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1 Introduction

Pharmacogenomics hold much potential to aid in discovering drug response
biomarkers and developing novel targeted therapies, leading to development
of precision medicine and working towards the goal of personalized ther-
apy. Several large experiments have been conducted, both to molecularly
characterize drug dose response across many cell lines, and to examine the
molecular response to drug administration. However, the experiments lack a
standardization of protocols and annotations, hindering meta-analysis across
several experiments.

1



PharmacoGx was developed to address these challenges, by providing a
unified framework for downloading and analyzing large pharmacogenomic
datasets which are extensively curated to ensure maximum overlap and con-
sistency. PharmacoGx is based on a level of abstraction from the raw ex-
perimental data, and allows bioinformaticians and biologists to work with
data at the level of genes, drugs and cell lines. This provides a more intu-
itive interface and, in combination with unified curation, simplifies analyses
between multiple datasets.

To organize the data released by each experiment, we developed the
PharmacoSet class. This class efficiently stores different types of data and
facilitates interrogating the data by drug or cell line. The PharmacoSet is
also versatile in its ability to deal with two distinct types of pharmacoge-
nomic datasets. The first type, known as sensitivity datasets, are datasets
where cell lines were profiled on the molecular level, and then tested for drug
dose response. The second type of dataset is the perturbation dataset. These
types of datasets profile a cell line on the molecular level before and after
administration of a compound, to characterize the action of the compound
on the molecular level.

With the first release of PharmacoGx we have fully curated and created
PharmacoSet objects for three publicly available large pharmacogenomic
datasets. Two of these datasets are of the sensitivity type. These are the
Cancer Genome Project (CGP) [2] and the Cancer Cell Line Encyclopedia
(CCLE) [1]. The third dataset is of the perturbation type, the Connectivity
Map (CMAP) project [5].

Furthermore, PharmacoGx provides a suite of parallized functions which
facilitate drug response biomarker discovery, and molecular drug character-
ization. This vignette will provide two example analysis case studies. The
first will be comparing gene expression and drug sensitivity measures across
the CCLE and CGP projects. The second case study will interrogate the
CMAP database with a known signature of up and down regulated genes
for HDAC inhibitors as published in [3]. Using the Connectivity Score as
defined in [5], it will be seen that known HDAC inhibitors have a high
numerical score and high significance.

For the purpose of this vignette, an extremely minuscule subset of all
three PharmacoSet objects are included with the package as example data.
They are included for illustrative purposes only, and the results obtained
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with them will likely be meaningless.

1.1 Installation and Settings

PharmacoGx requires that several packages are installed. However, all de-
pendencies are available from CRAN or Bioconductor.

> source('http://bioconductor.org/biocLite.R')
> biocLite('PharmacoGx')

Load PharamacoGx into your current workspace:

> library(PharmacoGx)

Requirements

PharmacoGx has been tested on Windows, Mac and Cent OS platforms. The
packages uses the core R package parallel to preform parallel computations,
and therefore if parallelization is desired, the dependencies for the parallel
package must be met.

2 Downloading PharmacoSet objects

We have made the PharmacoSet objects of the curated datasets available
online at:
www.pmgenomics.ca/bhklab/software/pharmacogx/

However, to make the process of obtaining the data easier through the
R shell, we have also written a function downloadPSet which automates
downloading the datasets into a directory of the users choice, and returns
the data into the R session.

> ## Example

> CGP <- downloadPSet("CGP")

Downloading Drug Signatures

The package also provides tools to compute drug perturbation and sensitiv-
ity signatures, as explained below. However, this computation is lengthy, so
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for users convenience we have precomputed signatures for our three Phar-
macoSet objects and made them available for download using the function
downloadSignatures.

> ## Example

> CGP.sigs <- downloadSignatures("CGP")

3 Case Study

3.1 (In)Consistency across large pharmacogenomic studies

Our first case study illustrates the functions for analysis of the sensitivity
type of dataset. The case study will investigate the consistency between
the CGP and CCLE datasets, recreating the analysis similar to our Incon-
sistency in Large Pharmacogenomic Studies paper [4]. In both CCLE and
CGP, the transcriptome of cells was profiled using an Affymatrix microarray
chip. Cells were also tested for their response to increasing concentrations
of various compounds, and form this the IC50 and AUC were computed.
However, the cell and drugs names used between the two datasets were
not consistent. Furthermore, two different microarray platforms were used.
However, PharmacoGx allows us to overcome these differences to do a com-
parative study between these two datasets.

CGP was profiled using the hgu133a platform, while CCLE was profiled
with the expanded hgu133plus2 platform. While in this case the hgu133a is
almost a strict subset of hgu133plus2 platform, we can use the best informa-
tion from each platform by comparing the best probes within each dataset
per gene. The function probeGeneMapping selects a probe for each gene pro-
filed in the microarray platform. It picks the most accurate probe for each
gene using annotations extracted from the jetset package [6]. Jetset scores
each probe on how sensitive and specific it is, allowing probeGeneMapping
to pick the probe which is most representative of each genes true expression.

To begin, you would load the datasets from disk or download them using
the downloadPSet function above, and then execute probeGeneMapping on
the datasets.

> ##Using the included example datasets

> library(PharmacoGx)

> data("CGPsmall")
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> data("CCLEsmall")

> CGPsmall <- probeGeneMapping(CGPsmall)

> CCLEsmall <- probeGeneMapping(CCLEsmall)

We then want to investigate the consistency of the data between the
two datasets. The common intersection between the datasets can then be
found using intersectPSet. We then create a summary of the gene expression
and drug sensitivity measures for both datasets, and compare them using a
standard correlation coefficient.

> library(PharmacoGx)

> data("CGPsmall")

> data("CCLEsmall")

> CGPsmall <- probeGeneMapping(CGPsmall)

> CCLEsmall <- probeGeneMapping(CCLEsmall)

> common <- intersectPSet(list('CCLE'=CCLEsmall,
+ 'CGP'=CGPsmall),
+ intersectOn=c("cell.lines", "drugs", 'genes'))
> CGP.auc <- summarizeSensitivityPhenotype(

+ common$CGP,

+ sensitivity.measure='auc_published',
+ summaryStat="median")

> CCLE.auc <- summarizeSensitivityPhenotype(

+ common$CCLE,

+ sensitivity.measure='auc_published',
+ summaryStat="median")

> CGP.ic50 <- summarizeSensitivityPhenotype(

+ common$CGP,

+ sensitivity.measure='ic50_published',
+ summaryStat="median")

> CCLE.ic50 <- summarizeSensitivityPhenotype(

+ common$CCLE,

+ sensitivity.measure='ic50_published',
+ summaryStat="median")

> common$CGP <- summarizeGeneExpression(common$CGP,

+ cellNames(common$CGP),

+ verbose=FALSE)

> common$CCLE <- summarizeGeneExpression(common$CCLE,

+ cellNames(common$CCLE),

+ verbose=FALSE)
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> gg <- geneNames(common[[1]])

> cc <- cellNames(common[[1]])

> ge.cor <- sapply(cc, function (x, d1, d2) {

+ return (stats::cor(d1[ , x], d2[ , x], method="spearman",

+ use="pairwise.complete.obs"))

+ }, d1=rnaData(common$CGP), d2=rnaData(common$CCLE))

> ic50.cor <- sapply(cc, function (x, d1, d2) {

+ return (stats::cor(d1[, x], d2[ , x], method="spearman",

+ use="pairwise.complete.obs"))

+ }, d1=t(CGP.ic50), d2=t(CCLE.ic50))

> auc.cor <- sapply(cc, function (x, d1, d2) {

+ return (stats::cor(d1[ , x], d2[ , x], method="spearman",

+ use="pairwise.complete.obs"))

+ }, d1=t(CGP.auc), d2=t(CCLE.auc))

> w1 <- stats::wilcox.test(x=ge.cor, y=auc.cor, conf.int=TRUE, exact=FALSE)

> w2 <- stats::wilcox.test(x=ge.cor, y=ic50.cor, conf.int=TRUE, exact=FALSE)

> yylim <- c(-1, 1)

> ss <- sprintf("GE vs. AUC = %.1E\nGE vs. IC50 = %.1E",

+ w1$p.value, w2$p.value)

> boxplot(list("GE"=ge.cor, "AUC"=auc.cor, "IC50"=ic50.cor),

+ main="Concordance between cell lines",

+ ylab=expression(R[s]),

+ sub=ss,

+ ylim=yylim,

+ col="lightgrey",

+ pch=20,

+ border="black")

>

3.2 Query the Connectivity Map

The second case study illustrates the analysis of a perturbation type datasets,
where the changes in cellular molecular profiles are compared before and af-
ter administering a compound to the cell line. Of these datasets, we have
currently curated and made available for download the Connectivity Map
(CMAP) dataset [5].

For this case study, we will recreate an analysis from the paper by Lamb
et al., in which a known signature for HDAC inhibitors [3] is used to recover
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drugs in the CMAP dataset that are also known HDAC inhibitors. For this
example, the package includes this signature, already mapped to the gene
level, and it can be loaded by calling data(HDAC genes).

Once again, we load the dataset, and we summarize the expression on
the gene level using probeGeneMapping. We then recreate drug signatures
for each drug use the function drugPerturbationSig to preform statistical
modelling of the transcriptomic response to the application of each drug.
We then compare the observed up-regulated and down-regulated genes to a
the known HDAC signature, using the GSEA connectivity score to determine
the correlation between the two signatures.

> library(PharmacoGx)

> require(xtable)

> data(CMAPsmall)

> drug.perturbation <- drugPertubrationSig(CMAPsmall)

> data(HDAC_genes)

> res <- apply(drug.perturbation[,,c("tstat", "fdr")], 2, function(x, HDAC){

+ return(connectivityScore(x=x,

+ y=HDAC[,2,drop=FALSE],

+ method="gsea", nperm=100))

+ }, HDAC=HDAC_genes)

> rownames(res) <- c("Connectivity", "P Value")

> res <- t(res)

> res <- res[order(res[,1], decreasing=T),]

> xtable(res,

+ caption='Connectivity Score results for HDAC inhibitor gene signature.')

Connectivity P Value

vorinostat 0.99 0.00
alvespimycin 0.82 0.01

acetylsalicylic acid 0.50 0.26
rosiglitazone 0.00 1.00
pioglitazone 0.00 1.00

Table 1: Connectivity Score results for HDAC inhibitor gene signature.

As we can see, the known HDAC inhibitor Varinostat has a very strong
connectivity score, as well as a very high significance as determined by per-
mutation testing, in comparison to the other drugs, which score poorly.

8



This example serves as a validation of the method, and demonstrates
the ease with which drug perturbation analysis can be done using Pharma-
coGx. While in this case we were matching a drug signature with a drug
class signature, this method can also be used in the discovery of drugs that
are anticorrelated with known disease signatures, to look for potential new
treatments and drug repurposing.

Session Info

• R version 3.2.1 (2015-06-18), x86_64-apple-darwin13.4.0

• Locale: C/en_CA.UTF-8/en_CA.UTF-8/C/en_CA.UTF-8/en_CA.UTF-8

• Base packages: base, datasets, grDevices, graphics, methods, stats,
utils

• Other packages: PharmacoGx 1.0.6, xtable 1.7-4

• Loaded via a namespace (and not attached): Biobase 2.28.0,
BiocGenerics 0.14.0, KernSmooth 2.23-15, MASS 7.3-43,
RColorBrewer 1.1-2, bitops 1.0-6, caTools 1.17.1, cluster 2.0.3,
digest 0.6.8, downloader 0.4, gdata 2.17.0, gplots 2.17.0, gtools 3.5.0,
igraph 1.0.1, limma 3.24.14, magicaxis 1.9.4, magrittr 1.5,
marray 1.46.0, parallel 3.2.1, piano 1.8.2, plotrix 3.5-12,
relations 0.6-5, sets 1.0-15, slam 0.1-32, sm 2.2-5.4, tools 3.2.1
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Mapa, Joseph Thibault, Eva Bric-Furlong, Pichai Raman, Aaron Ship-
way, Ingo H Engels, Jill Cheng, Guoying K Yu, Jianjun Yu, Peter Aspesi,
Melanie de Silva, Kalpana Jagtap, Michael D Jones, Li Wang, Charles
Hatton, Emanuele Palescandolo, Supriya Gupta, Scott Mahan, Carrie
Sougnez, Robert C Onofrio, Ted Liefeld, Laura MacConaill, Wendy
Winckler, Michael Reich, Nanxin Li, Jill P. Mesirov, Stacey B Gabriel,
Gad Getz, Kristin Ardlie, Vivien Chan, Vic E Myer, Barbara L Weber,

9



Jeff Porter, Markus Warmuth, Peter Finan, Jennifer L Harris, Matthew
Meyerson, Todd R. Golub, Michael P Morrissey, William R Sellers,
Robert Schlegel, and Levi A. Garraway. The Cancer Cell Line Encyclo-
pedia enables predictive modelling of anticancer drug sensitivity. Nature,
483(7391):603–607, March 2012.

[2] Mathew J Garnett, Elena J Edelman, Sonja J Heidorn, Chris D Green-
man, Anahita Dastur, King Wai Lau, Patricia Greninger, I Richard
Thompson, Xi Luo, Jorge Soares, Qingsong Liu, Francesco Iorio, Di-
dier Surdez, Li Chen, Randy J Milano, Graham R Bignell, Ah T Tam,
Helen Davies, Jesse A Stevenson, Syd Barthorpe, Stephen R Lutz,
Fiona Kogera, Karl Lawrence, Anne McLaren-Douglas, Xeni Mitropou-
los, Tatiana Mironenko, Helen Thi, Laura Richardson, Wenjun Zhou,
Frances Jewitt, Tinghu Zhang, Patrick O’Brien, Jessica L Boisvert,
Stacey Price, Wooyoung Hur, Wanjuan Yang, Xianming Deng, Adam
Butler, Hwan Geun Choi, Jae Won Chang, Jose Baselga, Ivan Sta-
menkovic, Jeffrey A Engelman, Sreenath V Sharma, Olivier Delattre,
Julio Saez-Rodriguez, Nathanael S Gray, Jeffrey Settleman, P Andrew
Futreal, Daniel A Haber, Michael R Stratton, Sridhar Ramaswamy, Ul-
tan McDermott, and Cyril H Benes. Systematic identification of genomic
markers of drug sensitivity in cancer cells. Nature, 483(7391):570–575,
March 2012.

[3] Keith B Glaser, Michael J Staver, Jeffrey F Waring, Joshua Stender,
Roger G Ulrich, and Steven K Davidsen. Gene expression profiling of
multiple histone deacetylase (HDAC) inhibitors: defining a common gene
set produced by HDAC inhibition in T24 and MDA carcinoma cell lines.
Molecular cancer therapeutics, 2(2):151–163, February 2003.

[4] Benjamin Haibe-Kains, Nehme El-Hachem, Nicolai Juul Birkbak, An-
drew C Jin, Andrew H Beck, Hugo J W L Aerts, and John Quackenbush.
Inconsistency in large pharmacogenomic studies. Nature, 504(7480):389–
393, December 2013.

[5] Justin Lamb, Emily D Crawford, David Peck, Joshua W Modell, Irene C
Blat, Matthew J Wrobel, Jim Lerner, Jean-Philippe Brunet, Aravind
Subramanian, Kenneth N Ross, Michael Reich, Haley Hieronymus, Guo
Wei, Scott A Armstrong, Stephen J Haggarty, Paul A Clemons, Ru Wei,
Steven A Carr, Eric S. Lander, and Todd R. Golub. The Connectivity
Map: using gene-expression signatures to connect small molecules, genes,
and disease. Science, 313(5795):1929–1935, September 2006.

10



[6] Qiyuan Li, Nicolai J Birkbak, Balázs Győrffy, Zoltan Szallasi, and
Aron C Eklund. Jetset: selecting the optimal microarray probe set to
represent a gene. BMC Bioinformatics, 12(1):474, 2011.

11


