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Braun and Damien (2015), henceforth known as BD, introduce an alternative to MCMC for sampling from
posterior distributions. The main advantages of BD over MCMC are that samples can be collected in par-
allel, and that the algorithm is scalable (linear complexity) for hierarchical models with conditionally in-
dependent heterogeneous units. These features make BD an attractive estimation method for Bayesian
hierarchical models of large datasets.

For the purposes of this vignette, we assume that the reader is familiar with the BD algorithm, and in
particular, Algorithm 1. In the pages that follow, we discuss some of the practical issues involved in running
the BD algorithm. The focus is on a few specific aspects of the algorithm:

1. exploiting the sparsity of the Hessian of the log posterior density;
2. finding the posterior mode through nonlinear optimization;

3. sampling from, and computing the log density of, a high-dimensional multivariate normal (MVN)
distribution; and

4. computing the log marginal likelihood of the data under the model.

A common reaction to the BD algorithm, and especially to the need to find the posterior mode, is “easier
said than done.” We suspect that this reaction comes from people who use existing R functions and pack-
ages that are not particularly scalable. Examples include using the optim function in base R to find the
posterior mode, or the rmvnorm function in the movtnorm package for sampling from a multivariate normal
(MVN) random variable. These are functions with which most R users are familiar, so it is understandable
that the barrier to adoption of algorithms that fail when using them would be high.

Fortunately, there are alternatives to that are better suited for running the BD algorithm on hierarchical
models. These packages are listed in Table 1, and are required to run the code in this vignette. The Matrix
and sparseHessianFD define classes for working with sparse matrices, and the sparseMVN, and trustOptim
packages respectively provide sampling and optimization routines that are designed to work with sparse
matrices. Those packages are not strictly necessary to use BD, but this package (bayesGDS) implements
only the rejection sampling phase. The trustOptim, sparseHessianFD and sparseMVN packages were initially
written as complements to bayesGDS, with the BD algorithm in mind.

1 Some background

The goal is to sample a parameter vector 6 from a posterior density 77(6|y), where 7t(6) is the prior on 6,
f(y|0) is the data likelihood conditional on 6, and L(y) is the marginal likelihood of the data. Let D(6,y)



Package Specific use for the BD algorithm Relevant lines in
BD Algorithm
Matrix Defines classes and methods for sparse matrices 3,11, 32
sparseHessianFD ~ Numerical estimation of sparse Hessians when the Setup, 3, 11, 32
gradient and sparsity pattern are known
sparseMVN Sampling from, and to computing the log density 11,12, 32,33
of, a multivariate normal (MVN) random variable
for which either the covariance or precision matrix is
sparse.
trustOptim Nonlinear optimization with a gradient-based stop- 3
ping rule. Efficient for objective functions with sparse
Hessians
bayesGDS Rejection sampling phase of the BD algorithm, and 20-37
computing marginal likelihood of the data under the
model
doParallel Multiple core, shared memory parallelization for sam-  11-12, 31-35
pling from proposal and posterior distributions
plyr Parallel application of a function to a row or column 12

of a matrix

Table 1: R packages used in this vignette for implementing the BD algorithm

be the joint density of the data and the parameters. Therefore,
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The model is fully specified by D(6,y), which is equivalent to the posterior density, up to a normalizing
constant 1/ L(y).

If the heterogeneous units are conditionally independent, the data likelihood can be factored as

N
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where i indexes households. Each y; is a vector of observed data, each B; is a vector of heterogeneous
parameters, and « is a vector of homogeneous population-level parameters. The §; are distributed across
the population of households according to a mixing distribution 77(B;|a), which also serves as the prior
on each fB;. The elements of & may influence either the household-level data likelihoods, or the mixing
distribution (or both). In this example, 6 includes all 81 ... Sy and all elements of «.

The prior itself can be factored as

N
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Thus, the log posterior density is written as
N
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log D(0,y) is equivalent to log 7t(B, a|y), without the log L(y) term.

1.1 Sparse Hessians

An implication of the conditional independence assumption is that the cross-partial derivatives of the un-
02log D(6,y)
BiB;
dataset increases, the number of elements in the Hessian matrix increases quadratically, but the number of

non-zero elements increases only linearly. Thus, the Hessian becomes sparser as the data set gets larger.

normalized log posterior density, are zero for all i # j. As the number of households in the

A sparse matrix is one that has a relatively small number of nonzero elements. A sparse matrix can be
represented by only the nonzero values, and the row and column indices of those values. All of the other
elements are known to be zero, so they do not need to be stored explicitly. Thus, the amount of memory
required to store a sparse matrix grows with the number of nonzero elements, as opposed to the product of
the number of rows and columns. Also, linear algebra operations are more efficient on compressed sparse
matrices, because operation on the nonzero elements can be ignored. These computational advantages
come into play in nearly all of the steps of the BD algorithm. Although the sparsity of the Hessian of the
log posterior density is not a requirement for the BD algorithm, it is that sparsity that makes the algorithm
scalable (Braun et al. 2015, Sec. 4).

As an example, suppose we have a hierarchical model with N heterogeneous units, each with a parameter
vector of length k. Also, assume that there are p population-level parameters or hyperparameters.

The sparsity pattern of the Hessian depends on how the variables are ordered within the vector. One such
ordering is to group all of the coefficients for each unit together.
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In this case, the Hessian has a "block-arrow" structure. For example, if N = 6, k = 2, and p = 2, then there
are 14 total variables, and the Hessian will have the sparsity pattern in Figure 1a.

Another option would be to group the coefficients by covariate.
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Now the Hessian has an "off-diagonal" sparsity pattern, as in Figure 1b.

In both cases, the number of non-zeros is the same. There are 196 elements in this symmetric matrix, but
only 76 are non-zero, and only 45 values are unique. Although in this example the reduction in resource
consumption from using a sparse matrix structure for the Hessian may be modest, consider what would
happen if N = 1000 instead. In that case, there are 2,002 variables in the problem, and more than 4 million
elements in the Hessian. However, only 12,004 of those elements are non-zero. If we work with only the
lower triangle of the Hessian we only need to work with only 7,003 values.

As discussed in Section 4 of Braun and Damien (2015), the sparsity of the Hessian is what makes the method
scalable, in terms of the number of heterogeneous units in the data set. Each additional unit adds k rows
and columns to the Hessian, so the number of formal elements increases quadratically with N. However,
in terms of non-zero elements, each unit adds a k x k block on the diagonal (correlation of variables within a
unit), and a block in each margin (correlation between unit-level and population-level variables). Thus, the
number of non-zero elements grows linearly, not quadratically, with N. Consequently, the complexity of
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(a) A “block-arrow” sparsity pattern (b) An “off-diagonal” sparsity pattern.

Figure 1: Examples of sparsity patterns for a hierarchical model. The pattern depends on the ordering of
the coefficients. The 1gCMatrix class is defined in the Matrix package.

many of the steps of the algorithm, such as multiplying matrices, generating Cholesky factors, and solving
sparse linear systems, grow linearly as well.

1.2 Nonlinear optimization

Finding the posterior mode 6* can be a hard problem when there is a high number of variables, especially
when using standard optimization routines, like the optim function in base R, and others that are described
in the CRAN Task View on Optimization. There are two common problems with these algorithms:

Premature termination Many algorithms apply a stopping rule that is based on whether the optimizer
is making "sufficient progress” (note the abstol and reltol control arguments for optim). If the objective
function does not improve by some minimum amount, the algorithm believes that it has converged to a
local optimum. This can happen before the gradient of the objective function is sufficiently flat. For an
unconstrained objective function, the only appropriate stopping rule is whether a function of the gradient
(e.g., the Euclidean norm) is numerically zero. Any optimization routine that stops before that is stopping
prematurely, and the resulting normal approximations to the posterior density would be invalid.

Poor scalability Search methods like Nelder-Mead (the default algorithm for optim) are inefficient with a
massive number of parameters because the search space is large, and they do not exploit information about
slope and curvature to accelerate convergence. Conjugate gradient (CG) and quasi-Newton (e.g., BFGS) do
use gradient information, with BFGS tracing out the curvature of the function by using successive gradients
to approximate the inverse Hessian. However, because BFGS stores the entire dense inverse Hessian, its
use is resource-intensive when the number of parameters is large. CG and limited-memory BFGS methods
do not store the full Hessian (or its inverse), so they can be more suited for large-scale problems. However,
like BFGS, they are not certain to approximate the curvature of the objective function accurately at any
particular iteration, especially if the function is not convex (Braun 2013).



A better choice of nonlinear optimizer would be one that uses exact calculations of the gradient and Hessian,
remains scalable for large problems, stops only when the norm of the gradient is numerically zero, and is
stable when passing through regions in which the surface of the objective function is flat. The trust.optim
function in the trustOptim package meets those criteria. Braun (2013) describes the many advantages of the
trust.optim function. Two advantages of note are:

1. convergence only when the norm of the gradient is sufficiently close to zero!; and
2. the ability to use exact Hessian information that is stored as a compressed sparse matrix.

The trust.optim function supports three optimization routines: two quasi-Newton methods (SRI and
BFGS; see Nocedal and Wright (2006)), and a Sparse method. All three methods require the user to supply a
function that returns the value of the objective function, and a function that returns the gradient. The Sparse
method requires an additional function that returns the Hessian as a dgCMatrix object. The dgCMatrix class
is defined in the Matrix package, and is one of several classes for the storage of, and operation on, sparse
matrices.

Be sure that the Hessian matrix function returns a dgCMatrix matrix, and not a structured matrix like
dsCMatrix (symmetric) or dtCMatrix (triangular); a row-oriented matrix like dgRMatrix; or even a dense
matrix like dgeMatrix or a base R matrix. trust.optim accepts only dgCMatrix, even if the matrix is
numerically dense.

1.3 Computing derivatives

Nearly all reasonable choices of a nonlinear optimization algorithm require the user to provide a the gradi-
ent of the objective function. The Sparse method for trust.optimrequires the Hessian as well. The Hessian
is also required to approximate the posterior density with a MVN distribution around the posterior mode
(see Section 1.4).

For the purposes of the BD algorithm, there are two "good" ways to compute a derivative. The first is to
derive it analytically, and write a function to compute it. This approach is straightforward, but it can be
tedious and error-prone for complicated models.

The second is to use automatic, or algorithmic, differentiation (AD). In short, AD generates code for the
derivative by applying the chain rule on the same sequence of operations that computes the objective func-
tion. There are a number of different approaches to implementing AD, and AD libraries are available for
many programming languages. However, as of now, there are none for R that are well-suited for a general
class of Bayesian hierarchical models. For R users, we believe that coding the objective function in C++
using the CppAD library, and interfacing with R using Rcpp, is the best option at the moment. How to do
this will be the subject of a future vignette. What matters is that functions that return the gradient and
Hessian of the log posterior density are available, and that they are sufficiently accurate. The advantage of
both analytic and AD derivatives is that they are “exact.”

We do not recommend estimating the gradient by numerical approximation via finite differencing (FD). FD
involves computing df /dx; ~ [f (xj+h) — f (x;)] /h, or some variation thereof, for each of the j = 1...]
variables, using an arbitrarily small & as a “perturbation factor.” As h — 0, this estimated difference ap-
proaches the gradient. Not only are FD methods are highly vulnerable to numerical precision problems, but
the complexity of the method grows with the number of variables Thus, FD is not a reasonable option for
estimating the gradient when the number of variables is large. The time to compute the gradient using AD,

IThere is an exception. If the trust region gets too small for any further progress to be made, trust.optim will stop. This may
happen if the norm of the gradient is larger than the specified tolerance, but still pretty small. In that case, there is no problem. If the
trust region radius is nearly zero, but the gradient is nowhere close to zero, then there is some kind of problem that requires further
investigation.



on the other hand, is only a small fixed multiple of the time to compute the objective function, regardless
of the number of variables (Griewank and Walther 2008).

The computational cost of computing a dense Hessian using FD is quadratic in the number of variables,
and the numerical precision problems are even more pronounced than for a gradient. Nevertheless, one
can use FD to estimate the Hessian if the Hessian is sparse, and the sparsity pattern is known in advance,
and the gradient is exact (either derived analytically or computed using AD). The sparseHessianFD package
defines an R class for doing this (the algorithms are based on Coleman et al. (1985b) and Coleman et al.
(1985a)). An object of class sparseHessianFD is constructed from functions that return the value of the log
density and its gradient; any additional arguments that are passed to these functions; and the row and
column indices of the non-zero elements of the lower triangle of the Hessian. The sparseHessianFD object
contains member functions not only for the log density and the gradient, but also for the sparse Hessian, as
a dgCMatrix object. See the sparseHessianFD documentation and vignette for more details.

The sparseHessianFD class is useful for hierarchical models because the sparsity pattern is predictable.
Even if the Hessian were derived analytically, it still may be faster to use sparseHessianFD for repeated
estimation, because of the way the package exploits sparsity. Given the typical sparsity pattern of a hier-
archical model, the time to estimate a Hessian using sparseHessianFD does not grow with the number of
heterogeneous units, making it a scalable way of estimating sparse Hessians for large datasets.

The trade-off from using the sparseHessianFD package is that the Hessian is still a numerical approximation.
We cannot guarantee that this approximation is "good enough" for all cases. However, the performance
of an optimization algorithm is likely to be more sensitive to numerical imprecision in the gradient than
in the Hessian. Thus, we are comfortable working with finite-differenced sparse Hessians, even though
we will not use finite-differenced gradients. This approach will almost certainly fail if the gradient itself is
estimated using FD. In that case, the estimate of the Hessian would be a finite difference of finite differences,
with too much numerical imprecision to be of much value.

1.4 High-dimensional MVN distribution

Another potential source of poor scalability is in sampling from, and computing the log density of, a mul-
tivariate normal (MVN) distribution. The rmvnorm and dmvnorm functions in the mvtnorm package (Genz
et al. 2012) are inefficient in the context of the BD algorithm for three reasons.

1. They require the covariance matrix as one of the arguments, meaning that the negative Hessian must
be inverted explicitly.

2. They do not exploit the sparsity of the Hessian for computational gain; and

3. The rmvnorm and dmvnorm functions factor the covariance matrix every time the function is called,
even if the matrix has not changed.

The sparseM VN package addresses these issues. The rmvn. sparse and dmvn. sparse functions take, as one
of the arguments, the Cholesky decomposition of either a sparse covariance or sparse precision matrix.
Thus, the user can use either the covariance or precision matrix, depending on which is more convenient.
The Cholesky decomposition must be a Cholesky object, computed using the Cholesky function, both of
which are defined in the Matrix package. The size of the sparse Hessian grows only linearly with the size
of the dataset, the sparseMVN package is a scalable alternative for working with an MVN. More details are
available in the sparseMVN documentation and vignette, as well as in the example in 3.



2 Example: hierarchical binary choice

Before going into the details of how to put all of the pieces of the BD algorithm together, let’s consider the
following example of a log posterior density function with a sparse Hessian. Suppose we have a dataset
of N households, each with T opportunities to purchase a particular product. Let y; be the number of
times household i purchases the product, out of the T purchase opportunities. Furthermore, let p; be the
probability of purchase; p; is the same for all T opportunities, so we can treat y; as a binomial random
variable. The purchase probability p; is heterogeneous, and depends on both k continuous covariates x;,
and a heterogeneous coefficient vector §;, such that

1t+exp(xiB) @)

1

The coefficients can be thought of as sensitivities to the covariates, and they are distributed across the
population of households following a multivariate normal distribution with mean y and covariance .
We assume that we know %, but we do not know . Instead, we place a multivariate normal prior on y,
with mean 0 and covariance (). Thus, each §;, and y are k—dimensional vectors, and the total number of
unknown variables in the model is (N + 1)k.

In this model, we will make an assumption of conditional independence across households. A household’s
purchase count y; depends on that household’s ;, but not the parameters of any other household, f;,
conditional on other population level parameters. Since u and £ depend on B; for all households, we
cannot say that y; and y; are truly independent. A change in B; affects y and %, which in turn affect ;
for some other household j. However, if we condition on y and %, then y; and y; are independent, so we
describe the data likelihoods as conditionally independent.

This conditional independence assumption is what allows us to write the joint likelihood of the data as a
product of individual-level probability models. Therefore, the log posterior density, ignoring any normal-
ization constants, is

N
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2.1 Functions, sample data, and priors for the example

The bayesGDS package includes a simulated dataset for N households and k covariates per household.
There are g population-level parameters, which for this example happens to equal k. A household makes
Y purchases out of T opportunities. The purchase probability for each household depends on a covariate
matrix X. So let’s start by loading the data, and setting hyperprior values for ©~! and Q1.

data(binary_test)
binary <- binary_test
str (binary)

# List of 3

# $ Y: int [1:20] 101 69 108 86 92 92 96 149 58 84 ...

# ¢ X: num [1:2, 1:20] -0.07926 -0.03255 0.22043 0.00997 0.01828 ...
# $ T: num 200
N

k

<- length(binary[["Y"]])
<- NROW(binary[["X"]]1)



q <-k
nvars <- as.integer(N*xk + q)
diag(k),
inv.0Omega = diag(k))
data.frame(parameter = c("N","k","q"),
value = c(N, k, q))

priors <- list(inv.Sigma

#  parameter value
#1 N 20
# 2 k 2
# 3 q 2

The function binary. f returns the unnormalized log posterior density of this model, log D (6, y), evaluated
at the vector passed as the first argument. This function takes two additional named arguments, data and
priors. The function binary.grad returns the gradient, and binary.hess returns a Hessian, in a sparse
compressed format.

start <- rnorm(nvars)
f <- binary.f(start, data=binary, priors=priors)
£

# [1] -2807.2

df <- binary.grad(start, data=binary, priors=priors)
str(df)

# num [1:42] 2.0343 0.9606 -10.2045 0.5025 -0.0462 ...

d2f <- binary.hess(start, data=binary, priors=priors)
print(d2f[1:6,1:6], digits=3)

6 x 6 sparse Matrix of class "dgCMatrix"

[1,] -1.313 -0.129 .

[2,] -0.129 -1.053 . . .

[3,1 . . -3.392 -0.108 .

4,1 . . -0.108 -1.005 . .

(5,1 . . . . -1.02 -0.22

#
#
#
#
#
#
#
# [6,1 . 5 - o -0.22 -3.92

2.2 Using sparseHessianFD when the Hessian is unknown

Hessians can be difficult to derive analytically, but Hessians for hierarchical models have predictable spar-
sity patterns. The sparseHessianFD package simplifies numerical approximation of a sparse Hessian, and
should be used if exact methods are unavailable (see Section 1.3. The sparseHessianFD.new function is
a wrapper around the constructor for the sparseHessianFD class, and returns an object of that class. But
before calling sparseHessianFD.new, we need to get the sparsity pattern of the lower triangle of the Hes-
sian of log D (6, y). The sparsity pattern is defined by integer vectors of the row and column indices of the
nonzero elements.

A straightforward way to generate the sparsity pattern is to build a sparse integer or logical matrix, and
then use the Matrix.to.Coord function from sparseHessianFD. The Matrix.to.Coord function returns a list
of two integer vectors that can be passed to sparseHessianFD.new.



require (sparseHessianFD, quietly=TRUE)
hs <- Matrix(0, nvars, nvars)
for (i in 1: (N + 1)) {
## range of row / col indices of block diagonal
rng <- ((i-1)*k+1):(k*i)
hs[rng, rngl <- tril(Matrix(1l,k,k)) ## lower triangle

}

hs[N*k + 1:q, 1:(N*k)] <- 1 ## bottom margin
hsNZ <- Matrix.to.Coord(hs)

str (hsNZ)

# List of 2
# ¢ rows: int [1:143] 1 2 41 42 2 41 42 3 4 41 ...
# $ cols: int [1:143] 1 111222333 ...

Now we can construct the sparseHessianFD object.

FD <- sparseHessianFD.new(start, binary.f, binary.grad,
rows=hsNZ[["rows"]], cols=hsNZ[["cols"]],
data=binary, priors=priors)

One advantage to using sparseHessianFD is that any additional arguments that need to be passed to the
objective function are stored within the object. This means that we do not need to repeatedly pass the data
and prior arguments when computing the log posterior density and its derivatives.

f <- FD$fn(start)
df <- FD$gr(start)
hess <- FD$hessian(start)

As a check, we see that the upper-left corner of the Hessian is sparse (the entire Hessian is too big to print),
and FD$hessian returns the same matrix as binary.hess.

print(hess[1:6,1:6], digits=3)

# 6 x 6 sparse Matrix of class "dgCMatrix"

#

# [1,] -1.313 -0.129 .

# [2,] -0.129 -1.053 . :

# [3,]1 . : -3.392 -0.108 .

# [4,] . : -0.108 -1.005 .

#
#

Byl . : - . -1.02 -0.22
6,1 . : : 5 -0.22 -3.92

all.equal(hess, d2f, tolerance = le-7)
# [1] TRUE

3 Running the algorithm

Now it’s time to estimate the posterior distributions of the model parameters.



3.1 Finding the posterior mode

For reasons discussed in Section 1.2, we use the trustOptim package to find the optimum of log D (6, y). For
the fn, gr and hs arguments, we provide the member functions of the FD object. Details on the control
list for trust.optim are available in the trustOptim documentation. The most important option to mention
here is that function.scale.factor must be positive for minimization, and negative for maximization.

require (trustOptim, quietly=TRUE)
opt <- trust.optim(start, fn=FD$fn, gr = FD$gr, hs = FD$hessian,
method = "Sparse",
control = list(
start.trust.radius=5, stop.trust.radius = le-7,
prec=1e-7, report.precision=1,
maxit=500, preconditioner=1,
function.scale.factor=-1

)
)

# Beginning optimization
#
# iter f nrm_gr status
# 1 2718.6 12.7 Continuing - TR expand
# 2 2693.4 0.2 Continuing
# 3 2693.4 0.0 Continuing
# 4 2693.4 0.0 Continuing
#
# Iteration has terminated
# 4 2693.4 0.0 Success

theta.star <- opt[["solution"]]
hess <- opt[["hessian"]]

3.2 Defining proposal functions

Next, we define functions to sample from a proposal density, and to compute the log density of a proposal
draw. As discussed in Section 1.4, rmvn. sparse and dmvn. sparse require a mean vector, and a Cholesky de-
composition of either the covariance or precision matrix, as separate arguments. The sample.GDS function
in bayesGDS requires those parameters to be in a single list. That means we need some wrapper functions.

require (sparseMVN, quietly=TRUE)
rmvn.sparse.wrap <- function(n.draws, params) {
rmvn.sparse(n.draws, params[["mean"]], params[["CH"]], prec=TRUE)
}
dmvn.sparse.wrap <- function(d, params) {
dmvn.sparse(d, params[["mean"]], params[["CH"]], prec=TRUE)
}

The proposal mean is the posterior mean. The proposal precision is the negative Hessian, times a scaling
factor. The Cholesky function is defined in the Matrix package. Do not use the base R function chol, which
is not designed for sparse matrices, and cannot be used by the sparseMVN functions.

scale <- .96

chol.hess <- Cholesky(-scalexhess)
prop.params <- list(mean = theta.star, CH = chol.hess)
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3.3 Side note: running the algorithm in parallel

An advantage of BD over MCMC is that both proposal and posterior samples can be generated in parallel.
There are a number of different mechanisms available in R for running jobs in parallel. One that we think
is easy to use is based on the doParallel package. In the next code chunk, I allocate 10 cores for parallel
processing, and set a random seed for simulating random variables (more on that later). If you do not want
to run the code in parallel, change the flag to run.par <- FALSE. This will change the number of allocated
cores to 1.

library(doParallel, quietly=TRUE)

run.par <- TRUE

if (run.par) registerDoParallel(cores=2) else registerDoParallel(cores=1)
seed.id <- 123

set.seed(seed.id)

3.4 Estimating the density of threshold values

Braun et al. (2015) define the following;:

_D(0y)-c
@(0ly) = 200 o )
c1 =D(y,0%) (10)
c2 = g(0%) (11)

where ¢(6) is chosen such that 0 < ®(f|ly) < 1. The next step in the BD algorithm is to simulate an
empirical approximation to the cumulative distribution of —log®(f|y). We sample M times from the
proposal distribution, and compute log ®(6|y) for each proposal sample. The next code chunk also uses
the aaply function from the plyr package to compute the log posterior density for each proposal draw. This
step will run in parallel if run.par == TRUE.

M <- 10000

log.cl <- FD$fn(theta.star)

log.c2 <- dmvn.sparse.wrap(theta.star, prop.params)

draws.m <- as(rmvn.sparse.wrap(M,prop.params),"matrix")
log.post.m <- plyr::aaply(draws.m, 1, FD$fn, .parallel=run.par)
log.prop.m <- dmvn.sparse.wrap(draws.m, params=prop.params)
log.phi <- log.post.m - log.prop.m + log.c2 - log.cl
valid.scale <- all(log.phi <= 0)

stopifnot(valid.scale)

The last two lines in the previous code chunk are checks that ®(0|y) < 1 for all of the proposal draws. If
the check fails, then the proposal distribution is invalid. If this happens, the proposal distribution g(6) may
need to be more diffuse by reducing the scaling factor on the negative Hessian.

If M is too low, there may not be enough proposal draws to confirm that the proposal distribution is suf-
ficiently diffuse. This can cause problems later. Also, making the proposal distribution too "tight" may
make it too hard to accept posterior samples. We think that time invested in “optimizing” the proposal
distribution is not a well-used resource.
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3.5 Posterior draws via rejection sampling

Finally we can start sampling from the posterior density, using functions in the bayesGDS package. We
should proceed to this step only if valid.scale==TRUE.

The sample.GDS function is the “workhorse” function of bayesGDS. Each call to sample.GDS collects poste-
rior samples serially. The argument n.draws is the number of draws for that particular call to sample.GDS.
The other required arguments to sample.GDS are the M-length vector of log ®(0|y), the posterior mode 6*;
the function that returns the log posterior density; the functions that sample from, and compute the log
density of, the proposal distribution; parameters of the proposal distribution. See the bayesGDS package
documentation for descriptions of the function arguments.

The following code chunk runs sample.GDS on a simple processor.

n.draws <- 5

max.tries <- 100000

if ('run.par) {

draws <- sample.GDS(n.draws = n.draws,

log.phi = log.phi,
theta.star = theta.star,
fn.dens.post = FD$fn,
fn.dens.prop = dmvn.sparse.wrap,
fn.draw.prop = rmvn.sparse.wrap,
prop.params = prop.params,
report.freq = 1, announce=TRUE)

by

The foreach function runs sample.GDS in parallel on multiple processors. Each instance of sample.GDS is
responsible for a batch of posterior draws. If we need n.draws samples from the posterior, and want to
run n.batch batches in parallel (say, one batch for each core), then each instance will collect batch.size
samples (rounding up to the nearest integer). The return object of foreach is a list, with each element being
a return object of sample.GDS. The order in which the sample.GDS objects are returned does not matter.
Samples can be identified by batch with the thread. id argument. It is important to start each instance with
a different random seed, which we specify in the seed argument.

When all processing cores have finished collecting their samples, we combine the list elements using a
Map-Reduce construct.

if (run.par) {

n.batch <- 10

batch.size <- ceiling(n.draws / n.batch)

draws.list <- foreach(i=1:n.batch, .inorder=FALSE) Ydoparj sample.GDS(
n.draws = n.draws,
log.phi = log.phi,
post.mode = theta.star,
fn.dens.post = FD$fn,
fn.dens.prop = dmvn.sparse.wrap,
fn.draw.prop = rmvn.sparse.wrap,
prop.params = prop.params,
report.freq = 1,
thread.id = i,
announce=TRUE,

seed=as.integer(seed.id*i))
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draws <- Reduce(function(x,y) Map(rbind,x,y), draws.list)

}

There are almost certainly ways to run sample.GDS on distributed memory platforms (e.g., MPI, Amazon,
etc), but we have not tried them yet. If you are able to do that successfully, please share your experiences.

One problem with this batch-oriented parallel sampling scheme is that the algorithm does not end until all
of the samples are collected from all of the batches. This means that some batches will finish before others.
Suppose we are running sample .GDS on two processing cores. It may happen that one core finishes, but the
other core still has more than one sample to go. There is no way for the first core to help the second one.
It’s probably possible, but it is not yet implemented in this package.

3.6 The output

Let’s take a look at the sample.GDS output.

str(draws)

# List of 7

# ¢ draws : num [1:50, 1:42] -0.182 -1.32 -1.636 -1.297 -1.663 ...
# $ counts :num [1:10, 1:5] 1111111111 ...

# $gt.1 : int [1:10, 1:51 0000000000 ...

# $ log.post.dens : num [1:10, 1:5] -2713 -2716 -2714 -2717 -2709 ...

# $ log.prop.dens : num [1:10, 1:5] -48.7 -51.1 -49.1 -51.9 -44.5 ...

# $ log.thresholds: num [1:10, 1:5] 2.06 1.41 2.48 1.39 1.61

# $ log.phi : num [1:10, 1:5] -0.803 -1.01 -0.654 -0.958 -0.608 ...

The draws element has a posterior sample in each row. Each column is a variable. The counts vector
contains the number of proposal draws that were necessary to accept that particular posterior draw. This
vector is needed to compute the log marginal likelihood (LML, see below), and to assess the efficiency of
the algorithm. The gt .1 vector flags whether a threshold value was greater than 1. This is an important
check, because if any elements of that vector are 1, that means that the proposal density was still just a bit
too tight. If this is the case for only a couple of draws, it’s probably not a big deal. If it is true for a large
number of draws, not only is the proposal density invalid, but something probably went wrong earlier in
the algorithm.

You can get summaries and quantiles for your parameters of interest by applying summary or quantile (or
another such function) to each column. In this case, let’s just summarize the population-level parameters.

quants <- plyr::aaply(draws[["draws"]][, (Nxk+1) :nvars], 2,
quantile, probs=c(.025, .5, .975),
.parallel = run.par)

quants

#

# X1 2.5% 50%  97.5%
# 1 -2.4544 -1.9364 -1.3431
# 2 1.1379 1.7032 2.6554

If any elements in counts is NA, it means that the proposal count reached the value in max.tries without
an acceptance. This would suggest an inefficient sampler that requires further investigation. This could be
that the proposal function is too diffuse, or, surprisingly, that it is too tight.
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4 Estimating the log marginal likelihood

The log marginal likelihood (LML) is the likelihood of the data under the model, E(y). For better or worse,
the LML is often used for model comparison (e.g., computing Bayes factors). As discussed in Braun et
al. (2015), there is no generally accepted method for computing the LML from MCMC output. However,
estimating the LML using the LML function in this package is straightforward. All of the arguments to LML
were used in earlier function calls, or returned by sample.GDS.

if (any(is.na(draws[["counts"]]))) {
LML <- NA
} else {

LML <- get.LML(counts=draws$counts,
log.phi=log.phi,
post.mode=theta.star,
fn.dens.post= FD$fn,
fn.dens.prop=dmvn.sparse.wrap,
prop.params=prop.params)

}
draws[["LML"]] <- LML
draws[["acc.rate"]] <- 1/mean(draws$counts)
cat ("Acceptance rate: ",draws[["acc.rate"]],
"\nLog marginal likelihood: ",draws[["LML"]1],"\n")

# Acceptance rate: 0.92593
# Log marginal likelihood: -2664.8

5 Future development

The bayesGDS package remains incomplete. Here are some improvements and enhancements that are under
consideration for future releases.

1. A wrapper function for the entire BD algorithm;
2. Functions to summarize and display the output;

3. Options to retain a subset of variables and discard others (e.g., keep only population-level parame-
ters);

A simpler interface for parallel sampling;
Examples of parallel execution on distributed platforms;
Better load balancing during parallel execution;

More examples of different kinds of applications; and

© N o

More details in the vignette about how sample.GDS works.
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