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Abstract

The lme4 package uses sparse matrix technology and clever de-
compositions of the likelihood to fit linear, generalized, and nonlin-
ear mixed-effects models. The amer package extends lme4’s scope to
include generalized additive mixed models (GAMM). This vignette
summarizes the main ideas behind additive models and their repre-
sentation in the form of a mixed model, describes the modifications to
lmer necessary for fitting GAMMs and presents some examples with
real data.
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1 Additive Models

In many applications, the assumption of a linear dependence of the response
on predictor variables is inappropriate. Modelling smooth functions of an
unknown shape, that is, models of the form

y =
S∑
s=1

fs(xs) + ε; ε ∼ Nn(0, σ2
εIn)

where fs(·) is some smooth function of a covariate xi, which can also be
multidimensional (e.g. surface estimation), requires solving 3 problems not
encountered in linear modelling:

1. the smooth function has to be represented somehow

2. the degree of smoothness of the function must be controllable

3. the appropriate degree of smoothness should be selected in a data-
driven way

Spline smoothing addresses the first issue by assuming that fs(xs) can
be approximated by a linear combination of ds basis functions Bj(xs), j =
1, . . . , ds:

fs(xs) ≈ Bsδs; Bs =

 B1(xs1) . . . Bds(xs1)
...

...
B1(xsn) . . . Bds(xsn)


This obviously leads back to a linear modelling context. For ease of notation
we set S = 1 and drop the subscript s in the following.

The second issue, controlling the roughness or “wiggliness” of the esti-
mated function, is a variant of the bias-variance tradeoff problem: using too
few basis functions may not allow the fitted curve to accurately represent the
shape of the function, leading to biased estimation, while using too many will
result in an overly close interpolation of the data — the estimated curve rep-
resents random noise along with the underlying structure. Penalized spline
smoothing (Eilers and Marx, 1996) addresses this problem by choosing a suf-
ficient number of knots (e.g. 10-40) to ensure the necessary flexibility of the
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fit and by introducing an additional penalty term, a function of the spline
coefficients δ, that quantifies the roughness of the estimated function. For a
broad class of spline bases, the resulting criterion is a penalized least squares
criterion,

min
δ

(
‖y−Bδ‖2 +

1

λ
δ′Kδ

)
, (1)

where K is a penalty matrix and λ is the smoothing parameter controlling
the amount of penalization, i.e. the tradeoff between fidelity to the data and
complexity of the fit. The elements in K are determined by the spline basis
that is used to generate B and the roughness penalty desired by the analyst
(usually penalizing (local) deviations of the fitted function from a constant,
linear, or a quadratic polynomial).

Example: TP-Basis
A simple example of basis functions is the truncated powers (TP) basis.
A TP-Basis of degree p, with d basis functions for a covariate x and fixed
knots κ1, . . . , κd−p consists of a constant term, p global polynomial terms
x1, . . . ,xp and p − d truncated polynomials (x − κi)p+, i = 1, . . . , d − p,
where (y)+ = y I(y > 0):

B =
[
x0 x1 . . . xp (x− κ1)p+ . . . (x− κd−p)p+

]
The penalty for the TP-Basis penalizes deviations of the fitted function
from a p-degree polynomial:

K = diag(0p+1,1d−p).

The penalty term δ′Kδ is simply the sum of squares of the p− d coeffi-
cients for the truncated polynomials.
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2 Mixed model representation of an additive

model

2.1 Reparameterization: Separating penalized and un-
penalized components of smooth terms

The third issue – selecting the appropriate smoothness in a data-driven way –
then reduces to estimation of the smoothing parameter λ, which controls the
smoothness of the estimated function. The penalized least squares problem is
reformulated as a mixed model in which the smoothing parameter becomes
a variance component. This is achieved by a decomposition of the spline
coefficients into an unpenalized part and a penalized part:

δ = Uβ + Pb

where U , d× p, is a basis of the p-dimensional nullspace of the penalization
matrix K and U and P have the following properties (Kneib, 2006, ch. 5.1):

1. The matrix [UP ] has full rank to make the transformation above a
one-to-one transformation. This also implies that both U and P have
full column rank.

2. U and P are orthogonal, i. e. UP ′ = 0

3. U ′KU = 0, so that β is unpenalized by K

4. P ′KP = I, so that the penalty for b reduces to ‖b‖2

The decomposition is not unique, but it can always be based on the spectral
decomposition of K. With

K = [Λ+Λ0]′
[

Γ+ 0
0 0

]
[Λ+Λ0],

where Λ+ is the matrix of the eigenvectors associated with the positive eigen-
values diag(Γ+), and Λ0 are the eigenvectors associated with the zero eigen-
values, the decomposition is

U = Λ0,

P = L(L′L)−1
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with L = Λ+Γ
1/2
+ .

Using

Bδ = B(Uβ + Pb) = Xuβ +Zpb (2)

and δ′Kδ = (Uβ + Pb)′K(Uβ + Pb) = b′b,

the penalized least squares criterion (1) can be rewritten as

min
δ

(
‖y −Bδ‖2 +

1

λ
δ′Kδ

)
= (3)

min
β,b

(
‖y −Xuβ −Zpb‖2 +

1

λ
‖b‖2

)
.

For given λ, minimizing (3) over (β′, b′)′ is equivalent to BLUP-estimation
(Ruppert et al., 2003, ch. 4.5.3) in a linear mixed model with

y = Xuβ +Zpb+ ε; ε ∼ Nn(0, σ2
εIn); b ∼ Nd−p(0, σ

2
ελId−p),

which means maximizing

L(β, b|λ, σ2
ε) ∝ exp

(‖y −Xuβ −Zpb‖2 + 1
λ
‖b‖2

−2σ2
ε

)
.

The reformulation of the additive model as a mixed model therefore makes it
possible to estimate smoothing parameters with ML- or REML-methodology.
All this is valid for non-gaussian responses as well.

2.2 Additive mixed models

This model formulation can be extended to include multiple smooth terms,
other random effects and a linear predictor in the classical sense of linear
regression: Just concatenate the unpenalized parts of the smooth terms to
the design matrix of the fixed effects and the penalized parts of the smooth
effects to the design matrix of the random effects.
For an additive mixed model

y = Xβ+
L∑
l=1

Zlbl +
S∑
s=1

f(xs) + ε;

[
b
ε

]
∼ N∑

ql+n

(
0, σ2

ε

[
Ω−1b 0

0 In

])
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with fixed effects design X, L random effects designs Zl each with ql param-
eters and random effects b = [b1, . . . , bL] ∼ N∑

ql(0, σ
2
εΩ
−1
b ) and S smooth

terms, we can write
y = X̃β̃+ Z̃b̃+ ε

with concatenated design matrices

X̃ = [XXu,1 . . .Xu,S] ; Z̃ = [Z1 . . .ZLZp,1 . . .Zp,S]

and Cov(b̃) = Cov



b
b1
...
bS


 = σ2

ε


Ω−1b 0 . . . 0

0 λ1Id1−p1
...

...
. . . 0

0 . . . 0 λsIdS−pS


The parameter vector for the fixed effects is stacked in the same fashion as
the one for the random effects. A minor additional complication arises from
the fact that usually every matrix Xu,s, s = 1, . . . , S for the unpenalized
part of the various smooth terms will contain an intercept column. These
are dropped in order to avoid a rank deficient design matrix X̃. This also
solves the identifiability issues common to additive models (Wood, 2006a, ch.
3.3) – we estimate a global intercept and the smooth functions etc. then only
parameterize deviations from it.

2.3 Variability Estimation

The convenience functions getF and plotF to extract or plot estimated func-
tion values f̂(x) offer both MCMC-based or approximate frequentist variabil-
ity bands. MCMC-based intervals (option interval="MCMC" in getF, plotF)
are pointwise HPD-intervals. They are based on samples from lme4’s mcmc-

samp and may not be very reliable yet.1

The frequentist variability estimates (option interval="RW" in getF, plotF)
condition on the value of the estimated variance / smoothing parameters and
use the bias-adjusted covariance of f̂(x) derived in Ruppert et al. (2003, ch.
6.4, eq. (6.13)). See section 3.5 for an example. I plan to include bootstrap-
based variability estimates in a future version.

1You can check the traceplots by calling
xyplot(attr(getF(<MyModel>, interval="MCMC"),"mcmc")),
see section 3.5 for an example.
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3 Examples

Let’s fit models to some exemplary datasets to show what amer can do. I
demonstrate how to fit simple semiparametric or additive models (3.1), how
to use the by-option of the basis-generating function to fit group-specific
smooths (3.2), how to use the allPen-option of the basis-generating function
to fit subject- or cluster-specific smooth terms where all subject-level coef-
ficients are penalized (i.e. the coefficients associated with Xu are treated
as random effects as well) (3.3), and how to use the varying-option to fit
varying-coefficient models (3.4). Most of the examples are adapted from
Crainiceanu et al. (2005). Many additional examples on artificial data can
be found in the subdirectory tests of the package.

3.1 Generalized Additive Model

Let’s first have a look at data on wages and union membership for 534 workers
described in Berndt (1991). The model assumes that the probability of union
membership of worker i (yi = 1 if member) depends on his or her hourly wages
xi. The smooth function is represented by a linear TP-basis:

P (yi = 1) = logit−1(f(xi))

f(xi) = β0 + β1xi +
K−1∑
k=1

bk(xi − κk)+

bk ∼ N(0, σ2
f )

We use a the default number of basis function (K = 15) and degree by calling
the tp-function:

> data(union)
> u1 <- amer(UNION ~ tp(WAGE), family = binomial, data = union)

By default, tp uses quantile-based knot spacing to generate the basis func-
tions. If the covariate distribution is as non-uniform as here (see figure 1),
these are often a better choice than equidistant knots.

> print(u1, corr = F)
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Generalized additive mixed model fit by the Laplace approximation
Formula: UNION ~ tp(WAGE)

Data: union
AIC BIC logLik deviance
483 496 -238 477

Random effects:
Groups Name Variance Std.Dev.
f.WAGE tp 0.200 0.448

Number of obs: 534, groups: f.WAGE, 14

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.961 0.759 -1.27 0.206
WAGE.fx1 1.841 0.917 2.01 0.045 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note amer’s naming convention for the smooth function: The group name
of the variance component associated with a smooth function of a covariate
x is f.x, instead of the covariate name, amer gives the name of the basis
generating function. The names of the columns in the n × p design matrix
Xu for the unpenalized part of the smooth are given by x.fx1, x.fx2 to
x.fxp. We see that σ̂2

f ≈ 0.2. Figure 1 shows the plot produced by a call to
plotF.
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> plotF(u1, trans = plogis, rug = F, ylim = c(0, 0.4))
> with(union, points(WAGE, jitter(0.4 * UNION, factor = 0.15),
+ cex = 0.5))
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Figure 1: Fitted probability of union membership versus hourly wages, with
conditional pointwise 90% CI and jittered observations.
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3.2 Separate smooths for levels of a factor: Using the
by-option

We use data on coronary sinus potassium concentration measurements for 36
dogs. The dogs were divided into 4 treatment groups, and the measurements
for each dog were taken every two minutes from 1 to 13 minutes after occlu-
sion (i.e. an artificially induced heart attack). The data was first published
in Grizzle and Allen (1969) and previously analysed in Crainiceanu et al.
(2005).

Figure 2 shows the observed concentrations for all 36 dogs split up into
the treatment groups. The group-averages seem to have quite different time
trends, with different degrees of nonlinearity, so we fit an additive mixed
model with group-specific smooth functions f gg(i)(t), g(i) = 1, . . . , 4, of time
and random intercepts b0 for the different dogs:

yij = β0g(i) + f gg(i)(tij) + b0i + εij

f gg(i)(tij) = β1g(i)tij +
K−1∑
k=1

bgg(i)k(tij − κk)+

bgg(i)k ∼ N(0, σ2
g(i))

b0i ∼ N(0, σ2
b0)

εij ∼ N(0, σ2
ε)

Note that we estimate different spline coefficient variances σ2
g(i), g(i) =

1, . . . , 4 for the 4 treatment groups.

Since there are only 8 unique time points for the measurements, 6 knots
should be enough to model the time trends. The model is specified in amer

using the by-option:

> d1 <- amer(y ~ -1 + group + tp(time, k = 6, by = group) +
+ (1 | dog), data = dog)

> print(d1, corr = F)

Additive mixed model fit by REML
Formula: y ~ -1 + group + tp(time, k = 6, by = group) + (1 | dog)

Data: dog
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Figure 2: dog data: coronary sinus potassium concentrations for 36 dogs in
4 treatment groups
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AIC BIC logLik deviance REMLdev
383 433 -178 341 355

Random effects:
Groups Name Variance Std.Dev.
dog (Intercept) 0.2487 0.499
f.time.group4 tp 0.0119 0.109
f.time.group3 tp 0.1236 0.352
f.time.group2 tp 0.0000 0.000
f.time.group1 tp 0.3349 0.579
Residual 0.1508 0.388

Number of obs: 252, groups: dog, 36; f.time.group4, 5; f.time.group3, 5; f.time.group2, 5; f.time.group1, 5

Fixed effects:
Estimate Std. Error t value

group1 4.4176 0.3828 11.54
group2 3.5529 0.1644 21.61
group3 4.3789 0.3350 13.07
group4 4.0325 0.2148 18.77
time.group1.fx1 0.2180 0.2808 0.78
time.group2.fx1 -0.0329 0.0465 -0.71
time.group3.fx1 0.5399 0.2395 2.25
time.group4.fx1 0.2187 0.1245 1.76

Note amer’s naming convention for smooth functions with a by-argument:
The group name of the variance component associated with a smooth function
of a covariate x at level L of the grouping factor by is f.x.byL. The names of
the columns in the n× p design matrix Xu,L for the unpenalized part of the
smooth for level L are given by x.byL.fx1, x.byL.fx2 to x.byL.fxp.
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The following code generates figure 3:

> layout(cbind(matrix(1, ncol = 2, nrow = 2), matrix(2:5,
+ ncol = 2, nrow = 2)))
> par(mar = c(3, 2.8, 2.8, 0.8), mgp = c(2, 1, 0))
> plotF(d1, ylim = range(dog$y), interval = "none", legend = "topleft",
+ level = 0.95, auto.layout = F, lwd = 3)
> d1.RW <- getF(d1, interval = "RW")
> for (i in 1:4) {
+ plot(0, 0, ylim = range(dog$y), xlim = c(0, 1), ylab = "y",
+ xlab = "time")
+ sub <- subset(dog, group == i)
+ lapply(split(sub, sub$dog, drop = T), function(x) lines(x$time,
+ x$y, col = "lightgrey", lty = 1, lwd = 1))
+ matlines(d1.RW[[1]][[i]][, 1], d1.RW[[1]][[i]][,
+ -1], type = "l", lty = c(1, 3, 3), col = i, lwd = 2.5)
+ }
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Figure 3: Left panel: Estimated groupwise smooths for the coronary sinus
potassium data; Right panels: Estimated groupwise smooths with pointwise
90% CIs and observed data (grey)
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3.3 Subject- or cluster-specific smooths: Using the allPen-
option

It is also possible to allow smooth subject-specific deviations from the group-
specific curves. The model is now:

yij = β0g(i) + f gg(i)(tij) + f si (tij) + εij

f gg(i)(tij) = βg1g(i)tij +

Kg∑
k=1

bgg(i)k(tij − κk)+

f si (tij) = b0i + b1itij +

Ki∑
k=1

bsik(tij − κk)+

bgg(i)k ∼ N(0, σ2
g(i))

bsik ∼ N(0, σ2
fs)

(b0i, b1i)
′ ∼ N2(0,D)

εij ∼ N(0, σ2
ε)

We still estimate separate spline coefficient variances σ2
g(i), g(i) = 1, . . . , 4

for the 4 treatment groups, but only one common spline coefficient variance
σ2
fs for all the subject-specific smooth functions f si (t). We assume an un-

structured covariance matrix D for the subject-specific random intercepts
and slopes (b0i, b1i).

The model is specified in amer by using the by-option in combination with
allPen = TRUE:

> d2 <- amer(y ~ -1 + group + tp(time, k = 6, by = dog,
+ allPen = T) + tp(time, k = 6, by = group), data = dog)

> print(d2, corr = F)

Additive mixed model fit by REML
Formula: y ~ -1 + group + tp(time, k = 6, by = dog, allPen = T) + tp(time, k = 6, by = group)

Data: dog
AIC BIC logLik deviance REMLdev
348 408 -157 298 314

Random effects:
Groups Name Variance Std.Dev. Corr
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f.time.dog tp 0.03503 0.1872
u.time.dog (Intercept) 0.25058 0.5006

time.dog.fx1 0.00453 0.0673 1.000
f.time.group4 tp 0.01236 0.1112
f.time.group3 tp 0.12478 0.3532
f.time.group2 tp 0.00000 0.0000
f.time.group1 tp 0.37166 0.6096
Residual 0.09315 0.3052

Number of obs: 252, groups: f.time.dog, 180; u.time.dog, 36; f.time.group4, 5; f.time.group3, 5; f.time.group2, 5; f.time.group1, 5

Fixed effects:
Estimate Std. Error t value

group1 4.38151 0.34252 12.79
group2 3.57606 0.17826 20.06
group3 4.33032 0.30996 13.97
group4 4.07611 0.21710 18.77
time.group1.fx1 0.18889 0.24172 0.78
time.group2.fx1 -0.00977 0.07936 -0.12
time.group3.fx1 0.50846 0.21176 2.40
time.group4.fx1 0.26291 0.12545 2.10

By specifying allPen = TRUE, a random intercept for the by-variable is au-
tomatically included in the model. Also note amer’s naming convention for
smooth functions of a covariate x with a by-argument and allPen = TRUE:
For the random effects associated with Xu, the group name of the variance
component is u.x.by. The factor u.x.by is of course the same as by, the
renaming is done for technical reasons.

Especially for spline bases with a higher dimensional nullspace of the
penalty it may not be feasible or desirable to estimate an unstructured co-
variance matrix D. By setting the diag-option to TRUE in the specification
of a smooth term with allPen = TRUE, we can enforce uncorrelated random
effects for the coefficients associated with Xu:

> d3 <- amer(y ~ -1 + group + tp(time, k = 6, by = dog,
+ allPen = T, diag = T) + tp(time, k = 6, by = group),
+ data = dog)

> print(d3, corr = F)

Additive mixed model fit by REML
Formula: y ~ -1 + group + tp(time, k = 6, by = dog, allPen = T, diag = T) + tp(time, k = 6, by = group)
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Data: dog
AIC BIC logLik deviance REMLdev
348 404 -158 300 316

Random effects:
Groups Name Variance Std.Dev.
f.time.dog tp 0.0353 0.188
u.time.dog time.dog.fx1 0.0000 0.000
u.time.dog (Intercept) 0.1972 0.444
f.time.group4 tp 0.0122 0.111
f.time.group3 tp 0.1245 0.353
f.time.group2 tp 0.0000 0.000
f.time.group1 tp 0.3714 0.609
Residual 0.0944 0.307

Number of obs: 252, groups: f.time.dog, 180; u.time.dog, 36; f.time.group4, 5; f.time.group3, 5; f.time.group2, 5; f.time.group1, 5

Fixed effects:
Estimate Std. Error t value

group1 4.38218 0.33499 13.08
group2 3.57596 0.16279 21.97
group3 4.33194 0.29969 14.45
group4 4.07510 0.20304 20.07
time.group1.fx1 0.18943 0.24185 0.78
time.group2.fx1 -0.00987 0.07682 -0.13
time.group3.fx1 0.50957 0.21118 2.41
time.group4.fx1 0.26190 0.12360 2.12
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3.4 Varying coefficient models: Using the varying-option

Another class of models that can be fitted with amer are varying coefficient
models. They are used to model smoothly varying regression coefficients, i.e.
models in which the effect of a covariate z varies smoothly over the range of
another covariate x (· denotes elementwise multiplication of the columns):

y = β(x) · z + ε

β(x) = f(x) ≈Xuβ+Zpb

⇒ β(x) · z ≈ (Xu · z)β+ (Zp · z)b

This class of models can be fitted by simply scaling the design matrices for
the spline of the effect-modifying covariate x (i.e. the varying coefficient)
with the values of the covariate z. A slight complication arises: for all other
classes of models, we drop the intercept column in Xu so that the model is
identifiable. That is unnecessary in this case, so the design matrix (Xu · z)
has 1 · z = z as its first column.

Let’s look at lattice’s ethanol data set as an example: Ethanol fuel was
burned in a single-cylinder engine. For various settings of the engine com-
pression (C) and the equivalence ratio (E, a measure of the richness of the
air and ethanol fuel mixture), the emissions of nitrogen oxides (NOx) were
recorded. We assume that, for a given equivalence ratio E, the relationship
between compression and emissions is linear, but with different intercepts
and slopes for different values of E (see figure 4).

The model we want to fit is

NOxi = f1(Ei) + f2(Ei)Ci + εi

f1(E) = β0 +X(E)
u β(E) +Z(E)

p b(E)

f2(E)C = X(EC)
u β(EC) +Z(EC)

p b(EC),

with the usual distributional assumptions about b(E), b(EC) and ε. The
command to fit this model in amer is simply

> e1 <- amer(NOx ~ tp(E, k = 20) + tp(E, k = 20, varying = C),
+ data = ethanol)

> print(e1, corr = F)
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Figure 4: Emissions of nitrogen oxides NOx for various engine compression
values C, split up according to equivalence ratio E. Lines are linear regression
estimates for the subgroups.
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Additive mixed model fit by REML
Formula: NOx ~ tp(E, k = 20) + tp(E, k = 20, varying = C)

Data: ethanol
AIC BIC logLik deviance REMLdev
15.1 32.4 -0.554 -15 1.11

Random effects:
Groups Name Variance Std.Dev.
f.E tp 1.26248 1.1236
f.EXC tp 0.00103 0.0321
Residual 0.02936 0.1714

Number of obs: 88, groups: f.E, 19; f.EXC, 19

Fixed effects:
Estimate Std. Error t value

(Intercept) 2.2834 1.0528 2.17
E.fx1 1.6808 0.7528 2.23
EXC.fx1 0.1389 0.0540 2.57
EXC.fx2 0.0317 0.0394 0.80

The fit is plotted in figure 5. By default, the value of the varying coefficient
function (right column) is evaluated for a covariate value of z = 1, so the
plot for f.EXC can be interpreted directly as β(E).

Note amer’s naming convention for varying coefficient models: For an
effect-modifying covariate x and an effect-causing covariate z, the function
name is given as f.xXz, the unpenalized effects are named xXz.fx1 to xXz.fxp.
The first unpenalized effect corresponds to the conventional regression coef-
ficient for z, since Xu has z as its first column.
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3.5 Variability Bands: Using the RW- and MCMC-options

By default, amer’s plotF computes approximate pointwise intervals for the
smooth functions based on a bias-adjusted (Ruppert et al., 2003, ch. 6.4)

approximation of Cov((β̂, b̂− b)|σ̂2
b , σ̂

2
ε) (see 2.3). These may underestimate

the true variability since they ignore the uncertainty in the estimated variance
parameters.

Alternatively, the results from lme4’s mcmcsamp can be used to construct
MCMC-based variability bands. Figure 5 compares the frequentist, bias-
adjusted variability bands (see 2.3) for the estimated function values with
pointwise HPD-Intervals based on 1000 draws from mcmcsamp for the ethanol

data. We expect the latter to be wider since they take into account the
variability of the estimated variances, while the former are conditioned on
the estimated variances.

Since mcmcsamp may not always work as expected, it is strongly recom-
mended to examine the returned MCMC-samples. They are available as the
mcmc-attribute of the value returned by getF or plotF. A quick visual inspec-
tion of the sampling paths can be done via xyplot, see figure 6. The MCMC
iterations in this case show strange spikes after about 700 iterations with hu-
mongous values drawn for the relative standard deviations e1@ST of the spline
coefficients. The marginal posterior densities for the variance components are
concentrated on values magnitudes larger than the REML estimates found by
the optimizer, with ridiculously long upper tails (which lead to quite erratic
sampling behaviour of the spline coefficients b and consequently very broad
HPD-Intervals for f̂(x)).
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> par(mfrow = c(2, 2), mar = c(3, 2.8, 2.8, 0.8), mgp = c(2,
+ 1, 0))
> e1.RW <- plotF(e1, addConst = c(T, F), level = 0.95,
+ auto.layout = F)
> set.seed(12345)
> e1.MCMC <- plotF(e1, addConst = c(T, F), int = "MCMC",
+ sims = 1000, level = 0.95, auto.layout = F)

starting 1000 MCMC iterations for posterior intervals:
... done.
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Figure 5: Fits and 95% CIs/HPD-Intervals for the ethanol data. Upper
row: pointwise frequentist variability bands conditional on the estimated
variances. Lower row: pointwise HPD-Intervals based on 1000 draws (see
text) from mcmcsamp. Left column: Effect of equivalence ratio E. Right col-
umn: regression coefficient for compression C varying over E.
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> e1.MCMCData <- as.data.frame(attr(e1.MCMC, "mcmc"))
> data.frame(c(fixef(e1), e1@ST, lme4:::sigma(e1)))

X.Intercept. E.fx1 EXC.fx1 EXC.fx2 tp tp.1 sigmaREML
tp 2.28 1.68 0.139 0.0317 6.56 0.187 0.171

> apply(e1.MCMCData, 2, quantile, probs = c(0.1, 0.25,
+ 0.5, 0.75, 0.9), na.rm = T)

(Intercept) E.fx1 EXC.fx1 EXC.fx2 ST1 ST2 sigma
10% 0.195 -0.2168 -0.01897 -0.05728 0.0 0.0 0.168
25% 1.170 0.0763 0.00539 -0.03471 0.0 0.0 0.207
50% 1.914 0.2643 0.06521 0.00906 0.0 0.8 0.273
75% 3.263 2.4638 0.14134 0.08058 31.7 89.2 0.663
90% 5.048 3.7896 0.29875 0.15520 169.3 57125.2 0.992

> print(xyplot(attr(e1.MCMC, "mcmc")))
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Figure 6: Traceplot of the MCMC samples for model e1. Note the huge
values for ST.
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4 Implementation

4.1 What’s the point?

There is already a well-tested, well documented and versatile package mgcv

(Wood, 2006b) that fits generalized additive mixed models in R, so why
bother with yet another one?

• mgcv’s gamm uses the less stable and slower nlme-implementation of linear
mixed models, while amer relies on the more stable algorithm used in
lme4 (Bates and Maechler, 2009b) with its very fast sparse Matrix (Bates
and Maechler, 2009a) magic. Also, specifying random effects terms for
amer/lmer does not use gamm/nlme’s cumbersome list notation.

• mgcv’s gamm fits non-gaussian responses by calling MASS’s glmmPQL. The
PQL-approach for fitting generalized linear mixed models (GLMM) is
severely biased and often unstable. amer relies on the more precise
Laplace approximation implemented in lme4 for fitting GLMMs.

• asreml also offers additive models, but is limited to gaussian responses
(and isn’t free or open-source)

The /tests file mgcvTests.R does some comparisons between gamm and amer.
The drawbacks of using amer instead of mgcv’s gamm are that, as yet, it’s not
possible to include serial and/or spatial correlation structures or variance
functions for the residuals or specify covariance structures of the random
effects that aren’t either diagonal or unstructured (this will remain an issue
as long as lme4 doesn’t have that capability). Also, multidimensional smooths
are not yet implemented, but will be included in a future version.

4.2 Making lmer fit GAMMs

In its most current version (0.999375-33, at the time of writing), lme4 fits
mixed models

• for hierachical data structures (i.e. grouped data) and
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• only admits either diagonal or unstructured covariances of the non-
scalar random effects for every level of grouping.

In an additive mixed model, data are not grouped (the smoothing in-
troduces dependence between all the observation in the data) and, if the
reparameterization from Bδ to Xuβ+Zpb is not done, the precision matrix
K/λ for the penalized coefficients is in general not diagonal (and certainly
not unstructured) and not of full rank, so that an implementation of GAMMs
based on the unreparameterized representation is not possible without chang-
ing the underlying C-code of lme4.

Instead of making these changes to the underlying C, amer tricks lmer

into fitting additive models by setting up an unfit model object with the
structure of random and fixed effect design matrices necessary for the mixed
model representation (2) of the additive model, and then overwriting the
(precursor of) the Zt-slots with the penalized parts Zp of the reparameterized
spline bases. More precisely, the model object is set up by going through the
following steps for each smooth function:

1. Generate Xu and Zp according to the basis generating function (see
section 4.4) given for the smooth term,

2. replace the smooth term in the original model formula with fixed ef-
fect terms for the columns in Xu and a random intercept term for an
artificial grouping factor that has as many levels as Zp has columns,

3. add the fixed effects in Xu and the artificial grouping factor to the
model frame,

4. set up, but do not fit this model with a call to lmer with option
doFit=FALSE, and finally

5. overwrite the design matrices for the random intercept of the artificial
grouping factor with Zp.

Some complications arise if the by-, allPen- or varying-options are used, but
these steps remain basically the same. The modified unfitted model is given
to lmer_finalize or glmer_finalize for calling the optimization C-code.
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4.3 Why use the TP-basis?

The following flaws of the TP-basis that is used as the default in amer are often
mentioned:

• it has an undesirable one-to-one mapping between the smoothness/differen-
tiability of the fit (TP of degree p ⇒ fit is p − 1-time continuous differen-
tiable), and the nullspace of the penalty (TP of degree p ⇒ nullspace is a
p-degree polynomial). This is different from, e.g., penalized B-Spline fits,
where the order of the difference penalty that determines the nullspace of
the penalty can be specified independently from the order of the spline bases
which determine the smoothness of the fit.

• the unbounded support (to the right of the knot) of the truncated polyno-
mials means that the values of the basis function can potentially become
huge.

• the columns inZp containing the truncated polynomials are severely collinear,
especially for closely spaced knots

Why did I use it nevertheless? For one, similar collinearity in Zp is present for
all other spline bases I am aware of after the mixed model reparameterization (2)
described in section 2.1. More importantly, for all other spline bases I am aware
of, the reparameterized design Zp contains no systematic zeroes at all even if the
matrix of the original basis functions B is sparse, while Zp for the TP-basis is
about 50% zeroes. This means that amer can take advantage of the sparse matrix
operations in lme4 when tp or tpU is used, but not for any other bases.

4.4 Writing your own basis-generating function

It is fairly easy to implement your own basis generating function for use in amer.
Such a function only has to fullfill the following criteria:

• It has to have at least the arguments

– x, a numeric variable used for the smooth function,

– by, a factor variable (default: NULL),

– allPen, (a logical),

26



– diag, (a logical),

– varying, a numeric variable (default: NULL).

• It has to return a list with

– an entry named X, which contains the matrix Xu without the intercept
column (this can be a matrix with zero columns)

– an entry named Z, which contains the matrix Zp

– an attribute call, which contains the result of expand.call

You don’t have to worry about the reparametrization described in 2.1 - the utility
function reparameterizeDesign creates Xu and Zp for a given design matrix B
and the associated penalty matrix bmK. The technical details of splitting up Xu

and Zp for a possible by variable, naming the columns in Xu etc. are performed
by the utility function expandBasis.

As an example, let’s add a variant of the TP-Basis to amer’s repertoire –
let’s say we want to get rid of the undesirable one-to-one mapping between the
smoothness/differentiability of the fit and the null-space of the penalty of the TP-
basis. We implement a simple basis-generating function tp2 that lets us specify the
dimensionality of the nullspace so that, for a TP-spline basis of degree p without
intercept (see above), we can specify the degree of the global polynomial that is
unpenalized2. Let’s call this option dimU. If we set dimU= p, this corresponds to
the conventional TP-Penalty. If dimU< p, columns containing global polynomials
that would be in Xu for the conventional TP-Penalty are put in Zp instead.

The following code implements a rough draft of the idea, with the default
for using a quadratic TP-Basis (p = 2) (s.t. the fitted function is continuously
differentiable, i.e. has no kinks) while penalizing deviations from linearity (dimU=
1):

> tp2 <- function(x, p = 2, k = 15, dimU = 1, by = NULL,
+ allPen = FALSE, diag = FALSE, varying = NULL,
+ knots = quantile(x,
+ probs = (2:(k - p + 1))/(k - p + 3)))
+ {
+ #dim. of nullspace can't be larger than p of TP-basis:
+ stopifnot(dimU <= p)
+
+ #always need this for the call attribute of the returned value:

2This basis is available im amer as tpU.
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+ call <- as.list(expand.call())
+ call$knots <- knots
+
+ #global polynomial trends:
+ X <- outer(x, 0:p, "^")
+
+ #truncated power basis functions
+ Z <- outer(x, knots, "-")^p * outer(x, knots, ">")
+
+ #matrix of basis functions
+ B <- cbind(X, Z)
+
+ #the penalty matrix K is the identity matrix,
+ # with (dimU+1)-leading zeroes
+ # (dimU + 1 because of the intercept column...)
+ K <- diag(ncol(B))
+ K[cbind(1:(dimU + 1), 1:(dimU + 1))] <- 0
+
+ #let reparameterizeDesign do the dirty work
+ D <- reparameterizeDesign(B, K)
+
+ #return X_u and Z_p
+ res <- list(X = D$X, Z = D$Z)
+ attr(res, "call") <- as.call(call)
+ return(res)
+ }

We can now use this function to fit a continuously differentiable function with
penalized deviations from linearity to the dog data, but we have to tell amer to
look for smooth terms called tp2 in the basisGenerators-option:

> d4 <- amer(y ~ -1 + group + tp2(time, k = 6, p = 2, dimU = 1,
+ by = group) + (1 | dog), data = dog, basisGenerators = c("tp2"))

> print(d4, corr = F)

Additive mixed model fit by REML
Formula: y ~ -1 + group + tp2(time, k = 6, p = 2, dimU = 1, by = group) + (1 | dog)

Data: dog
AIC BIC logLik deviance REMLdev
373 422 -172 340 345

Random effects:
Groups Name Variance Std.Dev.
dog (Intercept) 2.49e-01 4.99e-01
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f.time.group4 tp2 1.17e-01 3.41e-01
f.time.group3 tp2 1.47e+00 1.21e+00
f.time.group2 tp2 1.01e-11 3.18e-06
f.time.group1 tp2 1.85e+01 4.30e+00
Residual 1.50e-01 3.88e-01

Number of obs: 252, groups: dog, 36; f.time.group4, 5; f.time.group3, 5; f.time.group2, 5; f.time.group1, 5

Fixed effects:
Estimate Std. Error t value

group1 4.215 0.481 8.76
group2 3.553 0.164 21.61
group3 4.571 0.290 15.76
group4 4.034 0.202 19.98
time.group1.fx1 -0.286 1.162 -0.25
time.group2.fx1 0.110 0.155 0.71
time.group3.fx1 -2.284 0.658 -3.47
time.group4.fx1 -0.727 0.366 -1.99

Figure 7 shows a comparison of the fit with the tp2-function to the fit of a con-
ventional linear TP-basis.
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The following code generates figure 7:

> par(mfrow = c(1, 2))
> plotF(d1, legend = "topleft", auto.layout = F)
> plotF(d4, legend = "none", auto.layout = F)

0.0 0.2 0.4 0.6 0.8 1.0

3.
5

4.
0

4.
5

5.
0

time

group1
group2
group3
group4

f.t
im

e 
+

 c
on

st

0.0 0.2 0.4 0.6 0.8 1.0

3.
5

4.
0

4.
5

5.
0

time

f.t
im

e 
+

 c
on

st

Figure 7: Comparison of the results for tp(degree=1) (left panel) and
tp2(degree=2, dimU=1) (right panel) for the dog data.
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5 Open Issues

A to-do list for developing amer further:

• approximate frequentist CI’s for smooths with allPen=TRUE (should be easy,
only modify fctV)

• 2D-smooths (will mean major re-working of most utility functions called by
amerSetup as well as getF/PlotF)

• implementing (parametric/wild/...) bootstrap-CIs (could use lme4:::refit
and Ben Bolker’s mer.sim, maybe implement Kauermann/Claeskens/Opsomer
(2008))

• CIs for functions based on profile likelihood methods from lme4a?

• implementing other spline bases, e.g. for cyclic functions
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