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Abstract

The case-control study is an important design for testing association between genetic
markers and a disease. The Cochran-Armitage trend test (CATT) is one of the most
commonly used statistics for the analysis of case-control genetic association studies. The
asymptotically optimal CATT can be used when the underlying genetic model (mode
of inheritance) is known. However, for most complex diseases, the underlying genetic
models are unknown. Thus, tests robust to genetic model misspecification are preferable
to the model-dependant CATT. Two robust tests, MAX3 and the genetic model selection
(GMS), were recently proposed. Their asymptotic null distributions are often obtained
by Monte-Carlo simulations, because they either have not been fully studied or involve
multiple integrations. In this article, we study how components of each robust statistic are
correlated, and find a linear dependence among the components. Using this new finding,
we propose simple algorithms to calculate asymptotic null distributions for MAX3 and
GMS, which greatly reduce the computing intensity. Furthermore, we have developed the
R package Rassoc implementing the proposed algorithms to calculate the empirical and
asymptotic p values for MAX3 and GMS as well as other commonly used tests in case-
control association studies. For illustration, Rassoc is applied to the analysis of case-
control data of 17 most significant SNPs reported in four genome-wide association studies.

Keywords: algorithm, asymptotic distributions, dependence of trend tests, genetic model se-
lection, MAX3, robust tests.

1. Introduction

The case-control association study is a useful design for testing genetic association (Risch and
Merikangas 1996). In such a design, case-control samples for a diallelic marker are summarized
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in a 2×3 contingency table, where the rows correspond to case-control status and the columns
to three genotypes. The null hypothesis of no association is equivalent to no association in the
contingency table. Under the alternative hypothesis, if one of the two alleles confers a high
risk of the disease, an individual’s risk having the disease increases with the number of risk
alleles in the genotype. In other words, the alternative is ordered or penetrances are ordered,
where a penetrance is the probability of the disease given one of the three genotypes. Four
genetic models named recessive (REC), multiplicative (MUL), additive (ADD) and dominant
(DOM) models are commonly used (Sasieni 1997; Freidlin et al. 2002).

Two tests, Pearson’s χ2 test (Pearson’s test) and the Cochran-Armitage trend test (CATT),
are commonly used for the analysis of case-control genetic association studies (Sasieni 1997;
Balding 2006). Pearson’s test ignores the ordered alternative but the CATT takes the order
into account. To apply the CATT, increasing scores are specified a priori for the three
genotypes depending on the genetic model. The three CATTs optimal for REC, ADD/MUL
and DOM models are obtained (Freidlin et al. 2002; Zheng et al. 2003). When the underlying
genetic model can be approximately pre-specified, the CATT with the optimal score is always
more powerful than Pearson’s test. However, misspecification of the genetic model may result
in a substantial loss of power for the CATT. In this case, Pearson’s test is more robust (score
independent). Therefore, there is a trade-off of robustness and efficiency between Pearson’s
test and the CATT (Yamada and Okada 2009; Zheng et al. 2009).

In real data analysis, the true genetic model is often unknown. Hence, robust tests are
preferable to the CATT or Pearson’s test (Freidlin et al. 2002). Robust tests for case-control
genetic association studies include the maximin efficiency robust test (MERT, Gastwirth 1966,
1985) with the recently developed R package lawstat (Hui et al. 2008), MAX3 (Freidlin et al.
2002; Gonzalez et al. 2008), the constrained likelihood ratio test (CLRT, Wang and Sheffield
2005), the GMS (Zheng and Ng 2008), and the optimal dose-effect trend test (Yamada and
Okada 2009). A detailed review of robust tests and their applications to genetic linkage and
association studies can be found in Joo et al. (2009a). In the following we focus on commonly
used robust tests for case-control studies.

Suppose a family of scientifically plausible models is defined. Corresponding to each model,
an asymptotically optimal, normally distributed test is obtained. Hence, a family of normally
distributed tests is formed. When the model is uncertain, a pre-specified test from this family
is not fully efficient. The minimum efficiency (e.g., Pitman asymptotic relative efficiency;
Noether (1955)) of each test can be obtained over the family of models. A test with higher
minimum efficiency is more robust. The MERT achieves the maximum minimum efficiency
(Gastwirth 1966). Under some conditions, the MERT can be written as the weighted average
of two normally distributed tests with the minimum correlation (called the extreme pair)
(Gastwirth 1985). In case-control association studies, the extreme pair corresponds to the
CATTs under the REC and DOM models. On the other hand, MAX3 of Freidlin et al. (2002)
takes the maximum of the absolute values of three CATTs respectively optimal for the REC,
ADD and DOM models. The MERT is often less powerful than MAX3 for case-control studies
(Freidlin et al. 2002). However, the MERT is easier to use because it asymptotically follows a
normal distribution under the null hypothesis. The MAX3 of Gonzalez et al. (2008) is similar
to that of Freidlin et al. (2002). Gonzalez et al. (2008) considered the maximum of the
likelihood ratio tests (LRTs) for the three genetic models. A test with performance similar to
MAX3 is the CLRT (Wang and Sheffield 2005). It is a LRT but restricts the alternative space
to REC, ADD and DOM models. Yamada and Okada (2009) found Pearson’s test is a special
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trend test with a data-driven score, which was also noticed by Zheng et al. (2009). Based
on this finding, Yamada and Okada (2009) proposed an optimal dose-effect mode trend test
where the genetic effect of the heterozygous genotype is restricted between two homozygous
genotypes. The performance of the test of Yamada and Okada (2009) is similar to that of the
CLRT. Another recent proposed robust procedure is the GMS (Zheng and Ng 2008), which is
a two-phase adaptive test. In the first phase, the underlying genetic model is selected using
the Hardy-Weinberg disequilibrium (HWD) trend test between cases and controls (Song and
Elston 2006). In the second phase, the CATT with the selected genetic model is applied to
test for association. Zheng and Ng (2008) studied an asymptotic null distribution of the GMS.

Among all the tests we considered above, MAX3 and GMS have greater efficiency robustness
than Pearson’s test and single CATT (Freidlin et al. 2002; Zheng and Ng 2008). On the
other hand, MAX3, the CLRT, and the optimal dose-effect mode trend test have comparable
power. The GMS seems to be slightly more powerful than MAX3 (Zheng and Ng 2008).
However, there is no direct comparison between the GMS and the optimal dose-effect trend
test. The asymptotic distributions of the CLRT, the MAX3 of Gonzalez et al. (2008), and the
optimal dose-effect mode trend test have been studied. If we directly derive the asymptotic
distributions for MAX3 of Freidlin et al. (2002) and GMS, our work would be similar to those
of Wang and Sheffield (2005); Gonzalez et al. (2008); Zheng and Ng (2008) and Yamada
and Okada (2009), who derived different asymptotic distributions for their robust tests. In
addition, there would have no computation benefits. However, we identify a linear dependence
structure of the CATTs and use this finding to derive the asymptotic distribution of MAX3
and provide algorithms to obtain the p values of MAX3 and GMS. By doing this way, we
greatly simplify the computation and make computation of MAX3 and GMS more efficient.
Our finding cannot be applied to the robust tests of Wang and Sheffield (2005); Gonzalez
et al. (2008) and Yamada and Okada (2009). Thus, we only focus on MAX3 and GMS.

One common feature of MAX3 and GMS is that their asymptotic null distributions do not
follow a standard normal distribution. In practice, a parametric bootstrap procedure may be
used to obtain their empirical null distributions or approximate p values. In the paramet-
ric bootstrap approach, case-control data are resampled based on the observed case-control
genotype counts under the null hypothesis. For each of the m replicates, the two robust test
statistics are calculated. The m calculated statistics for each robust test based on the boot-
strapped data form its empirical null distribution. In this article, we study correlations among
the three trend tests and identify a new asymptotic linear dependence among them. Using
this finding, we consider a simple Monte-Carlo approach to approximate null distributions for
MAX3 and GMS. This approach does not need to generate case-control data, calculate trend
tests and form a robust test. Instead, it only needs to generate bivariate normal distribution
with a given correlation and form the robust test. Furthermore, using the same finding, we
propose to use the asymptotic null distributions to obtain the p values for MAX3. We find
that the proposed method gives a very good approximation to the results of the Monte-Carlo
approaches, but the proposed algorithm is much more computationally efficient.

Finally, we have developed a package called Rassoc in the R system (R Development Core
Team 2009) for the Monte-Carlo algorithms and the asymptotic algorithms of MAX3 and GMS
as well as other commonly used tests in case-control association studies. For illustration, we
apply the developed R package to genetic markers reported in four genome-wide association
studies (Klein et al. 2005; Hunter et al. 2007; Yeager et al. 2007; The Wellcome Trust Case
Control Consortium 2007). These data sets are also incorporated as a data frame in Rassoc.
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The rest of this article is organized as follows. In Section 2, the two robust procedures, MAX3
and GMS, with new algorithms are presented. The R package is presented in Section 3 with
illustrations. Conclusions are given in Section 4.

2. Two robust procedures: MAX3 and GMS

Consider a diallelic marker, e.g., a single nucleotide polymorphism (SNP) with alleles D
and d and assume D is the allele conferring high risk of the disease. Denote the three
genotypes by G0 = dd, G1 = Dd and G2 = DD with genotype frequencies gi = P(Gi)
for i = 0, 1, 2. Denote the allele frequencies by P(D) = p and P(d) = 1 − p = q. When
Hardy-Weinberg equilibrium (HWE) proportions hold in the population, gi can be written
as g0 = q2, g1 = 2pq and g2 = p2. Denote the penetrance by fi = P(case|Gi), the disease
prevalence by k = P(case) =

∑2
i=0 figi and the genotype frequencies in cases and controls

by pi = P(Gi|case) = figi/k and qi = P(Gi|control) = (1 − fi)gi/(1 − k) respectively for
i = 0, 1, 2. Define genotype relative risks (GRRs) as λi = fi/f0 for i = 1, 2 (f0 > 0). A
genetic model is REC, MUL, ADD and DOM if λ1 = 1, λ1 =

√
λ2, λ1 = (1 + λ2)/2 and

λ1 = λ2, respectively. Under the null hypothesis of no association H0: λ1 = λ2 = 1, i.e.,
pi = qi for i = 0, 1, 2. Under the alternative hypothesis H1 with D conferring the high risk,
the alternative hypothesis can be expressed as H1: λ2 ≥ λ1 ≥ 1 and λ2 > 1. Thus, the
alternative hypothesis is ordered.

Denote the genotype counts of (G0, G1, G2) in r cases and s controls by (r0, r1, r2) and
(s0, s1, s2), respectively. Thus, r =

∑2
i=0 ri and s =

∑2
i=0 si. Denote ni = ri + si and

n = r + s. The case-control samples for a SNP are summarized in Table 1.

The CATT has been employed to test association for the data in Table 1 (Sasieni 1997), which
can be written as

Zx =
n1/2

∑2
i=0 xi(sri − rsi){

rsn[n
∑2

i=0 x
2
ini − (

∑2
i=0 xini)

2]
}1/2

where (x0, x1, x2) = (0, x, 1) are scores for (G0, G1, G2) and x is a real number between 0 and
1. Under H0, Zx asymptotically follows a standard normal distribution N(0, 1). Zheng et al.
(2003) showed that Z0, Z1/2 and Z1 are asymptotically optimal for REC, MUL/ADD and
DOM models, respectively.

2.1. MAX3

When the genetic model is unknown, MAX3, denoted by ZMAX3 = MAX
{
|Z0|, |Z1/2|, |Z1|

}
,

has been proposed and used in practice (Freidlin et al. 2002; Sladek et al. 2007; Li et al.

dd Dd DD total

Case r0 r1 r2 r
Control s0 s1 s2 s

total n0 n1 n2 n

Table 1: Genotype data of a single SNP.



Journal of Statistical Software 5

2008b,a). Because MAX3 covers a wider range of genetic models, it is more robust than any
CATT.

Parametric bootstrap is commonly used to approximate the null distribution of MAX3. Given
the observed data, a bootstrapped data set is simulated m times. For each bootstrapped data
set, MAX3 is calculated, denoted by ZMAX3,j for j = 1 . . .m. Finally, ZMAX3,i, i = 1, . . . ,m,
form an empirical null distribution for MAX3, which can be used to approximate its critical
value or the p value. This bootstrap approach is denoted as boot.

The boot method is computation intensive, in particular for a large m, because the bootstrap
case-control samples are sampled each time. The choice of m is at least 10,000 for genome-wide
association studies (GWAS) (Sladek et al. 2007; Li et al. 2008a,b). An asymptotic method
which reduces the computation is given as follows.

Asymptotic null distribution and p value

Before we present the asymptotic null distribution of MAX3, we first report the following
result whose proof is given in Appendix A.

Lemma 1. Under H0, Z0, Z1/2 and Z1 are asymptotically linearly dependent. In addition,
Z1/2 = ω0Z0+ω1Z1 where ω0 = (ρ0,1/2−ρ0,1ρ1/2,1)/(1−ρ20,1) and ω1 = (ρ1/2,1−ρ0,1ρ0,1/2)/(1−
ρ20,1) and ρi,j is an asymptotic null correlation between Zi and Zj for i, j = 0, 1/2, 1, which
are given in Appendix A.

Lemma 1 can be used to derive the asymptotic null distribution of MAX3. Denote the
joint density function of (Z0, Z1) by f(z0, z1,Σ) where Σ is the variance-covariance matrix of
(Z0, Z1). Then

P(ZMAX3 < t) = P(|Z0| < t, |Z1/2| < t, |Z1| < t)

= P(|Z0| < t, |ω0Z0 + ω1Z1| < t, |Z1| < t)

= 2

∫ t(1−ω1)/ω0

0

∫ t

−t
f(z0, z1,Σ)dz1dz0

+2

∫ t

t(1−ω1)/ω0

∫ (t−ω0z0)/ω1

−t
f(z0, z1,Σ)dz1dz0.

Note that

f(z0, z1; Σ) = f(z0)f(z1|z0; ρ0,1),

where f(z0) = φ(z0) is the density of N(0, 1) and f(z1|z0; ρ0,1) is the density of N(ρ0,1z0, 1−
ρ20,1). That is,

f(z1|z0; ρ0,1) =
1√

1− ρ20,1
φ

z1 − ρ0,1z0√
1− ρ20,1

 .

Applying the above densities, we have∫ t(1−ω1)/ω0

0

∫ t

−t
f(z0, z1,Σ)dz1dz0

=

∫ t(1−ω1)/ω0

0

Φ

 t− ρ0,1z0√
1− ρ20,1

− Φ

−t− ρ0,1z0√
1− ρ20,1

φ(z0)dz0
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and ∫ t

t(1−ω1)/ω0

∫ (t−ω0z0)/ω1

−t
f(z0, z1,Σ)dz1dz0

=

∫ t

t(1−ω1)/ω0

Φ

(t− ω0z0)/ω1 − ρ0,1z0√
1− ρ20,1

− Φ

−t− ρ0,1z0√
1− ρ20,1

φ(z0)dz0.

Finally

P(ZMAX3 < t) = 2

∫ t(1−ω1)/ω0

0
Φ

 t− ρ0,1z0√
1− ρ20,1

φ(z0)dz0

+ 2

∫ t

t(1−ω1)/ω0

Φ

(t− ω0z0)/ω1 − ρ0,1z0√
1− ρ20,1

φ(z0)dz0

− 2

∫ t

0
Φ

−t− ρ0,1z0√
1− ρ20,1

φ(z0)dz0,

where ρ0,1 can be estimated under H0. We use the function integrate in R to approximate
the integration numerically. According to the help documentation in R, the numerical solution
is calculated based on a global adaptive interval subdivision in connection with extrapolation
by the Epsilon algorithm (Piessens et al. 1983). Hence, if the observed statistical value t∗ is
obtained, the p value is given by P(ZMAX3 > t∗) = 1 − P(ZMAX3 < t∗). This approach is
denoted by asy.

The asy method is more computation efficient because it does not require generating case-
control samples. Note that Gonzalez et al. (2008) studied the asymptotic distribution of
MAX3 of three LRTs under the null hypothesis and proposed formula to calculate the asso-
ciated p value. They studied the correlations among three LRTs using the Delta method and
employed three-fold integrations to calculate the asymptotic distribution. We identified and
used the linear dependence of the CATTs and only require double integrations.

Using Lemma 1, a simplified algorithm to approximate the null distribution of MAX3 can also
be obtained as follows. First, generate (Z0, Z1) from the bivariate normal distribution and
calculate Z1/2 using lemma 1. Second, calculate ZMAX based on the three CATTs obtained.
Last, repeat the above procedure m times to simulate an empirical null distribution of MAX3.
Note that all correlations are estimated under H0. This method is denoted as bvn. Notice
that both boot and bvn methods require simulations of m replications to approximate the
p values. However, unlike the boot method, the bvn method does not require to generate
case-control data.

Numerical results

A simulation is conducted to compare three methods: the existing boot method, and the
bvn and asy methods. The empirical cumulative distribution functions based on the three
methods are reported based on 1,000,000 replicates. In each replicate, r = 500 cases and
s = 500 controls are used under HWE. The results are summarized in Figure 1 with different
minor allele frequencies (MAFs). The plots show that the asymptotic null distribution (asy)
approximates the two simulation-based empirical null distributions (boot and bvn) very well.
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Figure 1: Cumulative distribution functions for MAX3 with different minor allele frequencies
(MAFs) using the parametric bootstrap (boot), bivariate normal distribution (bvn), and
asymptotic distribution (asy) methods.
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Figure 2: Cumulative distribution functions for MAX3 with different minor allele frequencies
(MAFs) using the parametric bootstrap (boot), bivariate normal distribution (bvn), and
asymptotic distribution (asy) methods. Critical values are greater than 3.0.
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Critical values Critical values
MAF α boot bvn asy MAF α boot bvn asy

0.1 0.05 2.237 2.266 2.266 0.3 0.05 2.277 2.273 2.274
0.01 2.731 2.842 2.842 0.01 2.850 2.852 2.857
1e-3 3.375 3.520 3.520 1e-3 3.536 3.531 3.539
1e-4 3.911 4.094 4.095 1e-4 4.114 4.114 4.116
1e-5 4.434 4.580 4.604 1e-5 4.622 4.677 4.625

0.2 0.05 2.266 2.272 2.271 0.4 0.05 2.278 2.275 2.275
0.01 2.842 2.855 2.852 0.01 2.864 2.855 2.859
1e-3 3.511 3.536 3.532 1e-3 3.539 3.537 3.543
1e-4 4.025 4.112 4.108 1e-4 4.124 4.107 4.120
1e-5 4.626 4.571 4.617 1e-5 4.673 4.711 4.629

0.25 0.05 2.279 2.272 2.273 0.5 0.05 2.273 2.276 2.276
0.01 2.854 2.851 2.855 0.01 2.855 2.855 2.860
1e-3 3.535 3.533 3.536 1e-3 3.541 3.543 3.544
1e-4 4.101 4.104 4.113 1e-4 4.146 4.105 4.122
1e-5 4.647 4.691 4.622 1e-5 4.725 4.713 4.631

Table 2: Critical values for MAX3 with different MAFs using the parametric bootstrap
(boot), simplified bivariate normal simulation (bvn), and asymptotic null distribution (asy)
methods under HWE proportions. There are 500 cases and 500 controls in each of 1,000,000
replicates.

Furthermore, we are interested in the most significant p values in GWAS. Hence, we re-plot in
Figure 2 the region of Figure 1 with critical values greater than 3.0 (the region corresponding
to small p values). The results show that when MAF = 0.1, the asy and bvn method is slightly
different from the boot methods. All three procedures match very well for other MAFs.

The critical values of MAX3 using the above three methods can also be obtained. The results
are presented in Table 2. Overall, the critical values calculated using the above three methods
match very well except when MAF = 0.1. Besides, the critical values are not sensitive to the
change of MAFs.

We also investigate the accuracy of the asymptotic distribution of MAX3 for small smaple
sizes (n = 100 and 200) by simulations with 1 million replicates. Table 3 reports the empirical
type I error rates of MAX3 using simulations. The results show that the test MAX3 based
on the asymptotic null distribution is conservative when the MAF and sample sizes are small,
i.e., MAF = 0.1 and n = 100 or 200. In fact, with MAF = 0.1, the expected total counts n0
in the 2× 3 tables (Table 1) are 1 and 2 for n = 100 and 200 respectively, and the tables are
highly unbalanced. Under this situation, the asymptotic theory of MAX3 may not work well
when the sample size is small.

2.2. GMS

The GMS is another robust method which has two phases (Zheng and Ng 2008). In phase 1,
the Hardy-Weinberg disequilibrium trend test (HWDTT) proposed by Song and Elston (2006)
is used to detect the underlying genetic model. In phase 2, an optimal CATT corresponding
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Empirical type I errors
MAF α n = 100 n = 200

0.1 0.05 0.020 0.024
0.01 0.003 0.004
1e-3 1e-4 3e-4
1e-4 8e-6 2e-5
1e-5 0 1e-6

0.3 0.05 0.043 0.049
0.01 0.007 0.009
1e-3 6e-4 8e-4
1e-4 4e-5 5e-5
1e-5 6e-6 9e-6

0.5 0.05 0.053 0.051
0.01 0.010 0.010
1e-3 8e-4 1e-3
1e-4 7e-5 8e-5
1e-5 4e-6 6e-6

Table 3: Empirical type I error rates for MAX3 with small sample sizes n and equal numbers
of cases and controls. The nominal level α is based on the asymptotic distribution.

to the selected genetic model is used for testing association. Since the GMS needs the HWE
proportions to hold in the population, we assume HWE proportions to hold throughout this
section.

The Hardy-Weinberg disequilibrium (HWD) coefficients in cases and controls are denoted
by ∆P = P2 − (P2 + P1/2)2 and ∆Q = Q2 − (Q2 + Q1/2)2 where Pi = P(Gi|case) and
Qi = P(Gi|control), i = 1, 2. Zheng and Ng (2008) showed that, under HWE and when D
confers a high risk of the disease, ∆P − ∆Q > 0 under the REC model and ∆P − ∆Q < 0
under the DOM model. The HWDTT of Song and Elston (2006) is the standardized test of
∆̂P − ∆̂Q = {p̂2 − (p̂2 + p̂1/2)2} − {q̂2 − (q̂2 + q̂1/2)2}, where p̂i = ri/r and Q̂i = si/s for
i = 0, 1, 2. The HWDTT can be written as (Song and Elston 2006)

ZHWDTT =
(rs/n)1/2(∆̂P − ∆̂Q)

{1− n2/n− n1/(2n)}{n2/n+ n1/(2n)}
.

Under the null hypothesis of no association, ZHWDTT ∼ N(0, 1). With a pre-specified thresh-
old c > 0 (commonly set at Φ−1(0.95) = 1.645), Zheng and Ng (2008) classified the underlying
genetic model as REC if ZHWDTT > c, DOM if ZHWDTT < −c and MUL/ADD otherwise.
Then, when the underlying genetic model is selected, Zx optimal for the selected genetic
model is used for testing association in phase 2.

Note that we assume D conferring a high risk of the disease in the above discussion. Although
the sign of ZHWDTT is independent of which allele confers a high risk, the optimal CATT for
the REC or DOM models does depend on such an assumption. If D confers a high risk
as we assume, Z0 and Z1 are optimal for the REC and DOM models respectively. On the
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other hand, if d confers a high risk, then Z0 and Z1 are optimal for DOM and REC models,
respectively. In this case, the expected values of Z0 and Z1 are negative. Which allele confers
a high risk can be detected using Z1/2 (Joo et al. 2009b). That is, if Z1/2 > 0, Z0, Z1/2 and
Z1 are optimal for REC, MUL/ADD and DOM models. On the other hand, if Z1/2 < 0,
−Z1, −Z1/2 and −Z0 are optimal for REC, MUL/ADD and DOM models. Finally, the test
statistic for GMS can be written as (Joo et al. 2009b)

ZGMS = Z0I(Z1/2 > 0)I(ZHWDTT > c) + Z1/2I(Z1/2 > 0)I(|ZHWDTT| ≤ c)
+ Z1I(Z1/2 > 0)I(ZHWDTT < −c)− Z1I(Z1/2 ≤ 0)I(ZHWDTT > c)

− Z1/2I(Z1/2 ≤ 0)I(|ZHWDTT| ≤ c)− Z0I(Z1/2 ≤ 0)I(ZHWDTT < −c). (1)

ZGMS does not follow N(0, 1) under H0.

Like MAX3, the previous bootstrap (boot) method can be applied similarly. The case-control
data are resampled and the GMS is applied to each replicate. In addition, a similar asymptotic
method can be proposed as follows.

Asymptotic null distribution and p value

Denote the joint density function (Z0, Z1/2, ZHWDTT) and (Z1, Z1/2, -ZHWDTT) by f(z,Σ1)
and f(z,Σ2) respectively, where f is the density function of a trivariate normal distribution
and Σ1 and Σ2 are the variance-covariance matrixes. From ( 1), follow Joo et al. (2009b), for
any t ≥ 0,

Pr(ZGMS ≤ t) = 1− Pr(ZGMS > t)

= 1− 2{Pr(Z0 > t, Z1/2 > 0, ZHWDTT > c)

+Pr(Z1 > t, Z1/2 > 0,−ZHWDTT > c) + 0.9Pr(Z1/2 > t)}

= 1.8Φ(t)− 2

∫ +∞

t

∫ +∞

0

∫ +∞

c
{f(z,Σ1) + f(z,Σ2)}dz − 0.8

We use the function pmvnorm from function mvtnorm (Genz et al. 2009) in R to numeri-
cally calculate the normal probabilities. According to the R documentation, we adopt the
GenzBretz algorithm to approximate the numerical solution. The methodology is described
in Genz (1992, 1993). Substituting the correlations by the estimates under H0, we can use
this formula to calculate the critical values and p values of the GMS.

Besides, we discuss a similar simplified bivariate normal distribution simulation. First, we
present the following lemma whose proof is given in Appendix B.

Lemma 2. Under H0, Z0, ZHWDTT and Z1 are asymptotically linearly dependent. In addition,
ZHWDTT = µ0Z0 +µ1Z1 where µ0 = (ρ0−ρ0,1ρ1)/(1−ρ20,1) and µ1 = (ρ1−ρ0,1ρ0)/(1−ρ20,1),
where ρ0,1 is an asymptotic null correlation between Z0 and Z1 and ρi is an asymptotic null
correlation between Zi and ZHWDTT for i = 0, 1, which are given in Appendix B.

Using Lemma 2, the algorithm bvn for MAX3 can be obtained similarly to calculate ZHWDTT

and obtain empirical null distribution of the GMS.

Numerical results

Simulation is used to compare the above three methods for the GMS. Analogy to Figures 1
and 2, the empirical cumulative distribution functions for the GMS are reported in Figures 3
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Figure 3: Cumulative distribution functions for the GMS with different minor allele frequen-
cies (MAFs) using the parametric bootstrap (boot), bivariate normal distribution (bvn), and
asymptotic distribution (asy) methods.
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Figure 4: Cumulative distribution functions for the GMS with different minor allele frequen-
cies (MAFs) using the parametric bootstrap (boot), bivariate normal distribution (bvn), and
asymptotic distribution (asy) methods. Critical values are greater than 3.0.
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Critical values Critical values
MAF α boot bvn asy MAF α boot bvn asy

0.1 0.05 2.153 2.207 2.207 0.3 0.05 2.191 2.198 2.194
0.01 2.717 2.803 2.805 0.01 2.817 2.824 2.818
1e-3 3.341 3.492 3.489 1e-3 3.505 3.514 3.520
1e-4 3.884 4.078 4.070 1e-4 4.079 4.159 4.103
1e-5 4.387 4.570 4.582 1e-5 4.680 4.716 4.616

0.2 0.05 2.202 2.203 2.204 0.4 0.05 2.186 2.187 2.186
0.01 2.804 2.824 2.818 0.01 2.812 2.815 2.815
1e-3 3.484 3.512 3.509 1e-3 3.528 3.528 3.525
1e-4 4.007 4.091 4.089 1e-4 4.115 4.061 4.113
1e-5 4.501 4.571 4.601 1e-5 4.508 4.576 4.626

0.25 0.05 2.197 2.201 2.199 0.5 0.05 2.185 2.184 2.184
0.01 2.807 2.822 2.819 0.01 2.818 2.820 2.813
1e-3 3.482 3.513 3.515 1e-3 3.531 3.511 3.527
1e-4 4.059 4.080 4.097 1e-4 4.070 4.098 4.116
1e-5 4.490 4.547 4.609 1e-5 4.498 4.565 4.630

Table 4: Critical values for GMS with different minor allele frequencies (MAFs) using the
parametric bootstrap (boot), bivariate normal distribution (bvn), and asymptotic distribution
(asy) methods under HWE proportions. There are 500 cases and 500 controls in each of
1,000,000 replicates.

Empirical type I errors
MAF α n = 100 n = 200

0.1 0.05 0.016 0.024
0.01 0.002 0.004
1e-3 9e-5 3e-4
1e-4 3e-6 3e-5
1e-5 0 0

0.3 0.05 0.050 0.048
0.01 0.007 0.009
1e-3 5e-4 8e-4
1e-4 4e-5 7e-5
1e-5 3e-6 8e-6

0.5 0.05 0.050 0.050
0.01 0.009 0.010
1e-3 8e-4 1e-3
1e-4 7e-5 9e-5
1e-5 4e-6 9e-6

Table 5: Empirical type I error rates for GMS with small sample sizes n and equal numbers
of cases and controls. The nominal level α is based on the asymptotic distribution.
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and 4 for different regions of probabilities. The parameter settings are the same as those in
Figure 1 for MAX3. The plots in Figures 3 and 4 show that these three methods match very
well except for small MAF (MAF = 0.1). For example, in Figure 4, when MAF = 0.1, the
cumulative distribution functions for the GMS at 3.0 are around 0.994 using the asy and bvn

methods while around 0.996 using the boot method.

Next we report the critical values of the GMS using the above three methods based on
1,000,000 replicates (Table 4). The results show that the critical values calculated from
different methods match well except for MAF = 0.1. For example, in Table 4, when MAF
= 0.1 and the significance level was 0.05, the critical value calculated from the boot method
was 2.153 while those calculated from the asy and bvn methods were both 2.207. Finally,
analogy to MAX3, we also report the empirical type I error rates of the GMS when the
asymptotic null distribution is used. The results for small sample sizes n = 100 and 200 are
summarized in Table 5. It is observed that, with a small sample size, the test GMS based
on the asymptotic null distribution is generally conservative especially when MAF is small
(MAF = 0.1). For example, when n = 100 and MAF = 0.1 with nominal level equal to 0.05
and 0.01, the empirical type I error rates were 0.016 and 0.002, respectively.

3. R package and examples

3.1. R package: Rassoc

In this section we describe the R package Rassoc developed for calculating the p values of
MAX3 and GMS based on the three methods introduced above. This package also contains
some other commonly used tests in case-control association studies. The package is avail-
able from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=
Rassoc. After it has been installed, the package may be loaded with:

R> library("Rassoc")

Rassoc contains the following functions:

ABT(data): Calculate the statistic and associated p value of the allelic based test (ABT)
in case-control association studies (Sasieni 1997). The ABT detects association by
comparing the allele frequencies between cases and controls. Under the null hypothesis
of no association, the ABT follows the standard normal distribution N(0, 1).

CATT(data, x): Calculate the statistic and associated p value of the Cochran-Armitage
trend test (CATT) in case-control association studies for a given genetic model (x = 0,
1/2, or 1). Under the null hypothesis of no association, the CATT follows the standard
normal distribution N(0, 1).

MERT(data): Calculate the statistic and associated p value of the maximin efficiency ro-
bust test (MERT) in case-control association studies (Freidlin et al. 2002). Under the
null hypothesis of no association, the MERT follows the standard normal distribution
N(0, 1).

http://CRAN.R-project.org/package=Rassoc
http://CRAN.R-project.org/package=Rassoc
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MAX3(data, method, m): Calculate the statistic and associated p value of the MAX3 test
in case-control association studies. The p value is calculated based on two empirical
Monte-Carlo methods or the proposed asymptotic method.

GMS(data, method, m): Calculate the statistic and associated p value of the GMS test
in case-control association studies. The p value is calculated based on two empirical
Monte-Carlo methods or the proposed asymptotic method.

The arguments in the functions are defined below:

data: The 2 × 3 contingency table for analysis. The rows represent disease status and the
columns represent genotypes. See the data formats in Table 1

x: The score for the CATT. It can be any real number between 0 and 1.

method: The methods for calculating the p values of MAX3 and the GMS. "boot" represents
the parametric bootstrap method; "bvn" represents the simulation from the bivariate
normal distribution; "asy" represents the asymptotic null distribution method.

m: The number of replicates for "boot" and "bvn". It can be any positive integer for "asy".

Since the ABT, CATT and MERT follow the standard normal distribution N(0, 1) under the
null hypothesis, we focus on MAX3 and GMS in this package. For each variable that has been
imputed, MAX3 or GMS creates a list containing the name of the method selected, the values of
test statistics and their corresponding p values. Therefore, using these two functions, we can
calculate the p values of MAX3 and GMS for a dataset. For example, a simulated case-control
dataset called a under the null hypothesis is given below:

R> p <- c(0.25, 0.5, 0.25)

R> ca <- rmultinom(1, 500, p)

R> co <- rmultinom(1, 500, p)

R> a <- matrix(rbind(ca, co), nrow = 2, byrow = TRUE)

R> a

139 249 112

136 244 120

We can apply our programs to this dataset to calculate the p values of MAX3 and GMS respec-
tively as follows:

R> MAX3(a, "boot", 100000)

The MAX3 test using the boot method

data: a

statistic=0.5993 p-value=0.7907

R> MAX3(a, "bvn", 100000)
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The MAX3 test using the bvn method

data: a

statistic=0.5993 p-value=0.7935

R> MAX3(a, "asy", 1)

The MAX3 test using the asy method

data: a

statistic=0.5993 p-value=0.7933

R> GMS(a, "boot", 100000)

The GMS test using the boot method

data: a

statistic=0.4894 p-value=0.6608

R> GMS(a, "bvn", 100000)

The GMS test using the bvn method

data: a

statistic=0.4894 p-value=0.6609

R> GMS(a, "asy", 1)

The GMS test using the asy method

data: a

statistic=0.4894 p-value=0.6621

From the above output, the test statistics for MAX3 and GMS are 0.5993 and 0.4894 respectively.
The corresponding p values of MAX3 for the simulated dataset a using "boot", "bvn" and "asy"

methods are 0.7907, 0.7935 and 0.7933 respectively. On the other hand, for the GMS, they are
0.6608, 0.6609 and 0.6621 respectively. Note that the number of replicates 1 in the functions
MAX3 and GMS can be any positive integer by using "asy" method. The empirical p values are
calculated based on 100,000 replicates.

3.2. Real data analysis

For the purpose of illustration, we apply Rassoc to SNPs reported from four GWAS with
100,000 to 500,000 SNPs for age-related macular degeneration (AMD) (Klein et al. 2005),
two cancer studies (Hunter et al. 2007; Yeager et al. 2007), and a hypertension study (The
Wellcome Trust Case Control Consortium 2007). The datasets are summarized in Table 6
which were also given in Li et al. (2008a).

In fact, we also incorporate those datasets in Rassoc as a date frame named caco and it can
be loaded easily in R with:

R> data("caco")
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SNP ID Case Control
dd Dd DD dd Dd DD

AMD
rs380390 50 35 11 6 25 19
rs1329428 2 24 68 5 29 14

Prostate cancer
rs1447295 25 283 864 10 218 929
rs6983267 223 598 351 301 579 277
rs7837688 27 283 861 11 206 939

Breast cancer
rs10510126 10 180 955 14 272 854
rs12505080 50 477 608 99 408 628
rs17157903 18 316 777 26 220 862
rs1219648 250 543 352 170 538 433
rs7696175 187 605 353 249 496 396
rs2420946 242 546 357 165 537 440

Hypertension
rs2820037 40 587 1,325 72 684 2,180
rs6997709 118 716 1,116 237 1,201 1,500
rs7961152 416 963 570 492 1,448 992
rs11110912 67 647 1,237 83 804 2,049
rs1937506 113 742 1,097 244 1,205 1,484
rs2398162 111 624 1,205 194 1,121 1,608

Table 6: Genotype distributions of the 17 SNPs selected from the four GWAS.

We code the genotype counts for 17 SNPs in caco by d1 to d17 in R as follows:

R> d1 <- matrix(caco[1,], nrow = 2, byrow = TRUE)
. . .

R> d17 <- matrix(caco[17,], nrow = 2, byrow = TRUE)

Then, MAX3 and GMS can be applied to the above SNPs by the following programs:

R> c(MAX3(d1, "boot", 1000000)$p.value, MAX3(d1, "bvn", 1000000)$p.value,

+ MAX3(d1, "asy", 1)$p.value)
. . .

R> c(MAX3(d17, "boot", 1000000)$p.value, MAX3(d17, "bvn", 1000000)$p.value,

+ MAX3(d17, "asy", 1)$p.value)

R> c(GMS(d1, "boot", 1000000)$p.value, GMS(d1, "bvn", 1000000)$p.value,

+ GMS(d1, "asy", 1)$p.value)
. . .

R> c(GMS(d17, "boot", 1000000)$p.value, GMS(d17, "bvn", 1000000)$p.value,

+ GMS(d17, "asy", 1)$p.value)
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SNP ID MAX3 GMS
boot bvn asy boot bvn asy

rs380390 0.10e-5 0.30e-5 0.09e-5 0.20e-5 0.10e-5 0.09e-5
rs1329428 0.10e-5 0.30e-5 0.22e-5 0.10e-5 0.30e-5 0.21e-5
rs1447295 8.30e-5 9.30e-5 10.90e-5 8.10e-5 10.20e-5 9.79e-5
rs6983267 3.00e-5 2.30e-5 2.16e-5 2.90e-5 1.60e-5 2.13e-5
rs7837688 0.50e-5 0.40e-5 0.67e-5 0.60e-5 1.00e-5 0.60e-5
rs10510126 0.10e-5 0.10e-5 0.14e-5 0.30e-5 0.30e-5 0.31e-5
rs12505080 7.40e-5 7.90e-5 8.46e-5 8.30e-5 6.50e-5 7.93e-5
rs17157903 5.30e-5 6.40e-5 6.17e-5 4.80e-5 6.00e-5 5.58e-5
rs1219648 0.40e-5 0.30e-5 0.50e-5 0.70e-5 0.50e-5 0.50e-5
rs7696175 210.00e-5 210.00e-5 207.00e-5 192.00e-5 194.00e-5 192.00e-5
rs2420946 0.70e-5 0.80e-5 0.53e-5 0.40e-5 0.30e-5 0.53e-5
rs2820037 0.10e-5 0.20e-5 0.32e-5 0.20e-5 0.10e-5 0.30e-5
rs6997709 2.80e-5 2.10e-5 2.07e-5 1.40e-5 2.60e-5 1.96e-5
rs7961152 1.40e-5 2.00e-5 2.01e-5 1.60e-5 1.60e-5 1.98e-5
rs11110912 0.50e-5 0.80e-5 0.82e-5 1.90e-5 2.00e-5 2.13e-5
rs1937506 3.40e-5 3.20e-5 2.43e-5 2.60e-5 2.20e-5 2.29e-5
rs2398162 0.10e-5 0.40e-5 0.24e-5 0.20e-5 0.20e-5 0.23e-5

Table 7: The p values of MAX3 and GMS for the SNPs reported in Table 6 using the three
approaches: the parametric bootstrap (boot), the bivariate normal distribution simulation
(bvn), and the asymptotic distribution (asy). The number of replicates is 1 million for the
simulation-based p values.

Note that all the empirical p values are calculated based on 1,000,000 replicates due to the
computational burden. The results are summarized in Table 7.

Results show that when the analytical p values are greater than 10−5, the analytical p values
and simulated p values match well. However, when the analytical p values are of order of
magnitude 10−6, they do not match too well. One reason may be due to the fact that one
million replicates may not be enough for p values of that magnitude. In conclusion, the
parametric bootstrap and bivariate normal distribution methods based on simulation can be
easily used in candidate-gene association studies in which several markers are tested, while the
asymptotic distribution method is preferred in large-scale association studies such as GWAS.
The computing times of the three approaches are also different. The asymptotic distribution
method does not need any replication, so it takes least time to compute. The parametric
bootstrap method takes more time to compute. The bivariate normal distribution method
replicates directly on statistics while the parametric bootstrap method needs to generate
case-control data in each replicate. For MAX3, using our Pentium(R) D CPU 3.00 GHZ,
1.00 GB of RAM computer, it took less than 1 second to calculate the asymptotic p value of
the first row of the data in Table 6, about 1 minute using the bivariate normal distribution
method, and nearly 18 minutes using the parametric bootstrap method. For the GMS, the
three methods took about 1 second, 4 minutes, and 22 minutes, respectively. All empirical
methods were based on 1,000,000 replicates.
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4. Conclusion

Unlike the model-based CATT which assumes the underlying genetic model is known, MAX3
and GMS do not rely on any prior information of the underlying genetic model while perform
robustly across a family of scientifically plausible genetic models. For many complex diseases,
the underlying genetic models are unknown. Thus, MAX3 and GMS are preferable. However,
their null distributions (asymptotic and empirical) have not been fully investigated. In this
article, we studied the dependence structures among the CATTs for the three most common
genetic models and identified an asymptotic linear relationship among them. Using this
finding, we proposed to obtain asymptotic p values of the test of statistics MAX3 and GMS
based on numerical integrations. The proposed method was compared to the bivariate normal
simulation and the parametric bootstrap methods. Our simulation results demonstrated
that the proposed asymptotic distribution method performs well. The proposed method
is computationally efficient because no simulation is needed.

Moreover, we developed the R package Rassoc which incorporates all the methods discussed
above as well as other commonly used tests in case-control association studies. We illustrated
the use of Rassoc based on simulated datasets and some associated SNPs from four real GWAS
datasets. In practice, empirical p values of MAX3 and GMS for a candidate SNP analysis
or the corresponding analytical p values for GWAS can be obtained by simply setting the
arguments in our R programs incorporated in the package. We also plan to update Rassoc by
adding other recently developed tests in case-control genetic association studies in the future,
including those of Gonzalez et al. (2008) and Yamada and Okada (2009). In this article, we
only consider the null distributions of some robust tests. The asymptotic distributions under
the alternative hypothesis are not considered. Li et al. (2009) studied the asymptotic power
for MAX3 based on multivariate normal among the CATTs. Applying the linear dependence
structure, their computation can be simplified. This may be also worth investigating in future.
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A. Proof of Lemma 1

Let (p0, p1, p2) be the probabilities of (G0 = dd,G1 = Dd,G2 = DD) in the population under
H0. Freidlin et al. (2002) derived asymptotic null correlations among the three trend tests.
Their correlations for (Z0, Z1/2) and (Z1, Z1/2) seemed to be switched in their appendix. The
correct expressions are given by

ρ0,1/2 =
p2(p1 + 2p0)√

p2(1− p2)
√

(p1 + 2p2)p0 + (p1 + 2p0)p2
,

ρ1/2,1 =
p0(p1 + 2p2)√

p0(1− p0)
√

(p1 + 2p2)p0 + (p1 + 2p0)p2
,

ρ0,1 =

√
p0p2

(1− p0)(1− p2)
.

Define Σ̃ =

 1 ρ0,1/2 ρ0,1
ρ0,1/2 1 ρ1/2,1
ρ0,1 ρ1/2,1 1

 as the variance-covariance matrix of (Z0, Z1/2, Z1) un-

der H0. With simple algebra and substituting the above correlations, we obtain the determi-
nant:

|Σ| = 1 + 2ρ0,1/2ρ1/2,1ρ0,1 − ρ20,1/2 − ρ
2
1/2,1 − ρ

2
0,1 = 0.

This shows that Z1, Z1/2 and Z1 are asymptotically linearly dependent. That is, there exists a
non-zero vector a such that atZ = 0 where Z = (Z0, Z1/2, Z1). Let a = (a1, a2, a3) 6= 0. Then
a1Z0 + a2Z1/2 + a3Z1 = 0. If a2 = 0, then a1 6= 0 and a3 6= 0. So there exists a real number
c∗ = −a3

a1
6= 0 satisfy Z0 = c∗Z1. Since under the null hypothesis, Var(Z0) = (c∗)2 = 1. Hence

c∗ = ±1, which contradicts the correlation between Z0 and Z1. Thus, a2 6= 0. Without loss
of generality, we write

Z1/2 = ω0Z0 + ω1Z1.

Then

ρ0,1/2 = ω0 + ω1ρ0,1,

ρ1/2,1 = ω0ρ0,1 + ω1.

Solving the above equations, we obtain

ω0 =
ρ0,1/2 − ρ0,1ρ1/2,1

1− ρ20,1
,

ω1 =
ρ1/2,1 − ρ0,1ρ0,1/2

1− ρ20,1
.

B. Proof of Lemma 2

Use the same notation as in Appendix A. Let p = Pr(D). When HWE proportions hold in
the population, according to Zheng and Ng (2008),

ρ0 =

√
1− p
1 + p

,

ρ1 = −
√

p

2− p
.



24 Algorithms for Robust Tests in Case-Control Genetic Association Studies

Define Σ∗ =

 1 ρ0 ρ0,1
ρ0 1 ρ1
ρ0,1 ρ1 1

 as the variance-covariance matrix of (Z0, ZHWDTT, Z1) under

the null hypothesis. With simple algebra and substituting the above correlations, we obtain

|Σ∗| = 1 + 2ρ0ρ1ρ0,1 − ρ20 − ρ21 − ρ20,1 = 0,

which shows that Z0, ZHWDTT and Z1 are linearly dependent. Then, using the same argument
as in Appendix A, we have

ZHWDTT = µ0Z0 + µ1Z1

and

µ0 =
ρ0 − ρ0,1ρ1

1− ρ20,1
,

µ1 =
ρ1 − ρ0,1ρ0

1− ρ20,1
.
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