In this tutorial you will learn how to use the Bayesmodels package and how to integrate it with the usual Modeltime workflow. The main purposes are:
Use an Arima Bayesian model to see how it would apply in the Bayesmodels package.
Compare the above model with the classic implementation of the Modeltime package through the usual workflow of the escosystem.
Bayesmodels
unlocks the following models in one package. Precisely its greatest advantage is to be able to integrate these models with the Modeltime
and Tidymodels
ecosystems.
Arima: bayesmodels
connects to the bayesforecast
package.
Garch: bayesmodels
connects to the bayesforecast
package.
Random Walk (Naive): bayesmodels
connects to the bayesforecast
package.
State Space Model: bayesmodels
connects to the bayesforecast
and bsts
packages.
Stochastic Volatility Model: bayesmodels
connects to the bayesforecast
package.
Generalized Additive Models (GAMS): bayesmodels
connects to the brms
package.
Adaptive Splines Surface: bayesmodels
connects to the BASS
package.
Exponential Smoothing: bayesmodels
connects to the Rglt
package.
Here’s the general process and where the functions fit.
The Modeltime Workflow
Just follow the modeltime
workflow, which is detailed in 6 convenient steps:
Let’s go through a guided tour to kick the tires on modeltime
.
Load libraries to complete this short tutorial.
library(tidymodels)
library(bayesmodels)
library(modeltime)
library(tidyverse)
library(timetk)
library(lubridate)
# This toggles plots from plotly (interactive) to ggplot (static)
<- FALSE interactive
# Data
<- m4_monthly %>% filter(id == "M750") m750
We can visualize the dataset.
%>%
m750 plot_time_series(date, value, .interactive = interactive)
Let’s split the data into training and test sets using initial_time_split()
# Split Data 80/20
<- initial_time_split(m750, prop = 0.9) splits
We can easily create dozens of forecasting models by combining bayesmodels
, modeltime
and parsnip
. We can also use the workflows
interface for adding preprocessing! Your forecasting possibilities are endless. Let’s model a couple of arima models:
Important note: Handling Date Features
Bayesmodels and Modeltime models (e.g. sarima_reg() and arima_reg()
) are created with a date or date time feature in the model. You will see that most models include a formula like fit(value ~ date, data)
.
Parsnip models (e.g. linear_reg()
) typically should not have date features, but may contain derivatives of dates (e.g. month, year, etc). You will often see formulas like fit(value ~ as.numeric(date) + month(date), data)
.
First, we create a basic univariate ARIMA model using “Arima” using arima_reg()
# Model 1: arima ----
<- arima_reg(non_seasonal_ar = 0,
model_fit_arimanon_seasonal_differences = 1,
non_seasonal_ma = 1,
seasonal_period = 12,
seasonal_ar = 0,
seasonal_differences = 1,
seasonal_ma = 1) %>%
set_engine(engine = "arima") %>%
fit(value ~ date, data = training(splits))
Now, we create the same model but from a Bayesian perspective with the package bayesmodels
:
# Model 2: arima_boost ----
<- sarima_reg(non_seasonal_ar = 0,
model_fit_arima_bayesnon_seasonal_differences = 1,
non_seasonal_ma = 1,
seasonal_period = 12,
seasonal_ar = 0,
seasonal_differences = 1,
seasonal_ma = 1,
pred_seed = 100) %>%
set_engine(engine = "stan") %>%
fit(value ~ date, data = training(splits))
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 1.235 seconds (Warm-up)
#> Chain 1: 0.843 seconds (Sampling)
#> Chain 1: 2.078 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 1.188 seconds (Warm-up)
#> Chain 2: 0.797 seconds (Sampling)
#> Chain 2: 1.985 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.922 seconds (Warm-up)
#> Chain 3: 0.75 seconds (Sampling)
#> Chain 3: 1.672 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.969 seconds (Warm-up)
#> Chain 4: 0.704 seconds (Sampling)
#> Chain 4: 1.673 seconds (Total)
#> Chain 4:
plot(model_fit_arima_bayes$fit$models$model_1)
<- random_walk_reg(seasonal_random_walk = TRUE, seasonal_period = 12) %>%
model_fit_naive set_engine("stan") %>%
fit(value ~ date + month(date), data = training(splits))
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.406 seconds (Warm-up)
#> Chain 1: 0.266 seconds (Sampling)
#> Chain 1: 0.672 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 1 seconds (Warm-up)
#> Chain 2: 0.281 seconds (Sampling)
#> Chain 2: 1.281 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.984 seconds (Warm-up)
#> Chain 3: 0.266 seconds (Sampling)
#> Chain 3: 1.25 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.812 seconds (Warm-up)
#> Chain 4: 0.281 seconds (Sampling)
#> Chain 4: 1.093 seconds (Total)
#> Chain 4:
plot(model_fit_naive$fit$models$model_1)
The next step is to add each of the models to a Modeltime Table using modeltime_table()
. This step does some basic checking to make sure each of the models are fitted and that organizes into a scalable structure called a “Modeltime Table” that is used as part of our forecasting workflow.
We have 2 models to add.
<- modeltime_table(
models_tbl
model_fit_arima,
model_fit_arima_bayes,
model_fit_naive
)
models_tbl#> # Modeltime Table
#> # A tibble: 3 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,1)(0,1,1)[12]
#> 2 2 <fit[+]> BAYESIAN ARIMA MODEL
#> 3 3 <fit[+]> NAIVE MODEL
Calibrating adds a new column, .calibration_data
, with the test predictions and residuals inside. A few notes on Calibration:
<- models_tbl %>%
calibration_tbl modeltime_calibrate(new_data = testing(splits))
calibration_tbl#> # Modeltime Table
#> # A tibble: 3 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,1)(0,1,1)[12] Test <tibble [31 x 4]>
#> 2 2 <fit[+]> BAYESIAN ARIMA MODEL Test <tibble [31 x 4]>
#> 3 3 <fit[+]> NAIVE MODEL Test <tibble [31 x 4]>
There are 2 critical parts to an evaluation.
Visualizing the Test Error is easy to do using the interactive plotly visualization (just toggle the visibility of the models using the Legend).
%>%
calibration_tbl modeltime_forecast(
new_data = testing(splits),
actual_data = m750
%>%
) plot_modeltime_forecast(
.legend_max_width = 25, # For mobile screens
.interactive = interactive
)
We can use modeltime_accuracy()
to collect common accuracy metrics. The default reports the following metrics using yardstick
functions:
mae()
mape()
mase()
smape()
rmse()
rsq()
These of course can be customized following the rules for creating new yardstick metrics, but the defaults are very useful. Refer to default_forecast_accuracy_metrics()
to learn more.
To make table-creation a bit easier, I’ve included table_modeltime_accuracy()
for outputing results in either interactive (reactable
) or static (gt
) tables.
%>%
calibration_tbl modeltime_accuracy() %>%
table_modeltime_accuracy(
.interactive = interactive
)
Accuracy Table | ||||||||
---|---|---|---|---|---|---|---|---|
.model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
1 | ARIMA(0,1,1)(0,1,1)[12] | Test | 151.33 | 1.41 | 0.52 | 1.43 | 197.71 | 0.93 |
2 | BAYESIAN ARIMA MODEL | Test | 142.10 | 1.33 | 0.48 | 1.34 | 184.20 | 0.94 |
3 | NAIVE MODEL | Test | 272.83 | 2.55 | 0.93 | 2.60 | 341.89 | 0.85 |
The final step is to refit the models to the full dataset using modeltime_refit()
and forecast them forward.
<- calibration_tbl %>%
refit_tbl modeltime_refit(data = m750)
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 5.487 seconds (Warm-up)
#> Chain 1: 4.85 seconds (Sampling)
#> Chain 1: 10.337 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.968 seconds (Warm-up)
#> Chain 2: 0.813 seconds (Sampling)
#> Chain 2: 1.781 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 7.345 seconds (Warm-up)
#> Chain 3: 5.657 seconds (Sampling)
#> Chain 3: 13.002 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 1.157 seconds (Warm-up)
#> Chain 4: 0.812 seconds (Sampling)
#> Chain 4: 1.969 seconds (Total)
#> Chain 4:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 1.048 seconds (Warm-up)
#> Chain 1: 0.296 seconds (Sampling)
#> Chain 1: 1.344 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.641 seconds (Warm-up)
#> Chain 2: 0.328 seconds (Sampling)
#> Chain 2: 0.969 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 1.391 seconds (Warm-up)
#> Chain 3: 0.312 seconds (Sampling)
#> Chain 3: 1.703 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 1.219 seconds (Warm-up)
#> Chain 4: 0.297 seconds (Sampling)
#> Chain 4: 1.516 seconds (Total)
#> Chain 4:
%>%
refit_tbl modeltime_forecast(h = "3 years", actual_data = m750) %>%
plot_modeltime_forecast(
.legend_max_width = 25, # For mobile screens
.interactive = interactive
)