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Summary

Of 46 models of dTTP-induced ribonucleotide reductase R1 dimerization  fitted to data, the top 6 models 
differed from the best model by less than 3 corrected Akaike's Information Criterion units. Over a physiologically 
relevant grid of total [dTTP] and [R1], 5 of the top 6 models have similar reaction surfaces; the outlier assumes 
infinitely tight binding.  It is likely that this outlier model will be rejected by future tests within this relevant grid, 
and one protein mass measurement alone at total concentrations of [R1] =.2 uM and [dTTP] = 1uM could prove 
or disprove this hypothesis. Once rejected, new experiments designed to discriminate between the remaining 
top 5 models would focus on the inclined portions of the surfaces as this is where these models differ most. 

 

Model Space

Ribonucleotide reductase has a 90kDa large subunit R1 (R) that dimerizes when dTTP (t) binds to its specificity 
site [1-3]. The extent to which data in Fig. 1 of [1] and [2] yields estimates of the dissociation constants K of the 
total concentration constraint equilibrium system
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where the subscript T denotes totals (system inputs) and the probability that an R molecule is undamaged and 
capable of dimerizing is p, has been described [4]. Briefly, models/hypotheses arise from these equations as 

follows. Firstly, K = ∞ assumptions are applied to remove specific terms one at time, two at a time, and so on, to 
yield  24=16 models, each hypothesizing  that the deleted complexes are not detectable above noise. Secondly, 
of these models, the 4 single K models yield 4 additional models via K=0 assumptions, each alleging that the free 
concentration of the reactant that is not in excess is indistinguishable from zero. Thirdly, after expanding K into 
products of strictly binary K, models that allege that some Ks equal others also arise; these models correspond 
to hypotheses of independence between the R and t binding sites.  Finally, for each model it can be 
hypothesized that the data are not rich enough to discriminate p close to one from p=1, and this expands the 
model space by an additional factor of two.  The 40 spur graph model s and 6 grid graph models that result from 
this are summarized in the two dataframes printed below.  

library(ccems)
topology <- list(  
        heads=c("R1t0","R2t0"),  
        sites=list(       
                s=list(                     # s-site    thread #
                        m=c("R1t1"),        # monomer      1
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                        d=c("R2t1","R2t2")  # dimer        2
                )
        )
) 
g <- mkg(topology,TCC=TRUE) 
sp <- mkSpurs(g,pRows=TRUE,doTights=TRUE)
print(sp$chunk)

gridL <- mkGrids(g,pRows=TRUE) 
print(gridL$chunk)

The last 4 lines show the 46 models.   The intermediate g produced before them is passed the function ems to 
generate and fit up to the two parameter models of this model space in the following code. 

data(RNR)
dd <- subset(RNR, (year==2006)|((year==2001)&(fg==1)&(G==0)&(t>0))
                , select=c(R,t,m,year))
names(dd)[1:2] <- paste(strsplit(g$id,split="")[[1]],"T",sep="") 
# The next line produces Table 1 as an html file in the results folder
top <- ems(dd,g,pRows=TRUE,doTights=TRUE) # the output file is Rtglob.html

Current Best Models 

As is readily seen form the summary that it prints to the screen:

  1 Model  17; nbp= 1; id=                IIIJ; AIC=-23.2896
  2 Model  19; nbp= 1; id=               III0p; AIC=-21.3520
  3 Model  20; nbp= 2; id=               IIIJp; AIC=-21.1582
  4 Model  31; nbp= 2; id=                IIJJ; AIC=-20.0722
  5 Model  29; nbp= 2; id=                IJIJ; AIC=-19.4775
  6 Model   2; nbp= 2; id=                HIEE; AIC=-19.2136
  7 Model  25; nbp= 2; id=                JIIJ; AIC=-19.0039
  8 Model  18; nbp= 0; id=                III0; AIC=-14.7873
  9 Model  13; nbp= 1; id=                IIJI; AIC=-12.3019
 10 Model  16; nbp= 2; id=               IIJIp; AIC= -8.2696

the best model wins by a margin before it is met by two competing models.  The output of these top 3 models 
given in the corresponding html output file is shown below as Table 1. 

Table 1. HTML output file

Model Parameter Initial Value Optimal Value Confidence Interval

1 IIIJ.17 R2t2 1.000 2.685^3 (1.722^3, 4.193^3)

 SSE 0.062 0.032

 AIC -16.719 -23.290

 Cpu 0.000 0.616 fit succeeded

2 III0p.19 P 1.000 0.826 (0.742, 0.919)

 SSE 0.104 0.039

 AIC -11.573 -21.352



 Cpu 0.000 0.060 fit succeeded

3 IIIJp.20 R2t2 1.000 1.780^3 (0.729^3, 4.349^3)

 P 1.000 0.908 (0.794, 1.039)

 SSE 0.062 0.026

 AIC -12.433 -21.158

 Cpu 0.000 0.276 fit succeeded

Physiologically Relevant Predictions of Current Best Models 

The KRRtt = 0 model  III0p in Table 1 (black in the right panel of Fig. 1) differs substantially from the other two 
models (violet and orange) in its reaction surface predictions over a physiological grid of G0 to S-phase 
concentrations defined by [tT] ε (.1, .2, .5, 1, 2, 5, 10, 20, 50) µM [5, 6] and [RT] ε (.005, .01, .02, .05, .1, .2, .5, 1) 
µM [7]. In part, this is because available data [1, 2] are outside this physiological grid of interest. The degree to 
which the other two models band together across the grid is seen on the right in Fig. 1. That they coalesce at 
small [tT] and [RT] to monomers can also be seen. Clearly, III0p (black) is an outlier. It is hypothesized here that 
this model will not withstand future experiments within this grid.  

Figure 1. Top three models are IIIJ (violot), III0p (black) and IIIJp (orange). Units are kDa and log10 of µM. 

library(ccems)   # the following code creates Figure 1
library(rgl)
load("results/Rtglob.RData") # top models were placed in results by ems
top=globalTopN
phR <- c(.005,.01,.02,.05,.1,.2,.5,1)
pht <- c(.1,.2,.5,1,2,5,10,20, 50)
physio=data.frame(RT=rep(phR,each=length(pht)),tT=rep(pht,length(phR)))
df=rbind(rbind(df1 <- simulateData(top[[1]],predict=physio)$predict,
               df2 <- simulateData(top[[2]],predict=physio)$predict),
                      simulateData(top[[3]],predict=physio)$predict)  
n=dim(physio)[1]
plot3d(log10(df$tT),log10(df$RT),df$EY,col=c(rep("violet",n),rep("black ",n), 
rep("orange",n)),



type="s",radius=c(rep(.5,3*n)),ylab="[R1]",xlab="[dTTP]",zlab="MASS")
material3d(alpha=1)
surface3d(log10(pht),log10(phR),matrix(df1$EY,ncol=length(pht)),col="violet")
material3d(alpha=.5)
surface3d(log10(pht),log10(phR),matrix(df2$EY,ncol=length(pht)),col="black")
# the snipping tool in vista was used to capture the images in Figure 1

Next Experiments

Gas-phase Electrophoretic Macromolecular Mobility Analysis (GEMMA; TSI Corp) is a measurement method that 
is sensitive enough to detect R1 dimer masses at low [RT] (≤ 1  µM) [2]. In Fig. 2 A shows the greatest difference 
between III0p and the other two models, suggesting that [tT]=1 µM and [RT]=.2 µM is a good next experiment. 
Similarly, C is best for subsequent experiments to discriminate between the remaining two models.  
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Figure 2. Predictions over the physiological grid. 

windows(width = 9, height = 6);    # the following code creates Fig. 2
par(mfrow=c(2,3),mar=c(5.1,4.1,1.5,0.5))
dTTP= c(1,2,5,10,20, 50)
df=data.frame(df,mdl=rep(1:3,each=72))
for (i in 1:6){
    df1=subset(df,(tT==dTTP[i])&(mdl==1))
    plot(df1$RT,df1[,3],col="violet",type="l",main=paste("dTTP=",dTTP[i],"uM"), 
    xlab="[R1] uM",ylab="Average Mass  (kDa)",ylim=c(85,185))
    text(0,184,LETTERS[i])
    df1=subset(df,(tT==dTTP[i])&(mdl==2))
    lines(df1$RT,df1$EY,col="black") 
    df1=subset(df,(tT==dTTP[i])&(mdl==3))
    lines(df1$RT,df1$EY,col="orange") }



Assuming a new measurement of 95 kDa at [tT] = 1 µM and [RT] = .2 µM and refitting, model prediction variances 
of the top five models evaluated at each of the 72 grid points, rank ordered from largest to lowest, yields, as an 
optimal experimental design, the best next 10 grid measurement points shown in Fig. 3.   

Figure 3. Best next 10 measurements. Units are µM (left) and kDa and log10 µM (right).

library(ccems)    # the following code creates Fig. 3
topology <- list(  
        heads=c("R1t0","R2t0"),  
        sites=list(       
                s=list(                     # s-site    thread #
                        m=c("R1t1"),        # monomer      1
                        d=c("R2t1","R2t2")  # dimer        2
                )
        )
) 
g <- mkg(topology,TCC=TRUE) 
data(RNR)
dd <- subset(RNR, (year==2006)|((year==2001)&(fg==1)&(G==0)&(t>0))
                , select=c(R,t,m,year))
names(dd)[1:2] <- paste(strsplit(g$id,split="")[[1]],"T",sep="") 
dd=rbind(dd,c(.2,1,95,2009))  # add in a fake data point
top <- ems(dd,g,pRows=TRUE,doTights=TRUE,topN=5) 
phR<-c(.005,.01,.02,.05,.1,.2,.5,1)
pht<-c(.1,.2,.5,1,2,5,10,20, 50)
physio=data.frame(RT=rep(phR,each=length(pht)),tT=rep(pht,length(phR)))
for (i in 1:5)   
   physio=cbind(physio,simulateData(top[[i]],predict=physio)$predict$EY)
names(physio)[3:7]=paste("m",1:5,sep="")
mat=as.matrix(physio[,3:7])
sig2=apply(mat,1,var)
physio=cbind(physio,sig2=sig2)
I=order(physio$sig2,decreasing=TRUE)
sdf=physio[I,]
b10=sdf[1:10,]
par(mfrow=c(1,1),mar=c(5.1,4.1,1.5,0.5))
plot(b10$tT,b10$RT,type="p",
        ylab="[R1]",xlab="[dTTP]",log="xy",ylim=c(.001,1),xlim=c(1,100))

library(rgl)
ndf=rbind(b10,physio) # to be big spheres and surface mesh points, respectively



plot3d(log10(ndf$tT),log10(ndf$RT),ndf$m1,col=c(rep("red",10),rep("violet",72)), 
type="s",radius=c(rep(2,10),rep(.5,72)),ylab="[R1]",xlab="[dTTP]",zlab="MASS")
material3d(alpha=1)
surface3d(log10(pht),log10(phR),matrix(physio[,3],ncol=length(pht)),col="violet")
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