inreasing or decreasing. If successful, these values will overwrite previously
specified values of xval and yval or any default indices.

rpro logical; if TRUE, convert rows to proportions.

100 plotCsum

cpro logical; if TRUE, convert columns to proportions.

rres logical; if TRUE, use row residuals (subtract row means).

cres logical; if TRUE, use column residuals (subtract column means).

powr power transform. Radii are proportional to z“powr. Note: powr=0.5 yields
bubble areas proportional to z.

size size (inches) of the largest bubble.

1wd line width for drawing circles.

clrs colours (3-element vector) used for positive, negative, and zero values, respec-
tively.

hideO logical; if TRUE, hide zero-value bubbles.

debug logical; if TRUE, display debug information.

additional arguments for symbo1ls function.

Details

The function plotBubbles essentially flips the z matrix visually. The columns of z become the
x-values while the rows of z become the y-values, where the first row is displayed as the bottom
y-value and the last row is displayed as the top y-value. The function’s original intention was to
display proportions-at-age vs. year.

See Also

genMatrix

Examples

plotBubbles (round(genMatrix (40,20),0),clrs=c("green", "grey", "red"));

data (CCA.gbr)
plotBubbles (CCA.gbr, cpro=TRUE, powr=.5, dnam=TRUE, size=.15,
ylim=c(0,70),xlab="Year",ylab="Quillback Rockfish Age")

plotCsum Plot Cumulative Sum of Data

Description

Plot the cumulative frequency of a data vector or matrix, showing the median and mean of the
distribution.

Usage

plotCsum(x, add = FALSE, ylim = c(0, 1), xlab = "Measure",
ylab = "Cumulative Proportion", ...)

plotDens 101

Arguments
X vector or matrix of numeric values.
add logical; if TRUE, add the cumulative frequency curve to a current plot.
ylim limits for the y-axis.
xlab label for the x-axis.
ylab label for the y-axis.
additional arguments for the plot function.
Examples

x <— rgamma (n=1000, shape=2)
plotCsum (x)

plotDens Plot Density Curves from a data frame, matrix, or vector

Description

Plot the density curves from a data frame, matrix, or vector. The mean density curve of the data
combined is also shown.

Usage
plotDens (file, clrs=c("blue", "red", "green", "magenta", "navy"), ...)
Arguments
file data frame, matrix, or vector of numeric values.
clrs vector of colours. Patterns are repeated if the number of fields exceeed the length
of clrs.
additional arguments for plot or 1ines.
Details

This function is designed primarily to give greater flexibility when viewing results from the R-
package BRugs. Use plotDens in conjuction with samplesHistory ("+«",beg=0, plot=FALSE)
rather than samplesDensity which calls plotDensity.

Examples

z <- data.frame(yl=rnorm(50, sd=2),y2=rnorm(50, sd=1), y3=rnorm (50, sd=.5))
plotDens (z, lwd=3)

102 promptOpenFile

plotTrace Plot Trace Lines from a data frame, matrix, or vector

Description

Plot trace lines from a data frame or matrix where the first field contains x-values, and subsequent
fields give y-values to be traced over x. If input is a vector, this is traced over the number of

observations.
Usage
plotTrace (file, clrs=c("blue","red", "green", "magenta", "navy"), ...)
Arguments
file data frame or matrix of x and y-values, or a vector of y-values.
clrs vector of colours. Patterns are repeated if the number of traces (y-fields) exceeed
the length of c1rs.
additional arguments for plot or 1ines.
Details

This function is designed primarily to give greater flexibility when viewing results from the R-
package BRugs. Use plot Trace in conjuction with samplesHistory ("*",beg=0, plot=FALSE)
rather than samplesHistory which calls plotHistory.

Examples

z <- data.frame(x=1:50,yl=rnorm(50,sd=3),y2=rnorm(50,sd=1),y3=rnorm(50,sd=.25))
plotTrace (z, lwd=3)

promptOpenFile Display an "Open File" Dialogue

Description

Display the default Open prompt provided by the Operating System.

Usage

promptOpenFile (initialfile="", filetype=list (c("«","All Files")),
open=TRUE)

promptSaveFile 103

Arguments

initialfile file name of the text file containing the list.

filetype a list of character vectors indicating file types made available to users of the
GUI. Each vector is of length one or two. The first element specifies either the
file extension or "« " for all file types. The second element gives an optional
descriptor name for the file type. The supplied £iletype list appears as a set

(IER)

of choices in the pull-down box labelled “Files of type:"”.
open logical; if TRUE display Open prompt, if FALSE display Save As prompt.

Value

The file name and path of the file selected by the user.

See Also

promptSaveFile

Examples

Not run:
Open a filename, and return it line by line in a vector
scan (promptOpenFile (), what=character (), sep="\n")

Illustrates how to set filetype.

promptOpenFile ("intial_ file.txt", filetype=list(c(".txt", "text files"),
c(".r", "R files"), c("+", "All Files")))

End (Not run)

promptSaveFile Display a "Save File" Dialogue

Description

Display the default Save As prompt provided by the Operating System.

Usage

promptSaveFile (initialfile="", filetype=list (c("x", "All Files")),
save=TRUE)

Arguments

initialfile file name of the text file containing the list.

filetype a list of character vectors indicating file types made available to users of the
GUI. Each vector is of length one or two. The first element specifies either the
file extension or "« " for all file types. The second element gives an optional
descriptor name for the file type. The supplied filetype list appears as a set
of choices in the pull-down box labelled “Files of type:”.

save logical; if TRUE display Save As prompt, if FALSE display Open prompt.

104 readList

Value

The file name and path of the file selected by the user.

See Also

promptOpenFile

Examples

Not run:

#illustrates how to set filetype.

promptSaveFile ("intial_ file.txt", filetype=list(c(".txt", "text files"),
c(".r", "R files"), c("«x", "All Files")))

End (Not run)

readList Read a List from a File in PBS Modelling Format

Description
Read in a list previously saved to a file by writeList. At present, only two formats are supported

- R’s native format used by the dput function or an ad hoc PBSmode11ing format. The function
readList detects the format automatically.

For information about the PBSmodel11ing format, see writelList.

Usage

readList (fname)

Arguments

fname file name of the text file containing the list.

See Also

writeList, unpackList

resetGraph 105

resetGraph Reset par Values for a Plot

Description

Reset par () to default values to ensure that a new plot utilizes a full figure region. This function
helps manage the device surface, especially after previous plotting has altered it.

Usage

resetGraph ()

See Also

resetGraph

restorePar Get Actual Parameters from Scaled Values

Description

Restore scaled parameters to their original units. Used in minimization by calcMin.

Usage

restorePar (S, pvec)

Arguments
S scaled parameter vector.
pvec adata frame comprising four columns - ¢ ("val", "min", "max", "active")
and as many rows as there are model parameters. The "active" field (logi-
cal) determines whether the parameters are estimated (TRUE) or remain fixed
(FALSE).
Details

Restoration algorithm: P = Py, + (Pras — Prin) (sin(Z2))?

Value

Parameter vector converted from scaled units to original units specified by pvec.

See Also

scalePar, calcMin, GTO

106 runDemos

Examples

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),
active=c (TRUE, TRUE, TRUE))

S <- c(.5,.5,.5)

P <- restorePar (S, pvec)

print (cbind (pvec, S,P))

runDemos Interactive GUI for R demos

Description

An interactive GUI for accessing demos from any R package installed on the user’s system. runDemos
is a convenient alternative to R§ demo function.

Usage

runDemos (package)

Arguments

package display demos from a particular package (optional)

Details

If the argument package is not specified, the function will look for demos in all packages installed
on the user’s system.

Note

The runDemos GUI attempts to retain the user’s objects and restore the working directory. How-
ever, pre-existing objects will be overwritten if their names co-incide with names used by the various
demos. Also, depending on conditions, the user may lose working directory focus. We suggest that
users run this demo from a project where data objects are not critical. — USER BEWARE —

See Also

runExamples for examples specific to PBSmodelling.

runExamples 107

runExamples Run GUI Examples Included with PBS Modelling

Description

Display an interactive GUI to demonstrate PBS Modelling examples.

The example source files can be found in the directory PBSmodelling/examples, located in
R’s directory 1ibrary.
Usage

runExamples ()

Details

Some examples use external packages which must be installed to work correctly:
BRugs - LinReg, MarkRec, and CCA,;
odesolve/ddesolve - FishRes;

PBSmapping - FishTows.

Note

The examples are copied from PBSmodelling/examples to R’s current temporary working
directory and run from there.

See Also

runDemos

scalePar Scale Parameters to [0,1]

Description

Scale parameters for function minimization by calcMin.

Usage

scalePar (pvec)

Arguments

pvec a data frame comprising four columns - ¢ ("val", "min", "max", "active™")
and as many rows as there are model parameters. The "active" field (logi-
cal) determines whether the parameters are estimated (TRUE) or remain fixed
(FALSE).

108 setPBSext

Details
Scaling algorithm: S = Zasin, / %
Value

Parameter vector scaled between 0 and 1.

See Also

restorePar, calcMin, GTO

Examples

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),
active=c (TRUE, TRUE, TRUE))

S <- scalePar (pvec)

print (cbind (pvec, S))

setPBSext Set a Command Associated with a Filename Extension

Description

Set a command with an associated extension (suffix), for use in openFile. The command must
specify where the target file name is inserted by indicating a % £.

Usage

setPBSext (ext, cmd)

Arguments

ext string of specifying the extension suffix.

cmd command string to associate with the extension.
Note

These values are not saved from one PBS Modelling session to the next.

See Also

getPBSext, openFile

setPBSoptions

109

setPBSoptions Set A User Option

Description

Some options may be set by the user.

Usage

setPBSoptions (option, value)

Arguments
option name of the option to set.
value new value to assign this option.

See Also

getPBSoptions

setWinAct Add a Window Action to the Saved Action Vector

Description

Append a string value specifying an action to the first position of an action vector.

Usage

setWinAct (winName, action)

Arguments
winName window name where action is taking place.
action string value describing an action.

Details

When a function is called from a GUI, a string descriptor associated with the action of the function
is stored internaly (appended to the first position of the action vector). A user can utilize this action
as a type of argument for programming purposes. The command getWinAct () [1] yields the

latest action.

Sometimes it is useful to “fake” an action. Calling setWinAct allows the recording of an action,

even if a button has not been pressed.

110 setWinVal

setWinval Update Widget Values

Description

Update a widget with a new value.

Usage

setWinVal (vars, winName)

Arguments
vars a list or vector with named components.
winName window from which to select GUI widget values. The default takes the window
that has most recently received new user input.
Details

The vars argument expects a list or vector with named elements. Every element name corresponds
to the widget name which will be updated with the supplied element value.

The vector, matrix, and data widgets can be updated in several ways. If more than one
name is specified for the name s argument of these widgets, each element is treated like an entry
widget.

If however, a single name describes any of these three widgets, the entire widget can be updated by
passing an appropriately sized object.

Alternatively, any element can be updated by appending its index in square brackets to the end of
the name. The data widget is indexed differently than the mat rix widget by adding "d" after
the brackets. This tweak is necessary for the internal coding (bookkeeping) of PBS Modelling.
Example: "foo[1,1]d".

See Also

getWinVal, createWin

Examples

Not run:
winDesc <- c("vector length=3 name=vec",
"matrix nrow=2 ncol=2 name=mat",
"slideplus name=foo");
createWin (winDesc, astext=TRUE)
setWinVal (list (vec=1:3, "mat[l,1]"=123, foo.max=1.5, foo.min=0.25, foo=0.7))
End (Not run)

show(0 111

showO Convert Numbers into Text with Specified Decimal Places

Description

Return a character representation of a number with added zeroes out to a specified number of deci-
mal places.

Usage

show0O (x, n, add2int = FALSE)

Arguments
X numeric data (scalar, vector, or matrix).
n number of decimal places to show, including zeroes.
add2int If TRUE, add zeroes on the end of integers.

Value

A scalar/vector of strings representing numbers. Useful for labelling purposes.

Note

This function does not round or truncate numbers. It simply adds zeroes if n is greater than the
available digits in the decimal part of a number.

Examples

frame ()

#do not show decimals on integers
addLabel (0.25,0.75, show0 (15.2,4))
addLabel (0.25,0.7,show0 (15.1,4))
addLabel (0.25,0.65, show0 (15,4))

#show decimals on integers

addLabel (0.25,0.55, show0 (15.2,4, TRUE))
addLabel (0.25,0.5, show0 (15.1,4,TRUE))
addLabel (0.25,0.45, show0 (15, 4, TRUE))

112 sortHistory

showArgs Display Expected Widget Arguments

Description

Display the order and default values of all widget arguments. The list can be shortened by specifying
a single widget name.

Usage

showArgs (widget="")

Arguments
widget If specified, information about this one widget only is displayed. The default
displays information about all widgets.
Value

A text stream to the R console. Cannot be directed to a file or other device.

sortHistory Sort an Active or Saved History

Description

Utility to sort history. When called without any arguments, an interactive GUI is used to pick which
history to sort. When called with hisname, sort this active history widget. When called with
file and outfile, sort the history located in £ile and save to outfile.

Usage
sortHistory (file="", outfile=file, hisname="")
Arguments
file file name of saved history to sort.
outfile file to save sorted history to.
hisname name of active history widget and window it is located in, given in the form

WINDOW.HISTORY.

testCol 113

Details

After selecting a history to sort (either from given arguments, or interactive GUI) the R data editor
window will be displayed. The editor will have one column named fiewWwhich will have numbers
1,2,3,...,n. This represents the current ordering of the history. You may change the numbers around
to define a new order. The list is sorted by reassigning the index in row i as index i.

For example, if the history had three items 1,2,3. Reordering this to 3,2,1 will reverse the order;
changing the list to 1,2,1,1 will remove entry 3 and create two duplicates of entry 1.

See Also

importHistory, initHistory

testCol Display Named Colours Available Based on a Set of Strings

Description

Display colours as patches in a plot. Useful for programming purposes. Colours can be specified in
any of 3 different ways: (i) by colour name, (ii) by hexidecimal colour code created by rgb (), or
(iii) by an index to the color () palette.

Usage

testCol (cnam=colors () [sample (length (colors()),15) 1)

Arguments
cnam vector of colour names to display. Defaults to 15 random names from the color
palette.
See Also
pickCol
Examples

testCol (c("sky","fire", "sea", "wood"))
testCol (c ("plum", "tomato", "olive", "peach", "honeydew"))
testCol (substring (rainbow (63),1,7))

#display all colours set in the colour palette
testCol (l:1length (palette()))

#they can even be mixed
testCol (c ("#9e7ad3", "purple", 6))

114 testLwd

testLty Display Line Types Available

Description

Display line types available.

Usage

testlLty (newframe = TRUE)

Arguments

newframe if TRUE, create a new blank frame, otherwise overlay current frame.

Note

Quick representation of first 20 line types for reference purposes.

testLwd Display Line Widths

Description

Display line widths. User can specify particular ranges for 1wd. Colours can also be specified and
are internally repeated as necessary.

Usage

testLwd (lwd=1:20, col=c("black","blue"), newframe=TRUE)

Arguments
1wd line widths to display. Ranges can be specified.
col colours to use for lines. Patterns are repeated if Length (1wd) > length (col)
newframe if TRUE, create a new blank frame, otherwise overlay current frame.

Examples

testLlwd (3:15,col=c ("salmon", "agquamarine", "gold"))

testPch 115

testPch Display Plotting Symbols and Backslash Characters

Description

Display plotting symbols. User can specify particular ranges (increasing continuous integer) for
pch.

Usage

testPch (pch=1:100, ncol=10, grid=TRUE, newframe=TRUE, bs=FALSE)

Arguments
pch symbol codes to view.
ncol number of columns in display (can only be 2, 5, or 10). Most sensibly this is set
to 10.
grid logical; if TRUE, grid lines are plotted for visual aid.
newframe logical; if TRUE reset the graph, otherwise overlay on top of the current graph.
bs logical; if TRUE, show backslash characters used in text statements (e.g., 30\272C
=30°C).
Examples

testPch (123:255)
testPch(1:25,ncol=5)
testPch(41:277,bs=TRUE)

testWidgets Displays Sample GUIs and their Source Code

Description

Display an interactive GUI to demonstrate the available widgets in PBS Modelling. A text win-
dow displays the Window Description File source code. The user can modify this sample code and
recreate the test GUI by pressing the button below.

The Window Description Files can be found in the directory PBSmodelling/testWidgets
located in the R directory 1ibrary.

Usage

testWidgets ()

116

testWidgets

Details

Following are the widgets and default values supported by PBS Modelling. See Appendix A in
“PBSModelling-UG.pdf” for detailed descriptions.

button text="Calculate" font="" fg="black" bg="" width=0
function="" action="button" sticky="" padx=0 pady=0

check name mode=logical checked=FALSE text="" font="" fg="black" bg=""
function="" action="check" sticky="" padx=0 pady=0

data nrow ncol names modes="numeric" rowlabels="" collabels=""
rownames="X" colnames="Y" font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" values="" byrow=TRUE function=""
enter=TRUE action="data" width=6 sticky="" padx=0 pady=0

entry name value="" width=20 label="" font="" fg="" bg=""
entryfont="" entryfg="black" entrybg="white" function=""

enter=TRUE action="entry" mode="numeric" sticky="" padx=0 pady=0

grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont="" sidefont=""
byrow=TRUE borderwidth=1 relief="flat" sticky="" padx=0 pady=0

history name="default" function="" import="" sticky="" padx=0 pady=0

label text="" font="" fg="black" bg="" sticky="" justify="left"
wraplength=0 padx=0 pady=0

matrix nrow ncol names rowlabels="" collabels="" rownames=""
colnames="" font="" fg="black" bg="" entryfont="" entryfg="black"
entrybg="white" values="" byrow=TRUE function="" enter=TRUE
action="matrix" mode="numeric" width=6 sticky="" padx=0 pady=0

menu nitems=1 label font=""

menuitem label font="" function action="menuitem"

null padx=0 pady=0

object name font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" vertical=FALSE function=""

enter=TRUE action="data" width=6 sticky="" padx=0 pady=0

radio name value text="" font="" fg="black" bg="" function=""
action="radio" mode="numeric" selected=FALSE sticky="" padx=0 pady=0

slide name from=0 to=100 value=NA showvalue=FALSE
orientation="horizontal" font="" fg="black" bg="" function=""
action="slide" sticky="" padx=0 pady=0

unpackList 117

slideplus name from=0 to=1 by=0.01 value=NA function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0

text name height=8 width=30 edit=FALSE scrollbar=TRUE

fg="black" bg="white" mode="character" font="" value=""
borderwidth=1 relief="sunken" sticky="" padx=0 pady=0

vector names length=0 labels="" values="" vecnames="" font=""
fg="black" bg="" entryfont="" entryfg="black" entrybg="white"
vertical=FALSE function="" enter=TRUE action="vector"
mode="numeric" width=6 sticky="" padx=0 pady=0

window name="window" title="" vertical=TRUE bg="#D4D0C8"

fg="#000000" onclose=""

See Also

createWin, showArgs

unpackList Unpack List Elements into Variables

Description

Make local or global variables (depending on the scope specified) from the named components of a
list.

Usage

unpackList (x, scope="L")

Arguments
x named list to unpack.
scope If "L", create variables local to the parent frame that called the function. If
"G", create global variables.
Value

A character vector of unpacked variable names.

See Also

readList

118 vbpars

Examples

x <— list (a=21,b=23);
unpackList (x) ;
print (a);

vbdata Dataset: Length-at-Age Data for a von Bertalanffy Curve

Description

Lengths-at-age for freshwater mussels (Anodonta kennerlyi).

Usage

data (vbdata)

Format

A data frame with 16 rows and 2 columns c ("age", "len").

Details

Data for demonstartion of the von Bertalanffy model used in the calcMin example.

Source

Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy nonlinear
parameter estimation and interpretation in fishery research. Canadian Technical Report of Fisheries
and Aquatic Sciences 1384: xi + 90 p.

vbpars Dataset: Initial Parameters for a von Bertalanffy Curve

Description
Starting parameter values for Linf, K, and t 0 for von Bertalanffy minimization using length-at-age
data (vbdata) for freshwater mussels (Anodonta kennerlyi).

Usage

data (vbpars)

Format

A matrix with 3 rows and 3 columns ¢ ("Linf", "K", "t0"). Each row contains the starting
values, minima, and maxima, respectively, for the three parameters.

view 119
Details

Data for demonstration of the von Bertalanffy model used in the calcMin example.

Source
Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy nonlinear
parameter estimation and interpretation in fishery research. Canadian Technical Report of Fisheries
and Aquatic Sciences 1384: xi + 90 p.

view Display First n Rows of an Object

Description

View the first n rows of a data frame or matrix or the first n elements of a vector or list. All other
objects are simply reflected.

Usage

view(obj, n = 5)

Arguments
obj object to view.
n first n rows (matrix/data frame) or elements (vector/list) of ob7j to view.
writeList Write a List to a File in PBS Modelling Format
Description

Write an ASCII text representation in either "D" format or "P" format. The "D" format makes
use of dput and dget, and produces an R representation of the list. The "P" format represents a
simple list in an easy-to-read, ad hoc PBSmodel1ing format.

Usage

writelList (x, fname, format="D", comments="")

Arguments
x R list object to write to an ASCII text file.
fname file name of the text file containing the list.
format format of the file to create: "D" or "P".

comments vector of character strings to use as initial-line comments in the file.

120 writeList

Details

The "D" format is equivalent to using R’s base functions dput and dget, which support all R
objects.

The "P" format only supports named lists of vectors, matrices, and data frames. Scalars are treated
like vectors. Nested lists are not supported.

The "P" format writes each named element in a list using the following conventions: (i) $ followed
by the name of the data object to denote the start of that object’s description; (i) $$ on the next
line to describe the object’s structure - object type, mode(s), names (if vector), rownames (if matrix
or data), and colnames (if matrix or data); and (iii) subsequent lines of data (one line for vector,
multiple lines for matrix or data).

Multiple rows of data for matrices or data frames must have equal numbers of entries (separated by
whitespace).

For complete details, see “PBSmodelling-UG.pdf” in R’s directory 1ibrary/PBSmodelling.

See Also

readList, openFile

Examples

Not run:
test <- list (a=10,b=euro, c=view (WorldPhones),d=view (USArrests))
writeList (test, "test.txt", format="P",

comments=" Scalar, Vector, Matrix, Data Frame")
openFile ("test.txt")
End(Not run)

Index

+Topic arith
calcFib, 72
calcGM, 73
+Topic array
genMatrix, 85
*Topic color
pickCol, 95
testCol, 111
testLty, 112
testLwd, 112
testPch, 113
xTopic datasets
CCA.gbr, 68
vbdata, 116
vbpars, 116
xTopic device
chooseWinval, 75
expandGraph, 82
getChoice, 85
resetGraph, 103
*Topic file
openFile, 92
readList, 102
unpackList, 115
writeList, 117
+Topic graphs
plotACF, 96
plotDens, 99
plotTrace, 100
+Topic hplot
drawBars, 81
GTO, 69
plotAsp, 96
plotBubbles, 97
plotCsum, 98
+Topic iplot
addArrows, 70
addLabel, 71
addLegend, 72

121

*Topic list
readList, 102
unpackList, 115
writeList, 117

*Topic methods
clearAll, 77
clearWinval, 77
focusWin, 84
getPBSext, 87
getPBSoptions, 87
getWinAct, 88
getWinFun, 88
getWinval, 89
setPBSext, 106

setPBSoptions, 107

setWinAct, 107
setWinVval, 108

*Topic misc
exportHistory, 82
importHistory, 90
parseWinFile, 94
pause, 95

promptOpenFile, 100
promptSaveFile, 101

sortHistory, 110
*Topic nonlinear
calcMin, 73
«Topic optimize
calcMin, 73
restorePar, 103
scalePar, 105
xTopic package
PBSmodelling, 70
*Topic print
pado, 93
showO0, 109
view, 117
xTopic utilities
chooseWinval, 75

122

closeWin, 78
compileDescription, 78
createVector, 79
createWin, 80
findPat, 83
getChoice, 85
initHistory, 90
runDemos, 104
runExamples, 105
showArgs, 110
testCol, 111
testLty, 112
testLwd, 112
testPch, 113
testWidgets, 113

addArrows, 70,71, 72
addHistory (initHistory), 90
addLabel, 71,71, 72
addLegend, 71,72

backHistory (initHistory), 90

calcFib, 72

calcGM, 73

calcMin, 69, 73, 75, 103, 106
CCA.gbr, 68

chooseWinVval, 75, 86
clearall, 77

clearHistory (initHistory), 90
clearWinVal, 77, 89

closeWin, 78, 80
compileDescription, 78, 80, 94
createVector, 79, 80
createWin, 78, 79, 80, 94, 108, 115

drawBars, 81

expandGraph, 82
exportHistory, 82, 90, 91

findPat, 83

firstHistory (initHistory), 90
focusWin, 84

forwHistory (initHistory), 90

genMatrix, 85, 98
getChoice, 76, 85
getPBSext, 87, 88, 93, 106
getPBSoptions, 87, 107

getWinAct, 88

getWinFun, 88

getWinval, 76, 78, 80, 86, 89, 108
GTO0, 69, 75, 103, 106

importHistory, 83,90,91, 111
initHistory, 80, 83,90, 90, 111

jumpHistory (initHistory), 90
lastHistory (initHistory), 90
openFile, 87,92, 106,118

pado, 93

parseWinFile, 79, 80, 89, 94

pause, 95

PBSmodelling, 70

PBSmodelling-package
(PBSmodelling), 70

pickCol, 95,111

plotACF, 96

plotAsp, 96

plotBubbles, 85, 97

plotCsum, 98

plotDens, 99

plotTrace, 100

promptOpenFile, 90, 100, 102

promptSaveFile, 83, 101, 101

readList, 102, 115,118
resetGraph, 82, 103, 103
restorePar, 69, 75, 103, 106
rmHistory (initHistory), 90
runDemos, 104, 105
runExamples, 104, 105

scalePar, 69, 75, 103, 105
setPBSext, 87, 93, 106
setPBSoptions, 107
setWinAct, 107

setWinVal, 76, 80, 86, 89, 108
show0, 109

showArgs, 110, 115
sortHistory, 110

testCol, 95, 111
testlty, 112
testLwd, 112
testPch, 113

INDEX

INDEX 123

testWidgets, 113
unpackList, 102, 115

vbdata, 116, 116
vbpars, 116
view, 117

widgets (testWidgets), 113
writelList, 102,117

	PBSmodelling.pdf
	CCA.qbr
	GT0
	PBSmodelling
	addArrows
	addLabel
	addLegend
	calcFib
	calcGM
	calcMin
	chooseWinVal
	clearAll
	clearWinVal
	closeWin
	compileDescription
	createVector
	createWin
	drawBars
	expandGraph
	exportHistory
	findPat
	focusWin
	genMatrix
	getChoice
	getPBSext
	getPBSoptions
	getWinAct
	getWinFun
	getWinVal
	importHistory
	initHistory
	openFile
	pad0
	parseWinFile
	pause
	pickCol
	plotACF
	plotAsp
	plotBubbles
	plotCsum
	plotDens
	plotTrace
	promptOpenFile
	promptSaveFile
	readList
	resetGraph
	restorePar
	runDemos
	runExamples
	scalePar
	setPBSext
	setPBSoptions
	setWinAct
	setWinVal
	show0
	showArgs
	sortHistory
	testCol
	testLty
	testLwd
	testPch
	testWidgets
	unpackList
	vbdata
	vbpars
	view
	writeList
	Index

