StatDataML:
An XML Format for Statistical Data*

David Meyer!, Friedrich Leisch!, Torsten Hothorn? and Kurt Hornik!3

L TInstitut fiir Statistik und Wahrscheinlichkeitstheorie, Technische Univer-
sitat Wien, Wiedner Hauptstrafie 8-10/1071, A-1040 Wien, Austria

Institut fiir Medizininformatik, Biometrie und Epidemiologie, Friedrich-
Alexander-Universitéit Erlangen-Niirnberg, Waldstrafle 6, D-91054 Erlan-
gen, Germany

3 Institut fiir Statistik, Wirtschaftsuniversitit Wien, Augasse 2-6, A-1090
Wien, Austria

Summary

In order to circumvent common difficulties in exchanging statistical data be-
tween heterogeneous applications (format incompatibilities, technocentric data
representation), we introduce an XML-based markup language for statistical
data, called StatDataML. After comparing StatDataML to other data concepts,
we detail the design that borrows from the language S, such that data objects
are basically organized as recursive and non-recursive structures, and may also
be supplemented with meta-information.

Keywords: Data Exchange, Data Design, XML.

1 Introduction

Data exchange between different tools for data analysis and data manipulation
is a common problem: different applications use different and often proprietary
and undocumented formats for data storage. Import/export filters are often
missing or insufficient, and if ever, focus on technical aspects (such as storage
modes and floating point specifications) in spite of supporting conceptional rep-
resentation issues (such as scales or representation of categorical data). The
currently high costs for data exchange hence could be significantly reduced by
the use of a well-defined common data exchange standard, if only because soft-
ware packages would just need to provide one single mechanism.

The aim of this paper is to introduce such a data exchange standard for sta-
tistical data: the XML-based markup language StatDataML. The design bor-
rows from the language S (see, e.g., Chambers, 1998), such that data objects
are basically organized as recursive structures (lists) and non-recursive struc-
tures (arrays), respectively.! Additionally, each object can have an attached

*This research was supported by the Austrian Science Foundation (FWF) under grant
SFB#010 (‘Adaptive Information Systems and Modeling in Economics and Management Sci-
ence’).

ISee Temple Lang & Gentleman (2001) for a more specific approach representing S objects
in XML.

list of properties (corresponding to S attributes), providing storage of meta-
information.

Interestingly, data exchange of statistical data per se did not get much at-
tention in the literature so far. On the other hand, there has been considerable
interest in meta-data in statistics?. This is a closely related topic, because data
exchange necessarily results in giving information about the data structure,
which simply is meta-data.

Kent & Schuerhoff (1997) introduced a useful typology by distinguishing:
conceptual meta-data (for definition and standardizing statistical concepts),
operational meta-data (for automating statistical activities), logistic meta-data
(for storing, moving, and retrieving data), documentary meta-data (for the end-
user), and processing meta-data (about dynamic aspects of statistical processing—
for the latter, see Grossman, 2000). Our work is a contribution to the third
category: logistic meta-data for data storage.

One of the first attempts trying to provide an XML-based meta-data struc-
ture is the Data Documentation Initiative (DDI—see, e.g., Thomas & Block,
2001). The DDI project participates in the metanet project®, aiming at de-
veloping standards for describing statistical meta-data and statistical informa-
tion systems. The DDI project provides an XML specification for whole social
sciences data collections?, and consists of 5 main sections: document descrip-
tion (describing the meta-data itself), study description (providing information
about the described data collection such as source, copyrights and keywords),
data files description (physical format, layout and structure of the data files),
variable description (data type, missing values, summary statistics, ...), and
a section for other material (reports, publications). Although a wide range of
meta-data is covered by this standard, it is biased towards survey data: the
data format has limited flexibility (currently, only multidimensional tables are
supported, but no recursive, tree-like structures).

One further approach into the direction of using XML for statistical data
exchange is “triple-s XML”, a standard for interchanging survey data (see, e.g.,
Hughes et al., 1999; Jenkins, 1996; Wills, 1992, and http://www.triple-s.
org/). This XML standard describes a meta-data format, giving additional
meaning to separately distributed data stored in row/column format, basi-
cally including the names and column ranges of the different variables, but
also specifying variable types and value ranges. But because this format relies
on row/column-stored data only, the maximal data complexity, again, is limited
(e.g., no recursive structures, no higher-dimensional arrays).

2 Requirements on Statistical Data

Statisticians need a data format that is both flexible enough to handle all differ-
ent kinds of statistical data (from time series to micro-array data), and special-
ized enough to incorporate statistical notions such as scales and factors. Such
a data format should feature:

e Special symbols for infinities and undefined values,

2e.g., http://www.gla.ac.uk/External/RSS/RSScomp/metamtg.html

3http://www.epros.ed.ac.uk/metanet/

4such as the Inter-University Consortium for Political and Social Research (ICPSR)—see:
http://www.icpsr.umich.edu/

http://www.triple-s.org/
http://www.triple-s.org/
http://www.gla.ac.uk/External/RSS/RSScomp/metamtg.html
http://www.epros.ed.ac.uk/metanet/
http://www.icpsr.umich.edu/

Special symbols for missingness (“not available”),

Logical data,

Categorical data (nominal/unordered, ordinal/ordered, or cyclic),
Numeric data (in the storage modes integer, real and complex),
Character data (strings),

Date/time information,

Vectors (objects with elements of the same type),

Lists (objects with—possibly different—elements of any type), and
Meta-data (on all hierarchical levels).

Vectors should be indexable arbitrarily—in order to build matrices or multidi-
mensional arrays. Lists allow complex and even recursive structures (for they
can contain lists again).

Table 1 compares some software products regarding these criteria: two fam-
ilies of mathematical programming languages (Splus®/R® and MATLAB”/ Oc-
tave®), statistical software (SPSS?, SAS!Y, Minitab!!, XploRe!'?), and spread-
sheets (Excel'®, StarCalc!*, Gnumeric'®). In spreadsheets, MATLAB/Octave,
and XploRe, categorical data can only be represented by strings. Arrays of ar-
bitrary dimension are supported by Splus/R, MATLAB, and XploRe only. Com-
plex numbers are only supported by Splus/R and MATLAB/Octave. The latter
cannot handle missingness. IEEE special values are not supported by Excel,
StarCalc, SPSS, SAS and Minitab. This comparison clearly shows that all
paradigms, except S based languages, have limitations. Therefore, our design
was basically inspired by S, and later became more generalized.

3 StatDataML
3.1 StatDataML is XML

For “statistical data”, one would usually think of such things as tabular data,
time series objects, responses and regressors, or contingency tables. Programs
that produce such data store it on disk, using either a binary format or a
text format. StatDataML files are XML files, thus ordinary text files, with
extension ‘.sdml’, containing several XML elements (so called tags), that can
be formally described with a special data definition language (DTD)—see the
World Wide Web Consortium (2000) recommendation. Note that quoting is
needed for the special XML characters ‘&’, ‘<’, and ‘>’ by using ‘&’, ‘&1t;’,
and ‘>’, respectively. In the following, we will go through the rules in the
‘StatDataML.dtd’ file (the DTD as a whole is given in the Appendix).

5For Splus see: http://www.insightful.com

6For R see: Thaka & Gentleman (1996) and http://www.R-project.org
"For MATLAB see: http://wuw.mathworks.com

8For Octave see: http://www.octave.org

9For SPSS see: http://www.spss.com

10For SAS see: http://www.sas.com

1 For Minitab see: http://www.minitab.com

12For XploRe see: http://www.i-XploRe.de/

I3For Excel see: http://www.microsoft.com

MFor StarCalc see: http://www.staroffice.com or http://www.openoffice.com
I5For Gnumeric see: http://www.gnumeric.org

http://www.insightful.com
http://www.R-project.org
http://www.mathworks.com
http://www.octave.org
http://www.spss.com
http://www.sas.com
http://www.minitab.com
http://www.i-XploRe.de/
http://www.microsoft.com
http://www.staroffice.com
http://www.openoffice.com
http://www.gnumeric.org

\R/Splus\M/—\TL/—\B\Octave\spreadsheet\ SPSS \ SAS \Minitab\XpIoRe‘

400, NaN yes yes yes yes
missingness | yes yes yes yes yes yes

logical yes (yes) yes yes yes yes

nominal yes strings |strings| strings |[coding| yes | strings

ordinal yes yes yes yes

integer yes yes yes

real yes yes yes yes yes yes yes yes
complex yes yes yes

character yes yes yes yes yes yes yes yes
date/time yes yes yes yes yes yes yes

matrix yes yes yes yes yes yes yes yes \
arrays yes yes yes

lists yes yes yes yes |
[meta-data [yes | \ | yes | yes | \ | yes |

Table 1: Data representation capabilities of different software packages. Empty
cells mean ‘no’. ‘spreadsheet’ includes EXCEL, Gnumeric and StarCalc.

3.2 The File Header

The top level ‘StatDataML’ element contains one ‘description’ and one ‘dataset’
element, each optional:

<!ELEMENT StatDataML (description?, dataset?)>

It should contain the ‘StatDataML’ namespace:

<StatDataML xmlns="http://www.ci.tuwien.ac.at/StatDataML">

</StatDataML>

(The URL defining the name space does not physically exist; its only purpose
is to guarantee a unique name.)

3.3 The ‘description’ element

The ‘description’ element is used to provide meta-information about a dataset—
typically not needed for computations on the data itself:

<!ELEMENT description (title?, source?, date?, version?,
comment?, creator?, class?, properties?)>

<!ELEMENT title (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<IELEMENT date (#PCDATA)>
<VELEMENT version (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<IELEMENT creator (#PCDATA)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT properties (list)>

It consists of eight elements: ‘title’, ‘source’, ‘date’, ‘comment’, ‘version’,
‘creator’, and ‘class’ are simple strings (‘PCDATA’), whereas ‘properties’ is a
‘list’ element (see next section). ‘date’ should follow the ISO 8601 format (see
below). The ‘creator’ element should contain knowledge about the creating
application and the StatDataML implementation, ‘properties’ offers a well-
defined structure to save application-based meta-information, and, finally, the
‘class’ element will contain the class name, if any.

3.4 The ‘dataset’ element

We define a ‘dataset’ element either as a list or as an array:
<!ELEMENT dataset (list | array)>

We use arrays and lists as basic “data types” in StatDataML because every data
object in statistics can be decomposed into a set of “arrays” and “lists” (as in
the S language, or the corresponding “arrays” and “cell-arrays” in MATLAB).
The basic property of a list is its recursive structure, in contrast to arrays that
are always non-recursive. If one thinks about data as a tree, lists would be the
branches and arrays the leaves.

3.4.1 Lists

A list contains three elements: ‘dimension’, ‘properties’, and ‘listdata’:

<!ELEMENT list (dimension, properties?, listdata)>
<!ELEMENT listdata (list | array | empty)*>

The ‘dimension’ element contains one or more ‘dim’ tags, depending on the
number of dimensions:

<!ELEMENT dimension (dimx*)>
<!ELEMENT dim (e*)>

<IATTLIST dim size CDATA #REQUIRED>
<!ATTLIST dim name CDATA #IMPLIED>

Each of them has ‘size’ as a required attribute, and may optionally contain up
to ‘size’ names, specified with ‘<e>’...‘</e>’ tags. In addition, the dimension
as a whole can be attributed a name by the optional ‘name’ attribute. Note
that arrays, like the whole dataset, can also have additional ‘properties’ at-
tached, corresponding, e.g., to attributes in S. The ‘listdata’ element may
either contain arrays (with the actual data), again lists (allowing complex and
even recursive structures), or ‘empty’ tags (indicating non-existing elements,
corresponding to ‘NULL’ in S).

3.4.2 Arrays

Arrays are blocks of data objects of the same elementary type with dimension
information used for memory allocation and data access (indexing):

<!ELEMENT array (dimension, type, properties?, (data | textdata))>

The ‘dimension’ and ‘properties’ elements are identical to the corresponding
‘1ist’ tags. The ‘listdata’ block gets replaced by the ‘data’ (or ‘textdata’) el-
ement that contains the data itself. The ‘type’ element contains all information
about the statistical data type:

<!ELEMENT type (logical | categorical | numeric | character | datetime)>

<!ELEMENT logical EMPTY>

<!ELEMENT categorical (label)+>

<!ELEMENT numeric (integer | real | complex)?>
<!ELEMENT character EMPTY>

<!ELEMENT datetime EMPTY>

It must contain exactly one ‘logical’, ‘categorical’, ‘numeric’, ‘character’,
or ‘datetime’ tag. The ‘categorical’ tag must—and the ‘numeric’ element
may—contain additional elements, providing even finer type characterization.

The ‘categorical’ tag carries a ‘mode’ attribute that can be ‘unordered’
(“factors”), ‘ordered’, or ‘cyclic’ (e.g., days of the week)—‘unordered’ is the
default:

<!ELEMENT categorical (label)+>
<!ATTLIST categorical mode (unordered | ordered | cyclic) "unordered">

In addition, the factor labeling has to be specified by the means of one or more
‘label’ tags:

<!ELEMENT label (#PCDATA)>
<!ATTLIST label code CDATA #REQUIRED>

The ‘label’ element has a mandatory ‘code’ attribute specifying the levels’
integer value, and optionally contains a name. If no name is given, the applica-
tion should use the numerical code instead. The order of the ‘label’ elements
also defines the ordering relation of the levels for ordinal data. As an example,
consider the type specification of a color factor:

<type>
<categorical mode="unordered">
<label code="1">red</label>
<label code="2">green</label>
<label code="3">blue</label>
<label code="4">yellow</label>
</categorical>
</type>

In the data section (see below), only the codes will be used.
Finally, the ‘numeric’ element may contain a further tag, allowing the dis-
tinction of ‘integer’, ‘real’, and ‘complex’ data:

<!ELEMENT numeric (integer | real | complex)?>
<!ELEMENT integer (min?, max?)>

<'ELEMENT real (min?, max?)>
<!ELEMENT complex>

If ‘numeric’ is left empty, the data is assumed to be real. For ‘integer’ and
‘real’, one optionally can specify the data range using the ‘min’ and ‘max’ tags,
allowing the parsing software both to choose a memory-saving storage mode
and to check the data validity:

<!ENTITY % RANGE "#PCDATA | posinf | neginf">
<!ELEMENT min (%RANGE;)>
<!ELEMENT max (%RANGE;)>

As an example, consider the type specification for the integers from 1 to 10:

<type>
<numeric>
<integer>
<min>1</min> <max>10</max>
<integer/>
<numeric/>
<type/>

The content of ‘min’ and ‘max’ can also be ‘<posinf/>’ and ‘<neginf/>’ for +o0
and —oo, respectively.

3.4.3 The ‘data’ tag

If ‘data’ is used (especially recommended for character data), then each element
of the array representing an existing value is encapsulated in ‘<e>’...‘</e>’ pairs
(or ‘<ce>’...‘</ce> for complex numbers). For missing values, ‘<na/>’ has to
be used, empty values are just represented by ‘<e></e>’ (or simply ‘<e/>’):

<!ELEMENT data (elcelna)* >
<VATTLIST data true CDATA "1"
false CDATA "O">

<!ELEMENT na EMPTY>

<IENTITY % REAL "#PCDATA|posinf|neginf|nan">
<!ELEMENT e (%REAL;)* >

<!ELEMENT posinf EMPTY>

<!ELEMENT neginf EMPTY>

<!ELEMENT nan EMPTY>

<!ELEMENT ce (r,i) >
<!ELEMENT r (%REAL;)* >
<!ELEMENT i (%REAL;)* >

<VATTLIST e info CDATA #IMPLIED>
<IATTLIST ce info CDATA #IMPLIED>
<!ATTLIST na info CDATA #IMPLIED>

‘<na/>’, <e>’; and ‘<ce>’ tags can carry an optional ‘info’ attribute, allowing
the storage of meta-information:

<e>120<e/> <e info="unsure">123<e/> <na info="data deleted">

As another example, consider a character dataset formed by color names, with
one value missing (after ‘green’), and one being empty (after ‘blue’). The
corresponding ‘data’ section would appear as follows:

<data>
<e>red</e> <e>green</e> <na/> <e>blue</e> <e></e> <e>yellow<e>
</data>

If the colors are coded as factor levels (see the notes on categorical type speci-
fication above), the example would become:

<data>
<e>1</e> <e>2</e> <na/> <e>3</e> <e></e> <e>4<e>
</data>

IEEE Number Format

The implementation is responsible for the correct casts. The number format has
to follow the IEEE Standard for Binary Floating Point Arithmetic (Institute
of Electrical and Electronics Engineers, 1985), implemented by most program-
ming languages and system libraries. However, the IEEE special values ‘+Inf’,
‘~Inf’ and ‘NaN’ must explicitly be specified by ‘<posinf/>’, ‘<neginf/>’, and
‘<nan/>’, respectively, to facilitate the parsing process in case the IEEE stan-
dard were not implemented. These special values could appear, e.g., as follows:

<data>
<e>1.23</e> <e><posinf/></e> <e><nan/></e> <e>2.43</e>
</data>

Complex Numbers

Complex numbers are enclosed in ‘<ce>’...‘</ce>’ tags, containing exactly one
‘<r>’...</r>’ tag (for the real part) and one ‘<i>’...‘</i>’ tag (for the imagi-
nary part). Apart from that, the same rules as for ‘<e>’...‘</e>” apply:

<data>
<ce> <r>12.4</r> <i>1</i> </ce>
</data>

Logical Values

The ‘true’ and ‘false’ attributes can be used to change the default represen-
tation of logical values (‘1’ and ‘0’).

<data true="T" false="F">
<e>T</e> <e>F</e>
</data>

Date and Time Information

Data of type ‘datetime’ has to follow the ISO 8601 specification (see Interna-
tional Organization for Standardization, 1997). StatDataML should only make
use of the complete representation in extended format of the combined calendar
date and time of the day representation:

CCYY-MM-DDThh:mm:ss£hh:mm

where the characters represent Century (C), Year (Y), Month (M), Day (D),
Time designator (T; indicates the start of time elements), Hour (h), Minutes
(m) and Seconds (s). For example, the 12th of March 2001 at 12 hours and 53
minutes, UTC+1, would be represented as: 2001-03-12T12:53:00+01:00 .

3.4.4 The ‘textdata’ tag

For memory and storage space efficiency, we also define ‘textdata’, a second
way of writing data blocks using arbitrary characters (typically whitespace) for
separating elements instead of ‘<e>’...’</e>":

<!ELEMENT textdata (#PCDATA) >

<!ATTLIST textdata sep CDATA " \n"
na.string CDATA "NA"
null.string CDATA "NULL"
posinf.string CDATA "+Inf"
neginf.string CDATA "-Inf"
nan.string CDATA "NaN"
true CDATA "1"
false CDATA "0">

In this case the complete data block is included in a single XML tag; because
only a single character is used as separator, one needs 6 bytes less per element.
The use of ‘textdata’ even provides more compact results when compression
tools (such as zip) are used, and is recommended if such tools are not available
or if their use is not desirable. The set of separator characters is defined by
the optional attribute ‘sep’. The attributes ‘na.string’ and ‘null.string’
define the strings to be interpreted as missing or empty values (default: ‘NA’
and ‘NULL’). ‘posinf.string’, ‘neginf.string’, and ‘nan.string’ are used to
specify the corresponding IEEE special values. An additional “advantage” is
that textdata blocks are not parsed by the XML parser, which can drastically
reduce the memory footprint when reading a file, because many parsers represent
the complete XML data as a nested tree. This results in one branch for each
array element and typically needs much more memory than just the element
itself. Our color-example could look similar to following:

<textdata na.string="N/A" null.string="EMPTY">
red green EMPTY blue N/A yellow
</textdata>

We could also have defined a different set of separator symbols with the ‘sep’-
attribute, e.g., colons or semi-colons.

3.5 Implementation issues

Interfaces implementing StatDataML should provide options for setting con-
version strings for the ‘NA’, +co and ‘NaN’ entities if they are not supported,
but with no defaults. Unsupported elements with no default conversion should
cause an error, thus forcing the user to explicitly specify a conversion rule. All
conversions effectively done should be reported by a warning message.

4 Examples

4.1 Demo Sessions

We show how a sample task (creating a simple, matrix-like structure, writing a
StatDataML file in R, reading this file in MATLAB) is realized.

4.1.1 A session with R

R : Copyright 2002, The R Development Core Team
Version 1.6.1 (2002-11-01)

load the StatDataML package
> library(StatDataML)
Loading required package: XML

Create a simple data structure

> X <- list(matrix(c(1, 2, 3, 4), 2, 2))
> X[[2]] <- 12 + 3i

> X[[3]] <- "Test"

> X[[4]] <- list(a = "Test 2", b = 33.44)
> dim(X) <- c(2, 2)

Show what we got
> X
[,1] [,2]
[1,] "Numeric,4" "Character,1"
[2,] "Complex,1" "List,2"

> X[[1,1]]
[,11 [,2]

[1,] 1 3

[2,] 2 4

> X[[1,2]]
[1] "Test"

> X[[2,1]]
[1] 12+31

> X[[2,2]]
$a

[1] "Test 2"
$b

[1] 33.44

write it to the .sdml file
> writeSDML(X, "test.sdml")

10

4.1.2 A session with MATLAB

<MATLAB>
Copyright 1984-2000 The MathWorks, Inc.
Version 6.0.0.88 Release 12

>> path(path, ’StatDataML’)
>> X = readsdml(’test.sdml’)

X =
[2x2 double] ’Test’
[12.0000+ 3.0000i] [1x1 struct]
>> X{1}
ans =
1 3
2 4
> {2}
ans =
12.0000 + 3.0000i
>> X{3}
ans =
Test
>> X{4}
ans =
a: ’Test 2’
b: 33.4400

11

4.2 Sample output
4.2.1 The integers from 1 to 10

<?7xml version="1.0"7>
<!DOCTYPE StatDataML PUBLIC "StatDataML.dtd" "StatDataML.dtd">

<StatDataML xmlns="http://www.omega.org/StatDataML/">

<description>
<title>The integers from 1 to 10</title>
<source>MATLAB</source>
<date>2001-10-10T14:40:01+0200</date>
<version></version>
<comment></comment>
<creator>MATLAB-6.0.0.88 (R12):StatDataML_1.0-0</creator>
<class></class>

</description>

<dataset>
<array>
<dimension>
<dim size="10"></dim>
</dimension>
<type> <numeric> <integer/> <numeric/> <type/>
<data>
<e>1</e> <e>2</e> <e>3</e> <e>4</e> <e>b</e>
<e>B</e> <e>T</e> <e>8</e> <e>9</e> <e>10</e>
</data>
</array>
</dataset>

</StatDataML>

12

4.2.2 A more complex example

The following example represents a table with two variables (which could be,
e.g., a dataframe in S, and a structure in MATLAB): one character variable ‘a’
(with one missing value), and one numerical variable ‘b’.

alA B D E
b[0.5 400 4.5 NaN 1.0

<?xml version="1.0"7>
<!DOCTYPE StatDataML PUBLIC "StatDataML.dtd" "StatDataML.dtd">

<StatDataML xmlns="http://www.omega.org/StatDataML/">

<description>
<title>A small dataframe</title>
<source>MATLAB</source>
<date>2001-10-10T14:43:02+0200</date>
<version></version>
<comment></comment>
<creator>MATLAB-6.0.0.88 (R12):StatDataML_1.0-0</creator>
<class></class>
</description>

<dataset>
<list>
<dimension>
<dim size="2"> <e>a</e> <e>b</e> </dim>
</dimension>

<listdata>
<array>
<dimension>
<dim size="5"/>
</dimension>
<type> <character/> <type/>
<data>
<e>A</e> <e>B</e> <na/> <e>D</e> <e>E</e>
</data>
</array>
<array>
<dimension>
<dim size="5"/>
</dimension>
<type> <numeric/> <type>
<data>
<e>0.5</e> <e><posinf/></e> <e>4.5</e> <e><nan/></e> <e>1.0</e>
</data>
</array>
</listdata>
</list>
</dataset>

</StatDataML>

13

5 Implementation

Currently we have support for R, MATLAB and Octave, and converters for SPSS
and Gnumeric are under development.

e The StatDataML R package provides an implementation of StatDataML
I/0O routines for R. The two functions ‘writeSDML’ and ‘readSDML’ imple-
ment writing and reading for StatDataML files. With this implementation,
it is possible to write and read R data objects without loss of information
(http://cran.r-project.org/src/contrib/StatDataML_1.0.tar.gz).

e The code uses Duncan Temple Lang’s XML package, providing general
XML parsing for S engines (http://cran.r-project.org/src/contrib/
Omegahat/XML.tar.gz).

e The complete Omegahat package, also including the MATLAB/Octave im-
plementation, can be found at:
http://www.omegahat.org/StatDataML/StatDataML_1.0.tar.gz.

e Both the XML package and the MATLAB/Octave implementation use
libxml, the XML C library for gnome (http://www.xmlsoft.org/).

6 Conclusion: Limitations and Extensibility

StatDataML seems general and flexible enough to cover most of statisticians’
data representation needs. There are some limitations, though:

First, it might be helpful to have some form of authentication, which means
that everyone can read a StatDataML file but cannot manipulate the data with-
out violating the signature. Our opinion is that this problem should not be
solved within StatDataML. One could make use, e.g., of “XML signature”,
which seems to be an appropriate solution. A further issue—especially for large
datasets—are distributed data structures: as an example, one could think about
just distributing the description part of a StatDataML file, allowing the receiver
to decide on whether to retrieve the data or not. Another application would
be data subject to continuous change, using StatDataML files as structured
link-lists. Both should easily be possible using the standardized “XInclude”
specification, that offers a general link tag for XML files.

This leads to yet unresolved topics: how may users specify possibly remote
database access? At least, we would need some query-information (e.g., in SQL)
supplied along with the database URL.

Finally, within ‘StatDataML.dtd’, we describe how a basic dataset should
be organized. We currently do not provide definitions for classes such as a
dataframe or time series in DTD format. To model this, we would like to
have a principle of inheritance from ‘dataset’ such that the basic DTD can be
extended or restricted and an XML parser can validate objects of certain classes.
But to our knowledge, this can not be done with standard XML—restrictions
necessitate the specification of a new DTD.

14

http://cran.r-project.org/src/contrib/StatDataML_1.0.tar.gz
http://cran.r-project.org/src/contrib/Omegahat/XML.tar.gz
http://cran.r-project.org/src/contrib/Omegahat/XML.tar.gz
http://www.omegahat.org/StatDataML/StatDataML_1.0.tar.gz
http://www.xmlsoft.org/

References

Becker, R. A. & Chambers, J. M. (1984). S. An Interactive Environment for
Data Analysis and Graphics. Monterey: Wadsworth and Brooks/Cole.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language.
London: Chapman & Hall.

Chambers, J. M. (1998). Programming with Data: a guide to the S Language.
Springer.

Chambers, J. M. & Hastie, T. J. (1992). Statistical Models in S. Chapman &
Hall.

Grossman, W. (2000). Use of metadata in the statistical production process.
Computational Statistics, 15(1), 41-51.

Hughes, K., Jenkins, S., & Wright, G. (1999). triple-s XML: A Standard Within
A Standard. ASC.

Thaka, R. & Gentleman, R. (1996). R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3), 299-314.

Institute of Electrical and Electronics Engineers (1985). IEEE Standard 754-
1985 (R 1990), Standard for Binary Floating-Point Arithmetic.

International Organization for Standardization (1997). ISO 8601:1997, Data
elements and interchange formats - Information Interchange - Representation
of dates and times.

Jenkins, S. (ed.) (1996). The triple-s Survey Interchange Standard: The Story
So Far. ASC.

Kent, J.-P. & Schuerhoff, M. (1997). Some thoughts about a metadata manage-
ment system. In Ioannidis, Y. E. & Hansen, D. M. (eds.), Ninth International
Conference on Scientific and Statistical Database Management, Proceedings,
August 11-18, 1997, Olympia, Washington, USA, pp. 174-185. IEEE Com-
puter Society.

Temple Lang, D. & Gentleman, R. (2001). RSXMLObjects: Reading and writ-
ing S objects in XML. S Package. http://www.omegahat.org/RSXMLObjects.

Thomas, W. L. & Block, W. C. (2001). An introduction to the data documenta-
tion initiative (ddi). In Proceedings of the ICPSR Biennial Meeting of Official
Representatives.

Wills, P. (1992). Data Use and Reuse. SGCSA.

World Wide Web Consortium (2000). Extensible Markup Language (XML),
1.0 (2nd Edition). Recommendation 6-October-2000. Edited by Tim Bray
(Textuality and Netscape), Jean Paoli (Microsoft), C. M. Sperberg-McQueen
(University of Illinois at Chicago and Text Encoding Initiative), and Eve
Maler (Sun Microsystems, Inc. - Second Edition). Reference: http://www.
w3.org/TR/2000/REC-xm1-20001006.

15

http://www.omegahat.org/RSXMLObjects
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006

Appendix: the StatDataML .dtd file

<!-- StatDataML DTD version="1.0" -->

<!ELEMENT

StatDataML (description?, dataset?)>

<!-- document description tags -->

<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

description (title?, source?, date?, version?,
comment?, creator?, class?, properties?)>

title (#PCDATA)>

source (#PCDATA)>

date (#PCDATA)>

version (#PCDATA)>

comment (#PCDATA)>

creator (#PCDATA)>

<VELEMENT class (#PCDATA)>

<!ELEMENT properties (list)>

<!-- basic elements -->

<!ELEMENT dataset (list | array)>

<!ELEMENT 1list (dimension, properties?, listdata)>
<!ELEMENT listdata (list | array | empty)x*>
<!ELEMENT empty EMPTY>

<!ELEMENT

array (dimension, type, properties?, (data | textdata))>
y yp prop

<!-- dimension elements -->

<!ELEMENT
<!ELEMENT
<IATTLIST
<!ATTLIST

<!-- type
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ATTLIST
<!ELEMENT
<VATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

dimension (dim*)>

dim (ex)>

dim size CDATA #REQUIRED>
dim name CDATA #IMPLIED>

elements -->
type (logical | categorical | numeric | character | datetime)>
logical EMPTY>

categorical (label)+>

categorical mode (unordered | ordered | cyclic) "unordered">
label (#PCDATA)>

label code CDATA #REQUIRED>

numeric (integer | real | complex)?>
integer (min?, max?)>

real (min?, max?)>

complex>

<!ENTITY 7 RANGE "#PCDATA | posinf | neginf">

<!ELEMENT
<!ELEMENT

min (%RANGE;)>
max (%RANGE;)>

16

<!ELEMENT character EMPTY>
<!ELEMENT datetime EMPTY>
<!-- data/textdata tags -->

<!ELEMENT data (elcelna)* >
<IATTLIST data true CDATA "1"
false CDATA "O">

<!ELEMENT textdata (#PCDATA) >

<!ATTLIST textdata sep CDATA " \"
na.string CDATA "NA"
null.string CDATA "NULL"
posinf.string CDATA "+Inf"
neginf.string CDATA "-Inf"
nan.string CDATA "NaN"
true CDATA "1"
false CDATA "O">

<!-- e/ce/na elements -->
<!ELEMENT na EMPTY>

<IENTITY % REAL "#PCDATA | posinf | neginf | nan">
<!ELEMENT e (%REAL;)*>

<!ELEMENT posinf EMPTY>

<!ELEMENT neginf EMPTY>

<!ELEMENT nan EMPTY>

<VELEMENT ce (r,i) >

<!ELEMENT r (%REAL;)*>

<IELEMENT i (%REAL;)*>

<!ATTLIST e info CDATA #IMPLIED>

<VATTLIST ce info CDATA #IMPLIED>
<!ATTLIST na info CDATA #IMPLIED>

17

	Introduction
	Requirements on Statistical Data
	StatDataML
	StatDataML is XML
	The File Header
	The `description' element
	The `dataset' element
	Lists
	Arrays
	The `data' tag
	The `textdata' tag

	Implementation issues

	Examples
	Demo Sessions
	A session with R
	A session with MATLAB

	Sample output
	The integers from 1 to 10
	A more complex example

	Implementation
	Conclusion: Limitations and Extensibility

