Modeltime Integration


In this tutorial you will learn how to use the Bayesmodels package and how to integrate it with the usual Modeltime workflow. The main purposes are:

Bayesmodels unlocks the following models in one package. Precisely its greatest advantage is to be able to integrate these models with the Modeltime and Tidymodels ecosystems.

The Modeltime Workflow

Here’s the general process and where the functions fit.

The Modeltime Workflow

The Modeltime Workflow

Just follow the modeltime workflow, which is detailed in 6 convenient steps:

  1. Collect data and split into training and test sets
  2. Create & Fit Multiple Models
  3. Add fitted models to a Model Table
  4. Calibrate the models to a testing set.
  5. Perform Testing Set Forecast & Accuracy Evaluation
  6. Refit the models to Full Dataset & Forecast Forward

Let’s go through a guided tour to kick the tires on modeltime.

Time Series Forecasting Example

Load libraries to complete this short tutorial.

library(tidymodels)
library(bayesmodels)
library(modeltime)
library(tidyverse)
library(timetk)
library(lubridate)
# This toggles plots from plotly (interactive) to ggplot (static)
interactive <- FALSE

Step 1 - Collect data and split into training and test sets.

# Data
m750 <- m4_monthly %>% filter(id == "M750")

We can visualize the dataset.

m750 %>%
  plot_time_series(date, value, .interactive = interactive)

Let’s split the data into training and test sets using initial_time_split()

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

Step 2 - Create & Fit Multiple Models

We can easily create dozens of forecasting models by combining bayesmodels, modeltime and parsnip. We can also use the workflows interface for adding preprocessing! Your forecasting possibilities are endless. Let’s model a couple of arima models:

Important note: Handling Date Features

Bayesmodels and Modeltime models (e.g. sarima_reg() and arima_reg()) are created with a date or date time feature in the model. You will see that most models include a formula like fit(value ~ date, data).

Parsnip models (e.g. linear_reg()) typically should not have date features, but may contain derivatives of dates (e.g. month, year, etc). You will often see formulas like fit(value ~ as.numeric(date) + month(date), data).

Model 1: ARIMA (Modeltime)

First, we create a basic univariate ARIMA model using “Arima” using arima_reg()

# Model 1: arima ----
model_fit_arima<- arima_reg(non_seasonal_ar = 0,
                            non_seasonal_differences = 1,
                            non_seasonal_ma = 1,
                            seasonal_period = 12,
                            seasonal_ar = 0,
                            seasonal_differences = 1,
                            seasonal_ma = 1) %>%
    set_engine(engine = "arima") %>%
    fit(value ~ date, data = training(splits))

Model 2: ARIMA (Bayesmodels)

Now, we create the same model but from a Bayesian perspective with the package bayesmodels:

# Model 2: arima_boost ----
model_fit_arima_bayes<- sarima_reg(non_seasonal_ar = 0,
                                  non_seasonal_differences = 1,
                                  non_seasonal_ma = 1,
                                  seasonal_period = 12,
                                  seasonal_ar = 0,
                                  seasonal_differences = 1,
                                  seasonal_ma = 1,
                                  pred_seed = 100) %>%
    set_engine(engine = "stan") %>%
    fit(value ~ date, data = training(splits))
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 1.235 seconds (Warm-up)
#> Chain 1:                0.843 seconds (Sampling)
#> Chain 1:                2.078 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 1.188 seconds (Warm-up)
#> Chain 2:                0.797 seconds (Sampling)
#> Chain 2:                1.985 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.922 seconds (Warm-up)
#> Chain 3:                0.75 seconds (Sampling)
#> Chain 3:                1.672 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.969 seconds (Warm-up)
#> Chain 4:                0.704 seconds (Sampling)
#> Chain 4:                1.673 seconds (Total)
#> Chain 4:
plot(model_fit_arima_bayes$fit$models$model_1)

Model 3: Random Walk (Naive) (Bayesmodels)

model_fit_naive <- random_walk_reg(seasonal_random_walk = TRUE, seasonal_period = 12) %>%
                   set_engine("stan") %>%
                   fit(value ~ date + month(date), data = training(splits))
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.406 seconds (Warm-up)
#> Chain 1:                0.266 seconds (Sampling)
#> Chain 1:                0.672 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 1 seconds (Warm-up)
#> Chain 2:                0.281 seconds (Sampling)
#> Chain 2:                1.281 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.984 seconds (Warm-up)
#> Chain 3:                0.266 seconds (Sampling)
#> Chain 3:                1.25 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.812 seconds (Warm-up)
#> Chain 4:                0.281 seconds (Sampling)
#> Chain 4:                1.093 seconds (Total)
#> Chain 4:
plot(model_fit_naive$fit$models$model_1)

Step 3 - Add fitted models to a Model Table.

The next step is to add each of the models to a Modeltime Table using modeltime_table(). This step does some basic checking to make sure each of the models are fitted and that organizes into a scalable structure called a “Modeltime Table” that is used as part of our forecasting workflow.

We have 2 models to add.

models_tbl <- modeltime_table(
    model_fit_arima,
    model_fit_arima_bayes,
    model_fit_naive
)
models_tbl
#> # Modeltime Table
#> # A tibble: 3 x 3
#>   .model_id .model   .model_desc            
#>       <int> <list>   <chr>                  
#> 1         1 <fit[+]> ARIMA(0,1,1)(0,1,1)[12]
#> 2         2 <fit[+]> BAYESIAN ARIMA MODEL   
#> 3         3 <fit[+]> NAIVE MODEL

Step 4 - Calibrate the model to a testing set.

Calibrating adds a new column, .calibration_data, with the test predictions and residuals inside. A few notes on Calibration:

calibration_tbl <- models_tbl %>%
    modeltime_calibrate(new_data = testing(splits))
calibration_tbl
#> # Modeltime Table
#> # A tibble: 3 x 5
#>   .model_id .model   .model_desc             .type .calibration_data
#>       <int> <list>   <chr>                   <chr> <list>           
#> 1         1 <fit[+]> ARIMA(0,1,1)(0,1,1)[12] Test  <tibble [31 x 4]>
#> 2         2 <fit[+]> BAYESIAN ARIMA MODEL    Test  <tibble [31 x 4]>
#> 3         3 <fit[+]> NAIVE MODEL             Test  <tibble [31 x 4]>

Step 5 - Testing Set Forecast & Accuracy Evaluation

There are 2 critical parts to an evaluation.

5A - Visualizing the Forecast Test

Visualizing the Test Error is easy to do using the interactive plotly visualization (just toggle the visibility of the models using the Legend).

calibration_tbl %>%
    modeltime_forecast(
        new_data    = testing(splits),
        actual_data = m750
    ) %>%
    plot_modeltime_forecast(
      .legend_max_width = 25, # For mobile screens
      .interactive      = interactive
    )

5B - Accuracy Metrics

We can use modeltime_accuracy() to collect common accuracy metrics. The default reports the following metrics using yardstick functions:

  • MAE - Mean absolute error, mae()
  • MAPE - Mean absolute percentage error, mape()
  • MASE - Mean absolute scaled error, mase()
  • SMAPE - Symmetric mean absolute percentage error, smape()
  • RMSE - Root mean squared error, rmse()
  • RSQ - R-squared, rsq()

These of course can be customized following the rules for creating new yardstick metrics, but the defaults are very useful. Refer to default_forecast_accuracy_metrics() to learn more.

To make table-creation a bit easier, I’ve included table_modeltime_accuracy() for outputing results in either interactive (reactable) or static (gt) tables.

calibration_tbl %>%
    modeltime_accuracy() %>%
    table_modeltime_accuracy(
        .interactive = interactive
    )
Accuracy Table
.model_id .model_desc .type mae mape mase smape rmse rsq
1 ARIMA(0,1,1)(0,1,1)[12] Test 151.33 1.41 0.52 1.43 197.71 0.93
2 BAYESIAN ARIMA MODEL Test 142.10 1.33 0.48 1.34 184.20 0.94
3 NAIVE MODEL Test 272.83 2.55 0.93 2.60 341.89 0.85

Step 6 - Refit to Full Dataset & Forecast Forward

The final step is to refit the models to the full dataset using modeltime_refit() and forecast them forward.

refit_tbl <- calibration_tbl %>%
    modeltime_refit(data = m750)
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 5.487 seconds (Warm-up)
#> Chain 1:                4.85 seconds (Sampling)
#> Chain 1:                10.337 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.968 seconds (Warm-up)
#> Chain 2:                0.813 seconds (Sampling)
#> Chain 2:                1.781 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 7.345 seconds (Warm-up)
#> Chain 3:                5.657 seconds (Sampling)
#> Chain 3:                13.002 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 1.157 seconds (Warm-up)
#> Chain 4:                0.812 seconds (Sampling)
#> Chain 4:                1.969 seconds (Total)
#> Chain 4: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 1.048 seconds (Warm-up)
#> Chain 1:                0.296 seconds (Sampling)
#> Chain 1:                1.344 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.641 seconds (Warm-up)
#> Chain 2:                0.328 seconds (Sampling)
#> Chain 2:                0.969 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 1.391 seconds (Warm-up)
#> Chain 3:                0.312 seconds (Sampling)
#> Chain 3:                1.703 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 1.219 seconds (Warm-up)
#> Chain 4:                0.297 seconds (Sampling)
#> Chain 4:                1.516 seconds (Total)
#> Chain 4:
refit_tbl %>%
    modeltime_forecast(h = "3 years", actual_data = m750) %>%
    plot_modeltime_forecast(
      .legend_max_width = 25, # For mobile screens
      .interactive      = interactive
    )