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SUMMARY

The blm package provides functions for fitting flexible binomial models for cohort studies
of a binary outcome and population-based case-control studies. The binomial linear model
(BLM) is a strictly linear model. The linear-expit (lexpit) model allows risk to be expressed
as a function of linear and nonlinear effects, where nonlinear effects take the form of the
inverse logit function (Kovalchik, 2013)). Estimation of the model parameters is based on
constrained maximum likelihood, which ensures that the fitted model yields feasible risk
estimates. In this vignette, BLM and lexpit model fitting is demonstrated with analyses of
a simulated population-based case-control study.

1 Binomial linear model (BLM)

1.1 Model

Given the binary event y;, the probability that ¥; = 1 under a binomial linear model (BLM)
(Kovalchik, [2013)) is a linear function of covariates x;,

=23 (1)
Each (8 of nonconstant covariates represents the risk difference associated with a unit change
in the given covariate, when all other factors are fixed.

Suppose that 7 is the covariate pattern for a subject from the target population of the
model whose risk we want to estimate. To be a valid risk, Z'5 € (0,1). In general, we might
not be able to specify all of the possible & of our population. Instead, we make use of the x;
from our sample and require that all 275 € (0,1). Thus, the set of covariate patterns of the
study sample defines the feasible region for .

To ensure that the estimates for § are within the region of feasibility, constrained max-
imum likelihood is used. Since the system of constraints are linear in the parameters, an
adpative barrier algorithm (Lange, 2010) can be used to perform the constrained optimization
as implemented by constrOptim. For cohort studies, the objective function is a penalized
binomial log-likelihood with each m; defined by Equation . For population-based case-
control studies, the objective function is a penalized pseudo-likelihood where each control
subject’s contribution to the binomial likelihood is weighted by a sampling weight w; that



reflects their representativeness of the target population. By definition, each case’s weight is

1.2 Model fitting

As an illustration of the model syntax we consider a model to estimate the risk of disease
based on a simulated population-based case control study. We begin the R session by loading
the package, blm, and the dataset ccdata.

> library(blm)
> data(ccdata)
> names (ccdata)

[1] "female" "packyear" "strata“ nyu an
> table(ccdata$y)

0o 1
378 378

The sample consists of 756 subjects and case status is indicated by the variable y. There
are two design variables, the strata and inverse sampling fractions w , and two candidate
explanatory variables, which are an indicator for female gender, female, and a discrete
variable, packyear, ndicating the number of pack-years smoked.

The syntax for blm is much like 1m, consisting of formula and data arguments. For
population-based estimates, we need to additionally include the design information on sample
stratification and the sampling weights. The following code fits a population-based linear
risk model with additive effects due to female gender and packyears.

> fit <- blm(y~female+packyear, data = ccdata,

+ weight = ccdata$w,
+ strata = ccdata$strata)
> fit

y ~ female + packyear
(Intercept) female packyear
0.07048229 0.01110223 0.01588852

> summary (fit)

Est. Std. Err t-value p-value
(Intercept) 0.070482 1.124622 0.062672 0.950044
female 0.011102 1.612392 0.006886 0.994508

packyear 0.015889 0.095005 0.167239 0.867227

Converged: TRUE



The method summary provides measures of variance and Wald tests of significance for each
fitted parameter. Also, a logical object indicates whether convergence of the optimizaiton
algorithm was achieved.

The variance-covariance is estimated using Taylor-linearization Deville] (1999)). The co-
efficients and variance-covariance can be extracted directly using coef and vcov.

> coef(fit)

(Intercept) female packyear
0.07048229 0.01110223 0.01588852

> vecov(fit)

(Intercept) female packyear
(Intercept) 1.26477489 -1.288921908 -0.032739888
female -1.28892191 2.599807633 0.008376159
packyear -0.03273989 0.008376159 0.009025932

Each regression coefficient for an explanatory variable of the BLM model provides an
estimate of the adjusted risk difference associated with a unit increase in the given variable.
Thus, the fitted model suggests that there is a 1.1% increased risk for females and a 15.9%
increased absolute risk for every 10-year increase in cumulative pack-years smoked. To obtain
confindence intervals for these parameters, we can use the confint method.

> confint (fit)

Est. Lower Upper
(Intercept) 0.07048229 -2.1337365 2.2747011
female 0.01110223 -3.1491278 3.1713323

packyear 0.01588852 -0.1703177 0.2020947
> confint (fit, parm="female")

Est. Lower Upper
[1,] 0.01110223 -3.149128 3.171332

To assess the constraints imposed on the model, we can examine the barrier.value,
which is one of the slots of the blm class.

> fit@barrier.value
[1] 0.04078781
Risk estimates near the boundary could be an indication of influential points or a poor-

fitting model with BLM or lexpit. Boundary estimates for a given distance criterion can be
obtained with the function which.at.boundary.



> which.at.boundary(fit)

No boundary constraints using the given criterion.
> which.at.boundary(fit, criter = 1e-3)

No boundary constraints using the given criterion.

In the above, we first use a default criterion of 1e-06 or 0.999999. In the second case, we
provide a user-specified criterion. With either criterion, no estimate was at the boundary.

There are several functions to evaluate the BLM model fit. McFadden’s R-squared,
adjusted and unadjusted, provides a measure of the variability explained by the explanatory
variables.

> Rsquared(fit)

$R2
[1] 0.1643529

$R2adj
[1] 0.1606472

Comparisons of observed and expected counts for the target population can be made
with the function EO for expected and observed. A factor can also be supplied to compare
the expected to observed within subgroups defined by the categorical variable.

> EO(fit)

E O Eto0 lowerCI upperCI
Overall 387.2257 378 1.024407 0.9261713 1.133062

> EO0(fit, ccdata$female)
E O Eto0 lowerCI upperCI
1 192.5145 183 1.051992 0.9101015 1.216004
2 194.7112 195 0.998519 0.8677618 1.148979
When the number of covariate classes represented by the model are few, we can perform
a goodness-of-fit test with Pearson’s chi-squared statistic. This compares the observed to

expected within each unique risk type defined by the model.

> gof.pearson(fit)



E O
17.22 22
23.27 16
79.42 59
72.60 86
23.25 24
18.30 13
83.50 78
69.65 80

0 ~NO O WN -

Chi-squared: 42.24285

P-value: 1.646512e-07

This suggests a lack of fit at the population level. When a model has more than 10
covariate classes, the Hosemer-Lemeshow test should be used. For the blm function, this test
is implemented by the function gof.

1.3 Mode of exposure’s effect

Because of the lack of fit of the additive model, we might suspect the linear assumption for
pack-years. We could assess the functional relationship between risk and pack-years graphi-
cally by plotting risk against exposure. Because we cannot observe risk, we use estimates of
the crude risk within groups defined by the ordered covariate. To have a fairly continuous
assessment, we allow overlap in the covariate groups as we move from low to high covariate
values. Each group consists of 20% of the study sample and we use a sliding window of
1% of the study sample. For each grouping we calculate a crude risk 7 and the population
covariate mean x. We call the scatter plot of 7 against ¥ a risk-exposure scatter plot.

The function risk.exposure.plot implements the procedure. It has three basic argu-
ments: the vector indicator of case/event status y, the vector of the covariate (should be a
continuous exposure) group, and an optional argument for the vector of sampling weights
weights, if a case-control study is being analyzed. Additional arguments are passed to
scatter.smooth. Below is an example of how to construct a risk-exposure scatter plot for
crude risk and pack-years.

> plot <- risk.exposure.plot(ccdata$y, ccdata$packyear, ccdata$w,
+ xlab="Pack-Years", col="red")

There are only seven points in the scatter plot in Figure [l because these were the number
of unique values of pack-years reported. There is some suggestion of a non-linear relationship
between risk and pack-years smoked.
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Risk-exposure scatter plot of crude risk against pack-years.



2 Linear-Expit (lexpit) model

2.1 Model

Suppose we were concerned that the linear assumption for pack-years might not be valid. If
we thought that linearity on the relative risk scale was a more plausible model for the effect of
pack-years, we could consider a lexpit model (Kovalchik, [2013)). The lexpit model describes
the probability of Y; = 1 as a function of linear and nonlinear effects, where the nonlinear
effects are the expit function (the inverse of the logit), expit(z) = exp(x)/(1 + exp(z)).

T = @3 + expit(z}7) (2)

The x; variables are linear effects and z; are the logistic effects. The first component of z; is
an intercept term, so that when the remaining components are 0, expit(7y) is the baseline
risk. As in BLM, [ represent risk differences for unit changes in x;. The coefficients ~ are
odds ratios after baseline adjustment for the effects of 25, what we can think of as ‘excess
odds ratios’.

The lexpit model provides a more flexible way to estimate risk differences since it imposes
fewer parameter constraints. This is possible because any 2/ yields a probability measure.

Estimation for the lexpit model proceeds in two stages. The first stage fixes the expit
parameters and estimates the linear coefficients with constrained maximization as described
for the BLM in Section [I.1] Thus, in this stage, the expit term can be thought of as an
offset in a BLM model. The second stage maximizes the expit parameters treating the linear
term as fixed. Maximization at this stage uses a standard iterative reweighted least squares
algorithm with modified weights that incorporate the linear risk offset.

2.2 Model fitting

The syntax for the lexpit takes two formula arguments: one for the linear components and
one for the expit components. Note that the intercept is always included in the expit term.
Otherwise, the syntax is identical to blm.

> fit.lexpit <- lexpit(y~female, y packyear,

+ data = ccdata,
+ weight = ccdata$w,
+ strata = ccdata$strata)

> summary(fit.lexpit)
Linear effects:

Est. Std. Err t-value p-value
female 0.01923 0.03385 0.56804 0.57018

Expit effects:

Est. Std. Err t-value p-value
(Intercept) -2.639e+00 1.458e-01 -1.811e+01 4.269e-61
packyear 1.015e-01 8.105e-03 1.253e+01 7.577e-33



Converged: TRUE

All of the methods described for the blm class are also available for lexpit objects.
> which.at.boundary(fit.lexpit)
No boundary constraints using the given criterion.

> confint (fit.lexpit)

Est. Lower Upper
female 0.01922563 -0.04711068 0.08556194
(Intercept) -2.63944371 -2.92517669 -2.35371073
packyear 0.10154727 0.08566217 0.11743236

> gof.pearson(fit.lexpit)

E O
16.28 22
16.70 16
72.09 59
79.67 86
24.47 24
13.99 13
77.70 78
77.31 80

O ~NO O WN -

Chi-squared: 11.99811

P-value: 0.06201106

The goodness-of-fit has improved with the lexpit model, suggesting that multiplicative
rather than linear risk effects might be a more suitable model for the effect of continuous
pack-years.

3 Conclusion

The blm package provides two models, BLM and lexpit, that can be used to obtain direct
estimates of absolute risk and risk differences for binary data obtained from observational
study designs. Fitting the blm and lexpit models will be straight-forward for R users
because they provide similar syntax and methods as the 1m class. The BLM and lexpit and
models provide alternatives to logistic regression analysis of binary data that are appealing
for epidemiological interpretation because they allow for the assessment of risk associations
on an absolute rather than relative risk scale.
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