Package ‘cvims’

December 1, 2019

Title Cross-Validation for Model Selection
Version 0.3.2

Description Cross-validate one or multiple regression and classification models
and get relevant evaluation metrics in a tidy format. Validate the
best model on a test set and compare it to a baseline evaluation.
Alternatively, evaluate predictions from an external model. Currently
supports regression and classification (binary and multiclass).
Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R.,
& Wambugu M. (2019, ISBN: 9781838550134).

License MIT + file LICENSE
URL https://github.com/ludvigolsen/cvms

BugReports https://github.com/ludvigolsen/cvms/issues
Depends R (>=3.5)

Imports data.table (>=1.12),
dplyr,
plyr,
tidyr (>=0.8.3),
ggplot2,
purrr,
tibble (>= 2.1.1),
caret (>= 6.0-84),
pROC (>=1.14.0),
stats,
Ime4 (>=1.1-21),
MuMIn (>= 1.43.6),
broom (>=0.5.2),
stringr,
mltools (>= 0.3.5),
rlang,
utils,
lifecycle

Suggests knitr,
groupdata? (>=1.1.2),
el071 (>=1.7-2),
rmarkdown,
testthat (>=2.2.1),
AUC,

https://github.com/ludvigolsen/cvms
https://github.com/ludvigolsen/cvms/issues

2 baseline

furrr,

ModelMetrics (>= 1.2.2),
covr (>=3.3.1),

nnet (>=7.3-12),
randomForest (>= 4.6-14)

VignetteBuilder knitr
RdMacros lifecycle
Encoding UTF-8
LazyData true
RoxygenNote 7.0.1

R topics documented:

baseline e e 2
combine_prediCtors 8
compatibleformula.termso 0oL 10
cross_validate e 10
cross_validate_fn e 15
CVITIS &« & v v v e e e e e e e e e e e e e e e 21
Cv_plot . e e e 22
evaluate e e e 23
multiclass_probability_tibble L 29
PartiCipant.SCoIES v v v v e e e e e e e e e e e e e 31
precomputed.formulas L. L L e 31
reconstruct_formulas L L 32
SEleCt_MELTICS o e e e e e e e e e e e 32
validate e e e e 33

Index 38

baseline Create baseline evaluations
Description
Maturing

Create a baseline evaluation of a test set.

When family is gaussian: fits baseline models (y ~ 1) on n random subsets of train_data and
evalutes each model on test_data. Also evaluates a model fitted on all rows in train_data.

When family is binomial: evaluates n sets of random predictions against the dependent variable,
along with a set of all @ predictions and a set of all 1 predictions.

When family is multinomial: creates one-vs-all (binomial) baseline evaluations for n sets of
random predictions against the dependent variable, along with sets of "all class x,y,z,..." predictions.

baseline

Usage

baseline(
test_data,
dependent_col,
train_data = NULL,

n = 100,

family = "binomial”,
positive = 2,

cutoff = 0.5,

random_generator_fn = runif,
random_effects = NULL,
min_training_rows = 5,
min_training_rows_left_out = 3,
REML = FALSE,

parallel = FALSE

Arguments

test_data

dependent_col

Data Frame.

Name of dependent variable in the supplied test and training sets.

train_data Data Frame. Only used when family == "gaussian”.

n Number of random samplings to perform.
For gaussian: The number of random samplings of train_data to fit baseline
models on.
For binomial and multinomial: The number of sets of random predictions to
evaluate.

family Name of family. (Character)
Currently supports "gaussian”, "binomial” and "multinomial”.

positive Level from dependent variable to predict. Either as character or level index (1
or 2 - alphabetically).
E.g. if we have the levels "cat” and "dog" and we want "dog" to be the positive
class, we can either provide "dog"” or 2, as alphabetically, "dog"” comes after
n Ca t n .
Used when calculating confusion matrix metrics and creating ROC curves.
N.B. Only affects evaluation metrics, not the returned predictions.
N.B. Binomial only. (Character or Integer)

cutoff Threshold for predicted classes. (Numeric)

N.B. Binomial only

random_generator_fn

Function for generating random numbers when type is "multinomial”. The
softmax function is applied to the generated numbers to transform them to prob-
abilities.

The first argument must be the number of random numbers to generate, as no
other arguments are supplied.

To test the effect of using different functions, seemulticlass_probability_tibble.

N.B. Multinomial only

4 baseline

random_effects Random effects structure for Gaussian baseline model. (Character)
E.g. with "(1]1ID)", the model becomes "y ~ 1+ (1|ID)".
N.B. Gaussian only
min_training_rows
Minimum number of rows in the random subsets of train_data.
Gaussian only. (Integer)
min_training_rows_left_out
Minimum number of rows left out of the random subsets of train_data.
L.e. a subset will maximally have the size:
max_rows_in_subset = nrow(train_data) -min_training_rows_left_out.
N.B. Gaussian only. (Integer)
REML Whether to use Restricted Maximum Likelihood. (Logical)
N.B. Gaussian only. (Integer)
parallel Whether to run the n evaluations in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

Details

Packages used:

Models:
Gaussian: stats::1m

Results: Gaussian:

r2m : MuMIn: :r.squaredGLMM

r2c : MuMIn: :r.squaredGLMM

AIC : stats: :AIC

AICc : MuMIn: :AICc

BIC : stats::BIC

Binomial and Multinomial:

Confusion matrix and related metrics: caret: :confusionMatrix
ROC and related metrics: pROC: : roc

MCC: mltools: :mcc

Value

List containing:

1. atibble with summarized results (called summarized_metrics)
2. atibble with random evaluations (random_evaluations)

3. atibble with the summarized class level results (summarized_class_level_results) (Multi-
nomial only)

Gaussian Results:

The Summarized Results tibble contains:
Average RMSE, MAE, r2m, r2¢, AIC, AICc, and BIC.

baseline 5

The Measure column indicates the statistical descriptor used on the evaluations. The row where
Measure == A11_rows is the evaluation when the baseline model is trained on all rows in train_data.

The Training Rows column contains the aggregated number of rows used from train_data, when
fitting the baseline models.

The Random Evaluations tibble contains:

The non-aggregated metrics.

A nested tibble with the predictions and targets.

A nested tibble with the coefficients of the baseline models.

Number of training rows used when fitting the baseline model on the training set.
Specified family.

Name of dependent variable.

Name of fixed effect (bias term only).

Random effects structure (if specified).

Binomial Results:

Based on the generated test set predictions, a confusion matrix and ROC curve are used to get the
following:

ROC:
AUC, Lower CI, and Upper CI
Confusion Matrix:

Balanced Accuracy, F1, Sensitivity, Specificity, Positive Prediction Value, Negative Predic-
tion Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC (Matthews
correlation coefficient).

The Summarized Results tibble contains:

The Measure column indicates the statistical descriptor used on the evaluations. The row where
Measure == A11_0 is the evaluation when all predictions are 0. The row where Measure == A11_1
is the evaluation when all predictions are 1.

The aggregated metrics.

The Random Evaluations tibble contains:

The non-aggregated metrics.

A nested tibble with the predictions and targets.

A nested tibble with the sensativities and specificities from the ROC curve.

A nested tibble with the confusion matrix. The Pos_ columns tells you whether a row is a True
Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending on
which level is the "positive" class. I.e. the level you wish to predict.

Specified family.
Name of dependent variable.

6 baseline

Multinomial Results:

Based on the generated test set predictions, one-vs-all (binomial) evaluations are performed and
aggregated to get the same metrics as in the binomial results, with the addition of Overall Ac-
curacy in the summarized results.

The Summarized Results tibble contains:
Summary of the random evaluations.

How: First, the one-vs-all binomial evaluations are aggregated by repetition (ignoring NAs), and
then, these aggregations are summarized. Besides the metrics from the binomial evaluations (see
Binomial Results above), it also includes the Overall Accuracy metric.

The Measure column indicates the statistical descriptor used on the evaluations. The Mean,
Median, SD, and IQR describe the repetition evaluations (similar to the Random Evaluations
tibble, but ignoring NAs when aggregating, as the NAs and INFs are counted instead), while the
Max, Min, NAs, and INFs are extracted from the Summarized Class Level Results tibble, to get
the overall values. The NAs and INFs are only counted in the one-vs-all evaluations.

The rows where Measure == A11_<<class name>> are the evaluations when all the observations
are predicted to be in that class.

The Summarized Class Level Results tibble contains:

The (nested) summarized results for each class, with the same metrics and descriptors as the
Summarized Results tibble. Use tidyr: :unnest on the tibble to inspect the results.

How: The one-vs-all evaluations are summarized by class.

The rows where Measure == A11_0 are the evaluations when none of the observations are pre-
dicted to be in that class, while the rows where Measure == A11_1 are the evaluations when all of
the observations are predicted to be in that class.

The Random Evaluation tibble contains:
The repetition results with the same metrics as the Summarized Results tibble.

How: The one-vs-all evaluations are aggregated by repetition. NA’s are not ignored, meaning that
any NA from a one-vs-all evaluation will lead to an NA result for that repetition.

Also includes:

A nested tibble with the one-vs-all binomial evaluations (Class Level Results), including nested
ROC curves and Confusion Matrices, and the Support column, which is a count of how many
observations from the class is in the test set.

A nested tibble with the predictions and targets.

A nested tibble with the multiclass confusion matrix.
Specified family.

Name of dependent variable.

Author(s)
Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach packages
library(cvms)
library(groupdata2) # partition()

baseline

library(dplyr) # %>% arrange()
library(tibble)

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(1)

Partition data

partitions <- partition(data, p = 0.7, list_out = TRUE)
train_set <- partitions[[1]]

test_set <- partitions[[2]]

Create baseline evaluations
Note: usually n=100 is a good setting

Gaussian

baseline(test_data = test_set, train_data = train_set,
dependent_col = "score", random_effects = "(1]|session)”,
n = 2, family = "gaussian”)

Binomial

baseline(test_data = test_set, dependent_col = "diagnosis”,

n =2, family = "binomial")
Multinomial

Create some data with multiple classes

multiclass_data <- tibble(
"target” = rep(paste@(”class_", 1:5), each = 10)) %>%
dplyr::sample_n(35)

baseline(test_data = multiclass_data,
dependent_col = "target”,
n =4, family = "multinomial”)

Parallelize evaluations

Attach doParallel and register four cores
Uncomment:

library(doParallel)

registerDoParallel(4)

Binomial
baseline(test_data = test_set, dependent_col = "diagnosis”,
n =4, family = "binomial”, parallel = TRUE)

Gaussian
baseline(test_data = test_set, train_data = train_set,
dependent_col = "score”, random_effects = "(1|session)”,

n = 4, family = "gaussian”, parallel = TRUE)

Multinomial

(mb <- baseline(test_data = multiclass_data,
dependent_col = "target”,
n =4, family = "multinomial”,

8 combine_predictors

parallel = TRUE))

Inspect the summarized class level results
for class_2
mb$summarized_class_level_results %>%
dplyr::filter(Class == "class_2") %>%
tidyr::unnest(Results)

Multinomial with custom random generator function
that creates very "certain” predictions
(once softmax is applied)

rcertain <- function(n){
(runif(n, min = 1, max = 100)*1.4)/100
3

baseline(test_data = multiclass_data,
dependent_col = "target”,
n =4, family = "multinomial”,
parallel = TRUE,
random_generator_fn = rcertain)

combine_predictors Generate model formulas by combining predictors

Description

Maturing

Create model formulas with every combination of your fixed effects, along with the dependent
variable and random effects. 259,358 formulas have been precomputed with two- and three-way
interactions for up to 8 fixed effects, with up to 5 included effects per formula. Uses the + and *
operators, so lower order interactions are automatically included.

Usage

combine_predictors(
dependent,
fixed_effects,
random_effects = NULL,
max_fixed_effects = 5,
max_interaction_size = 3,
max_effect_frequency = NULL

Arguments

dependent Name of dependent variable. (Character)
fixed_effects List of fixed effects. (Character)
Max. limit of 8 effects when interactions are included!
A fixed effect name cannot contain: white spaces, "*" or "+".

combine_predictors

random_effects

Effects in sublists will be interchanged. This can be useful, when we have mul-
tiple versions of a predictor (e.g. x1 and log(x1)) that we do not wish to have
in the same formula.

Example of interchangeable effects:

list(list("x1","log_x1"),"x2","x3")
The random effects structure. (Character)

Is appended to the model formulas.

max_fixed_effects

Maximum number of fixed effects in a model formula. (Integer)
Max. limit of 5 when interactions are included!

max_interaction_size

Maximum number of effects in an interaction. (Integer)

Max. limit of 3.

Use this to limit the n-way interactions allowed. @ or 1 excludes interactions all
together.

A model formula can contain multiple interactions.

max_effect_frequency

Value

Maximum number of times an effect is included in a formula string.

List of model formulas.

E.g.:

c("y~x1+(1|2)","y~x2+(1|2)","y~x1+x2+ (1]2)","y~x1*x2+ (1]z2)").

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach packages
library(cvms)

Create effect names

dependent <-

non

y

fixed_effects <- c("a","b","c")
random_effects <- "(1]e)"

Create model formulas
combine_predictors(dependent, fixed_effects,

random_effects)

Create effect names with interchangeable effects in sublists
fixed_effects <- list("a"”,list("b","log_b"),"c")

Create model formulas
combine_predictors(dependent, fixed_effects,

random_effects)

10 cross_validate

compatible.formula. terms
Compatible formula terms

Description

162,660 pairs of compatible terms for building model formulas with up to 15 fixed effects.

Format

A data frame with 162,660 rows and 5 variables:

nyn

left term, fixed effect or interaction, with fixed effects separated by "*
right term, fixed effect or interaction, with fixed effects separated by "*"
max_interaction_size maximum interaction size in the two terms, up to 3
num_effects number of unique fixed effects in the two terms, up to 5

min_num_fixed_effects minimum number of fixed effects required to use a formula with the two
terms, i.e. the index in the alphabet of the last of the alphabetically ordered effects (letters) in
the two terms, so 4 if 1eft == "A"” and right == "D"

Details

A term is either a fixed effect or an interaction between fixed effects (up to three-way), where the

nyn

effects are separated by the "x" operator.

Two terms are compatible if they are not redundant, meaning that both add a fixed effect to the
formula. E.g. as the interaction "x1 * x2 * x3" expands to "x1 + x2 + x3 + xT * x2 + x1 * X3 + x2
* x3 + x1 * x2 * x3", the higher order interaction makes these "sub terms" redundant. Note: All
terms are compatible with NA.

Effects are represented by the first fifteen capital letters.

Used to generate the model formulas for combine_predictors.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

cross_validate Cross-validate regression models for model selection

Description

Stable

Cross-validate one or multiple gaussian or binomial models at once. Perform repeated cross-
validation. Returns results in a tibble for easy comparison, reporting and further analysis.

See cross_validate_fn() for use with custom model functions.

cross_validate 11

Usage

cross_validate(
data,
models,
fold_cols = ".folds",
family = "gaussian”,
link = NULL,
control = NULL,
REML = FALSE,
cutoff = 0.5,

positive = 2,

metrics = list(),
rm_nc = FALSE,
parallel = FALSE,
model_verbose = FALSE

)
Arguments
data Data frame.
Must include grouping factor for identifying folds - as made with groupdata2: : fold().
models Model formulas as strings. (Character)
E.g. c("y~x","y~z"
Can contain random effects.
E.g. c("y~x+(1|r)","y~z+(1|r)").
fold_cols Name(s) of grouping factor(s) for identifying folds. (Character)
Include names of multiple grouping factors for repeated cross-validation.
family Name of family. (Character)
Currently supports "gaussian” and "binomial”.
link Link function. (Character)
E.g. link = "log" with family = "gaussian"” will use family = gaussian(link
="log").
See stats::family for available link functions.
Default link functions:
Gaussian: 'identity'.
Binomial: 'logit"'.
control Construct control structures for mixed model fitting (i.e. lmer and glmer). See
Ime4: :1merControl and 1me4: :glmerControl.
N.B. Ignored if fitting 1m or glm models.
REML Restricted Maximum Likelihood. (Logical)
cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only
positive Level from dependent variable to predict. Either as character or level index (1

or 2 - alphabetically).

E.g. if we have the levels "cat” and "dog" and we want "dog" to be the positive
class, we can either provide "dog” or 2, as alphabetically, "dog"” comes after
"cat

n

12

metrics

rm_nc

parallel

model_verbose

Details

Packages used:

Value

Models:

cross_validate

Used when calculating confusion matrix metrics and creating ROC curves.

N.B. Only affects evaluation metrics, not the model training or returned predic-
tions.

N.B. Binomial models only.
List for enabling/disabling metrics.

E.g. 1ist("RMSE"” = FALSE) would remove RMSE from the results, and 1ist("Accuracy”
= TRUE) would add the regular accuracy metric to the classification results. De-
fault values (TRUE/FALSE) will be used for the remaining metrics available.

Also accepts the string "all”.
N.B. Currently, disabled metrics are still computed.

Remove non-converged models from output. (Logical)

Whether to cross-validate the list of models in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

Message name of used model function on each iteration. (Logical)

Gaussian: stats::lm, 1me4: : Imer

Binomial: stats::glm, Ime4::glmer

Results:

Gaussian:

r2m : MuMIn: :r.squaredGLMM
r2c : MuMIn: :r.squaredGLMM
AIC : stats: :AIC

AICc : MuMIn: :AICc

BIC : stats: :BIC

Binomial:

Confusion matrix: caret: :confusionMatrix
ROC: pROC: : roc
MCC: mltools: :mcc

Tbl (tibble) with results for each model.

Shared across families: A nested tibble with coefficients of the models from all iterations.
Number of total folds.
Number of fold columns.

Count of convergence warnings. Consider discarding models that did not converge on all itera-
tions. Note: you might still see results, but these should be taken with a grain of salt!

Count of other warnings. These are warnings without keywords such as "convergence".

Count of Singular Fit messages. See ?1me4: : isSingular for more information.

Nested tibble with the warnings and messages caught for each model.

Specified family.

Specified link function.

cross_validate 13

Name of dependent variable.
Names of fixed effects.

Names of random effects, if any.

Gaussian Results:

Average RMSE, MAE, r2m, r2¢, AIC, AICc, and BIC of all the iterations*, omitting potential
NAs from non-converged iterations. Note that the Information Criteria metrics (AIC, AICc, and
BIC) are also averages.

A nested tibble with the predictions and targets.
A nested tibble with the non-averaged results from all iterations.

* In repeated cross-validation, the metrics are first averaged for each fold column (repetition) and
then averaged again.

Binomial Results:

Based on the collected predictions from the test folds*, a confusion matrix and a ROC curve are
created to get the following:

ROC:
AUC, Lower CI, and Upper CI
Confusion Matrix:

Balanced Accuracy, F1, Sensitivity, Specificity, Positive Prediction Value, Negative Predic-
tion Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC (Matthews
correlation coefficient).

Other available metrics (disabled by default, see metrics): Accuracy.
Also includes:

A nested tibble with predictions, predicted classes (depends on cutoff), and the targets. Note,
that the predictions are not necessarily of the specified positive class, but of the model’s
positive class (second level of dependent variable, alphabetically).

A nested tibble with the sensativities and specificities from the ROC curve(s).

A nested tibble with the confusion matrix/matrices. The Pos_ columns tells you whether a row is
a True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending
on which level is the "positive" class. L.e. the level you wish to predict.

A nested tibble with the results from all fold columns, when using repeated cross-validation.

* In repeated cross-validation, an evaluation is made per fold column (repetition) and averaged.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Benjamin Hugh Zachariae

See Also

Other validation functions: cross_validate_fn(), validate()

14 cross_validate

Examples

Attach packages
library(cvms)
library(groupdata2) # fold()
library(dplyr) # %>% arrange()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(7)

Fold data

data <- fold(data, k = 4,
cat_col = 'diagnosis',
id_col = 'participant') %>%

arrange(.folds)

Cross-validate a single model

Gaussian

cross_validate(data,
models = "score~diagnosis”,
family = 'gaussian',
REML = FALSE)

Binomial

cross_validate(data,

models = "diagnosis~score”,
family="binomial')

Cross-validate multiple models

models <- c("score~diagnosis+(1|session)”,
"score~age+(1|session)")

cross_validate(data,
models = models,
family = 'gaussian',
REML = FALSE)

Use non-default link functions

cross_validate(data,

models = "score~diagnosis”,
family = 'gaussian',
link = 'log',

REML = FALSE)
Use parallelization
Attach doParallel and register four cores

Uncomment:
library(doParallel)

cross_validate_fn 15

registerDoParallel(4)

Create list of 20 model formulas
models <- rep(c("score~diagnosis+(1|session)”,
"score~age+(1|session)"), 10)

Cross-validate a list of 20 model formulas in parallel
system.time({cross_validate(data,
models = models,
family = 'gaussian',
parallel = TRUE)3})

Cross-validate a list of 20 model formulas sequentially
system.time({cross_validate(data,

models = models,

family = 'gaussian',

parallel = FALSE)})

cross_validate_fn Cross-validate custom model functions for model selection

Description

Experimental

Cross-validate your model function with one or multiple model formulas at once. Perform repeated
cross-validation. Returns results in a tibble for easy comparison, reporting and further analysis.

Compared to cross_validate(), this function allows you supply a custom model function and (if
needed) a custom predict function.

Supports regression and classification (binary and multiclass). See type.

Note that some metrics may not be computable for all types of model objects.

Usage

cross_validate_fn(
data,
model_fn,
formulas,
fold_cols = ".folds",
type = "gaussian”,
cutoff = 0.5,
positive = 2,
predict_type = NULL,
predict_fn = NULL,
metrics = list(),
rm_nc = FALSE,
parallel = FALSE

16 cross_validate_fn

Arguments

data Data frame.

Must include grouping factor for identifying folds - as made with groupdata2: : fold().
model_fn Model function that returns a fitted model object. Will usually wrap an existing

model function like e1071: : svm or nnet: :multinom.

Must have the following function arguments:

function(train_data, formula)

formulas Model formulas as strings. (Character)
Will be converted to formula objects before being passed to model_fn.

n o n

E.g. c("y~x","y~z").
Can contain random effects.
E.g. c("y~x+(1|r)","y~z+(1|r)").
fold_cols Name(s) of grouping factor(s) for identifying folds. (Character)
Include names of multiple grouping factors for repeated cross-validation.

type Type of evaluation to perform:
"gaussian” for regression (like linear regression).
"binomial” for binary classification.
"multinomial” for multiclass classification.

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only

positive Level from dependent variable to predict. Either as character or level index (1
or 2 - alphabetically).

E.g. if we have the levels "cat” and "dog"” and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after

cat".
Used when calculating confusion matrix metrics and creating ROC curves.

N.B. Only affects evaluation metrics, not the model training or returned predic-
tions.

N.B. Binomial models only.

predict_type The type argument for predict().
When the defaults fail, provide it such that the predict () output is as follows:

Binomial: Vector or one-column matrix / data frame with probabilities (0-1).
E.g.:
c(0.3,0.5,0.1,0.5)

Gaussian: Vector or one-column matrix / data frame with the predicted value.
E.g.:
c(3.7,0.9,1.2,7.3)

Multinomial: Data frame with one column per class containing probabilities
of the class. Column names should be identical to how the class names are
written in the target column. E.g.:

class_ 1 «class 2 class 3
0.269 0.528 0.203
0.368 0.322 0.310

0.375 0.371 0.254

cross_validate_tn

predict_fn

metrics

rm_nc

parallel

Details

Packages used:

Results:

Gaussian:

17

N.B. predict_fn and predict_type are mutually exclusive. Specify only
one of them.

Function for predicting the targets in the test folds using the fitted model object.
Will usually wrap predict(), but doesn’t have to. Must return predictions in
the format described in predict_type above.

Must have the following function arguments:
function(test_data,model, formula = NULL)

N.B. predict_fn and predict_type are mutually exclusive. Specify only one
of them.

List for enabling/disabling metrics.

E.g. 1list("RMSE" = FALSE) would remove RMSE from the results, and 1ist ("Accuracy”
= TRUE) would add the regular accuracy metric to the classification results. De-
fault values (TRUE/FALSE) will be used for the remaining metrics available.

Also accepts the string "all”.

N.B. Currently, disabled metrics are still computed.

Remove non-converged models from output. (Logical)

Whether to cross-validate the list of models in parallel. (Logical)

Remember to register a parallel backend first. E.g. with doParallel: :registerDoParallel.

r2m : MuMIn: :r.squaredGLMM
r2c¢ : MuMIn: : r.squaredGLMM
AIC : stats: :AIC

AlICc : MuMIn: :AICc

BIC : stats: :BIC

Binomial:

Confusion matrix: caret: :confusionMatrix

ROC: pROC: :

roc

MCC: mltools: :mcc

Value

Tbl (tibble) with results for each model.

Shared across families: A nested tibble with coefficients of the models from all iterations.
The coefficients are extracted from the model object with broom: : tidy () or coef () (with some
restrictions on the output). If these attempts fail, a default coefficients tibble filled with NAs is

returned.

Number of fotal folds.
Number of fold columns.

Count of convergence warnings, using a limited set of keywords (e.g. "convergence"). If a con-
vergence warning does not contain one of these keywords, it will be counted with other warnings.
Consider discarding models that did not converge on all iterations. Note: you might still see re-
sults, but these should be taken with a grain of salt!

Nested tibble with the warnings and messages caught for each model.

18

cross_validate_tn

Specified family.

Name of dependent variable.
Names of fixed effects.

Names of random effects, if any.

Gaussian Results:

Average RMSE, MAE, r2m, r2¢, AIC, AICc, and BIC of all the iterations*, omitting potential
NAs from non-converged iterations. Some metrics will return NA if they can’t be extracted from
the fitted model objects.

N.B. The Information Criteria metrics (AIC, AICc, and BIC) are also averages.
A nested tibble with the predictions and targets.
A nested tibble with the non-averaged results from all iterations.

* In repeated cross-validation, the metrics are first averaged for each fold column (repetition) and
then averaged again.

Binomial Results:

Based on the collected predictions from the test folds*, a confusion matrix and a ROC curve are
created to get the following:

ROC:
AUC, Lower CI, and Upper CI
Confusion Matrix:

Balanced Accuracy, F1, Sensitivity, Specificity, Positive Prediction Value, Negative Predic-
tion Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC (Matthews
correlation coefficient).

Other available metrics (disabled by default, see metrics): Accuracy.
Also includes:

A nested tibble with the predictions, predicted classes (depends on cutoff), and targets. Note,
that the predictions are not necessarily of the specified positive class, but of the model’s
positive class (second level of dependent variable, alphabetically).

A nested tibble with the sensativities and specificities from the ROC curves.

A nested tibble with the confusion matrix/matrices. The Pos_ columns tells you whether a row is
a True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending
on which level is the "positive" class. L.e. the level you wish to predict.

A nested tibble with the results from all fold columns, when using repeated cross-validation.
* In repeated cross-validation, an evaluation is made per fold column (repetition) and averaged.

Multinomial Results:

For each class, a one-vs-all binomial evaluation is performed. This creates a class level results
tibble containing the same metrics as the binomial results described above, along with the Sup-
port metric, which is simply a count of the class in the target column. These metrics are used
to calculate the macro metrics in the output tibble. The nested class level results tibble is also

cross_validate_fn 19

included in the output tibble, and would usually be reported along with the macro and overall
metrics.

The output tibble contains the macro and overall metrics. The metrics that share their name with
the metrics in the nested class level results tibble are averages of those metrics (note: does not
remove NAs before averaging). In addition to these, it also includes the Overall Accuracy metric.

Other available metrics (disabled by default, see metrics): Accuracy, Weighted Balanced
Accuracy, Weighted Accuracy, Weighted F1, Weighted Sensitivity, Weighted Sensitivity,
Weighted Specificity, Weighted Pos Pred Value, Weighted Neg Pred Value, Weighted AUC,
Weighted Lower CI, Weighted Upper CI, Weighted Kappa, Weighted MCC, Weighted De-
tection Rate, Weighted Detection Prevalence, and Weighted Prevalence.

Note that the "Weighted" metrics are weighted averages, weighted by the Support.
Also includes:

A nested tibble with the predictions, predicted classes, and targets.

A nested tibble with the multiclass Confusion Matrix.

Class Level Results

The nested class level results tibble also includes:

A nested tibble with the sensativities and specificities from the ROC curve.

A nested tibble with the confusion matrix from the one-vs-all evaluation. The Pos_ columns
tells you whether a row is a True Positive (TP), True Negative (TN), False Positive (FP), or False
Negative (FN), depending on which level is the "positive" class. In our case, 1 is the current class
and @ represents all the other classes together.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Benjamin Hugh Zachariae

See Also

Other validation functions: cross_validate(), validate()

Examples

Attach packages

library(cvms)

library(groupdata2) # fold()
library(dplyr) # %>% arrange() mutate()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(7)

Fold data
data <- fold(data, k = 4,
cat_col = 'diagnosis',
id_col = 'participant') %>%
mutate(diagnosis = as.factor(diagnosis)) %>%
arrange(.folds)

Cross-validate multiple formulas

20

formulas_gaussian <- c("score ~ diagnosis”,
"score ~ age")

formulas_binomial <- c("diagnosis ~ score”,
"diagnosis ~ age")

Gaussian

Create model function with args 'train_data' and 'formula’
that returns a fitted model object
Im_model_fn <- function(train_data, formula){

Im(formula = formula, data = train_data)

Cross-validate the model function
cross_validate_fn(data,
model_fn = lm_model_fn,
formulas = formulas_gaussian,
type = 'gaussian',
fold_cols = ".folds")

Binomial

Create model function with args 'train_data' and 'formula’
that returns a fitted model object
glm_model_fn <- function(train_data, formula){
glm(formula = formula, data = train_data, family = "binomial”)

Cross-validate the model function
cross_validate_fn(data,
model_fn = glm_model_fn,
formulas = formulas_binomial,
type = 'binomial',
fold_cols = ".folds")

Support Vector Machine (svm)

Create model function with args 'train_data' and 'formula’
that returns a fitted model object
svm_model_fn <- function(train_data, formula){
e1071::svm(formula = formula,
data = train_data,
kernel = "linear"”,
type = "C-classification”)

Cross-validate the model function
cross_validate_fn(data,
model_fn = svm_model_fn,
formulas = formulas_binomial,
type = 'binomial',
fold_cols = ".folds")

Naive Bayes

Create model function with args 'train_data' and 'formula'

cross_validate_tn

cvims

that returns a fitted model object
nb_model_fn <- function(train_data, formula){
e1071: :naiveBayes(formula = formula,

data = train_data)

}

Create predict function with args 'test_data', 'model', and 'formula’
that returns predictions in right format (here, a one-column matrix)
Note the type = "raw” and that we pick the probabilities for class 1 with [,2]
nb_predict_fn <- function(test_data, model, formula = NULL){
stats::predict(object = model, newdata = test_data,
type = "

n

raw”, allow.new.levels = TRUE)[, 2]

Cross-validate the model function
cross_validate_fn(data,
model_fn = nb_model_fn,
formulas = formulas_binomial,
type = 'binomial',
predict_fn = nb_predict_fn,
fold_cols = ".folds")

Use parallelization

Attach doParallel and register four cores
Uncomment:

library(doParallel)

registerDoParallel(4)

Create list of 20 model formulas
formulas <- rep(c("”score~diagnosis”,
"score~age"), 10)

Cross-validate a list of 20 model formulas in parallel
system.time({cross_validate_fn(data,
model_fn = 1m_model_fn,
formulas = formulas,
type = 'gaussian',
fold_cols = ".folds",
parallel = TRUE)})

Cross-validate a list of 20 model formulas sequentially
system. time({cross_validate_fn(data,
model_fn = 1lm_model_fn,
formulas = formulas,
type = 'gaussian',
fold_cols = ".folds",
parallel = FALSE)})

cvms cvms: A package for cross-validating regression and classification
models

22 cv_plot

Description

Perform (repeated) cross-validation on a list of model formulas. Validate the best model on a val-
idation set. Perform baseline evaluations on your test set. Generate model formulas by combining
your fixed effects. Evaluate predictions from an external model.

Details

Returns results in a tibble for easy comparison, reporting and further analysis.

The cvms package provides 5 main functions: cross_validate, cross_validate_fn, validate,
baseline, and evaluate.

And a couple of helper functions: combine_predictors, select_metrics, reconstruct_formulas,
cv_plot.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

cv_plot Wrapper for plotting common plots using ggplot2

Description

Experimental

Creates various plots based on the output of cvms::cross_validate()

Usage

cv_plot(x, type)

Arguments

X Object returned by cvms::cross_validate() (tbl)

type Type of plot.

Gaussian:

"RMSE’ - boxplot

12’ - boxplot

"IC’ - boxplot
"coefficients’ - boxplot

Binomial:
"ROC" - ROC curve

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

evaluate

Examples

Attach packages
library(cvms)
library(groupdata2) # fold()

Load data (included in cvms)
data <- participant.scores

Fold data

data <- fold(data, k = 4,
cat_col = 'diagnosis',
id_col = 'participant')

Cross-validate a gaussian model

CVgauss <- cross_validate(data,
"score~diagnosis”,
family="'gaussian')

Plot results for gaussian model
cv_plot(CVgauss, type = 'RMSE')
cv_plot(CVgauss, type = 'r2')
cv_plot(CVgauss, type = 'IC")
cv_plot(CVgauss, type = 'coefficients')

Cross-validate a binomial model

CVbinom <- cross_validate(data,
"diagnosis~score”,
family="binomial')

Plot results for binomial model
cv_plot(CVbinom, type = 'ROC")

evaluate Evaluate your model’s performance

Description

Maturing
Evaluate your model’s predictions on a set of evaluation metrics.
Create ID-aggregated evaluations by multiple methods.

Currently supports regression and classification (binary and multiclass). See type.

Usage

evaluate(
data,
target_col,
prediction_cols,
type = "gaussian”,
id_col = NULL,

24 evaluate

id_method = "mean",

models = NULL,
apply_softmax = TRUE,
cutoff = 0.5,

positive = 2,

metrics = list(),
include_predictions = TRUE,
parallel = FALSE

Arguments

data Data frame with predictions, targets and (optionally) an ID column. Can be
grouped with group_by.

Multinomial: ~When type is "multinomial”, the predictions should be
passed as one column per class with the probability of that class. The columns
should have the name of their class, as they are named in the target column.
E.g.:

class 1 class 2 class 3 target
0.269 0.528 0.203 class_2
0.368 0.322 0.310 class_3
0.375 0.371 0.254 class_2

Binomial: When type is "binomial”, the predictions should be passed as
one column with the probability of class being the second class alphabetically
(1 if classes are O and 1). E.g.:

prediction target
0.769 1
0.368 1
0.375 0

Gaussian: When type is "gaussian”, the predictions should be passed as
one column with the predicted values. E.g.:

prediction target
28.9 30.2
332 27.1
23.4 21.3

target_col Name of the column with the true classes/values in data.
When type is "multinomial”, this column should contain the class names, not
their indices.

prediction_cols
Name(s) of column(s) with the predictions.
When evaluating a classification task, the column(s) should contain the predicted
probabilities.

type Type of evaluation to perform:

evaluate 25

"gaussian” for regression (like linear regression).
"binomial” for binary classification.
"multinomial” for multiclass classification.

id_col Name of ID column to aggregate predictions by.

N.B. Current methods assume that the target class/value is constant within the
IDs.

N.B. When aggregating by ID, some metrics (such as those from model objects)
are excluded.
id_method Method to use when aggregating predictions by ID. Either "mean” or "majority”.
When type is gaussian, only the "mean” method is available.
mean: The average prediction (value or probability) is calculated per ID and

evaluated. This method assumes that the target class/value is constant within
the IDs.

majority: The most predicted class per ID is found and evaluated. In case
of a tie, the winning classes share the probability (e.g. P = @.5 each when two
majority classes). This method assumes that the target class/value is constant
within the IDs.

models Unnamed list of fitted model(s) for calculating R*2 metrics and information
criterion metrics. May only work for some types of models.
When only passing one model, remember to pass it in a list (e.g. 1list(m)).
N.B. When data is grouped, provide one model per group in the same order as
the groups.

N.B. When aggregating by ID (i.e. when id_col is not NULL), it’s not currently
possible to pass model objects, as these would not be aggregated by the IDs.

N.B. Currently, Gaussian only.

apply_softmax Whether to apply the softmax function to the prediction columns when type is
"multinomial”.
N.B. Multinomial models only.

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only.

positive Level from dependent variable to predict. Either as character or level index (1
or 2 - alphabetically).

E.g. if we have the levels "cat” and "dog" and we want "dog" to be the positive
class, we can either provide "dog"” or 2, as alphabetically, "dog” comes after
n Ca t n .

Used when calculating confusion matrix metrics and creating ROC curves.
N.B. Only affects the evaluation metrics.
N.B. Binomial models only.

metrics List for enabling/disabling metrics.
E.g. 1ist("RMSE" = FALSE) would remove RMSE from the results, and 1ist("Accuracy”
= TRUE) would add the regular accuracy metric to the classification results. De-
fault values (TRUE/FALSE) will be used for the remaining metrics available.
Also accepts the string "all”.
N.B. Currently, disabled metrics are still computed.
include_predictions
Whether to include the predictions in the output as a nested tibble. (Logical)

parallel Whether to run evaluations in parallel, when data is grouped with group_by.

26 evaluate

Details

Packages used:

Gaussian:

r2m : MuMIn: :r.squaredGLMM

r2c : MuMIn: :r.squaredGLMM

AIC : stats: :AIC

AICc : MuMIn: :AICc

BIC : stats::BIC

Binomial and Multinomial:
Confusion matrix and related metrics: caret: :confusionMatrix
ROC and related metrics: pROC: : roc
MCC: mltools: :mcc

Value

Gaussian Results:

Tibble containing the following metrics by default:
Average RMSE, MAE, r2m, r2¢, AIC, AICc, and BIC.

N.B. Some of the metrics will only be returned if model objects were passed, and will be NA if
they could not be extracted from the passed model objects.

Also includes:
A nested tibble with the Predictions and targets.

A nested tibble with the model Coefficients. The coefficients are extracted from the model object
with broom: : tidy() or coef () (with some restrictions on the output). If these attempts fail, a
default coefficients tibble filled with NAs is returned.

Binomial Results:

Tibble with the following evaluation metrics, based on a confusion matrix and a ROC curve fitted
to the predictions:

ROC:

AUC, Lower CI, and Upper CI

Confusion Matrix:

Balanced Accuracy, F1, Sensitivity, Specificity, Positive Prediction Value, Negative Predic-
tion Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC (Matthews
correlation coefficient).

Other available metrics (disabled by default, see metrics): Accuracy.
Also includes:

A nested tibble with the predictions and targets.

A nested tibble with the sensativities and specificities from the ROC curve.

A nested tibble with the confusion matrix. The Pos_ columns tells you whether a row is a True
Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending on
which level is the "positive" class. L.e. the level you wish to predict.

evaluate 27

Multinomial Results:

For each class, a one-vs-all binomial evaluation is performed. This creates a Class Level Results
tibble containing the same metrics as the binomial results described above, along with the Sup-
port metric, which is simply a count of the class in the target column. These metrics are used
to calculate the macro metrics in the output tibble. The nested class level results tibble is also
included in the output tibble, and would usually be reported along with the macro and overall
metrics.

The output tibble contains the macro and overall metrics. The metrics that share their name with
the metrics in the nested class level results tibble are averages of those metrics (note: does not
remove NAs before averaging). In addition to these, it also includes the Overall Accuracy metric.

Other available metrics (disabled by default, see metrics): Accuracy, Weighted Balanced
Accuracy, Weighted Accuracy, Weighted F1, Weighted Sensitivity, Weighted Sensitivity,
Weighted Specificity, Weighted Pos Pred Value, Weighted Neg Pred Value, Weighted AUC,
Weighted Lower CI, Weighted Upper CI, Weighted Kappa, Weighted MCC, Weighted De-
tection Rate, Weighted Detection Prevalence, and Weighted Prevalence.

Note that the "Weighted" metrics are weighted averages, weighted by the Support.
Also includes:

A nested tibble with the Predictions and targets.

A nested tibble with the multiclass Confusion Matrix.

Class Level Results

Besides the binomial evaluation metrics and the Support metric, the nested class level results tibble
also contains:

A nested tibble with the sensativities and specificities from the ROC curve.

A nested tibble with the Confusion Matrix from the one-vs-all evaluation. The Pos_ columns
tells you whether a row is a True Positive (TP), True Negative (TN), False Positive (FP), or False
Negative (FN), depending on which level is the "positive" class. In our case, 1 is the current class
and @ represents all the other classes together.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach packages
library(cvms)
library(dplyr)

Load data
data <- participant.scores

Fit models
gaussian_model <- 1lm(age ~ diagnosis, data = data)
binomial_model <- glm(diagnosis ~ score, data = data)

Add predictions
datal[["gaussian_predictions”]] <- predict(gaussian_model, data,

28

type = "response”,

allow.new.levels = TRUE)
data[["binomial_predictions”]] <- predict(binomial_model, data,

allow.new.levels = TRUE)

Gaussian evaluation

evaluate(data = data, target_col = "age”,
prediction_cols = "gaussian_predictions”,
models = list(gaussian_model),
type = "gaussian")

Binomial evaluation

evaluate(data = data, target_col = "diagnosis”,
prediction_cols = "binomial_predictions”,
type = "binomial")

Multinomial

Create a tibble with predicted probabilities

data_mc <- multiclass_probability_tibble(
num_classes = 3, num_observations = 30,
apply_softmax = TRUE, FUN = runif,
class_name = "class_")

Add targets
class_names <- paste@("class_", c(1,2,3))
data_mc[["target”]] <- sample(x = class_names,

size = 30, replace = TRUE)

Multinomial evaluation

evaluate(data = data_mc, target_col = "target”,
prediction_cols = class_names,
type = "multinomial”)

ID evaluation
Gaussian ID evaluation

Note that 'age' is the same for all observations
of a participant

evaluate(data = data, target_col = "age”,
prediction_cols = "gaussian_predictions”,
id_col = "participant”,
type = "gaussian"”)

Binomial ID evaluation

evaluate(data = data, target_col = "diagnosis”,
prediction_cols = "binomial_predictions”,
id_col = "participant”,
id_method = "mean”, # alternatively: "majority”

type = "binomial")
Multinomial ID evaluation

Add IDs and new targets (must be constant within IDs)
data_mc[["target”]] <- NULL

data_mc[["id"]1] <- rep(1:6, each = 5)

id_classes <- tibble::tibble(

evaluate

multiclass_probability_tibble

"id" = 1:6,

target = sample(x = class_names, size = 6, replace = TRUE)
)
data_mc <- data_mc %>%

dplyr::left_join(id_classes, by = "id")

Perform ID evaluation

evaluate(data = data_mc, target_col = "target”,
prediction_cols = class_names,
id_col = "id",
id_method = "mean", # alternatively: "majority”
type = "multinomial”)

Training and evaluating a multinomial model with nnet

Create a data frame with some predictors and a target column
class_names <- paste@(”class_", 1:4)
data_for_nnet <- multiclass_probability_tibble(
num_classes = 3, # Here, number of predictors
num_observations = 30,
apply_softmax = FALSE,
FUN = rnorm,
class_name = "predictor_") %>%
dplyr::mutate(class = sample(
class_names,
size = 30,
replace = TRUE))

Train multinomial model using the nnet package
mn_model <- nnet::multinom(
"class ~ predictor_1 + predictor_2 + predictor_3",
data = data_for_nnet)

Predict the targets in the dataset
(we would usually use a test set instead)
predictions <- predict(mn_model, data_for_nnet,
type = "probs") %>%
dplyr::as_tibble()

Add the targets
predictions[["target"]] <- data_for_nnet[["class"]]

Evaluate predictions

evaluate(data = predictions, target_col = "target”,
prediction_cols = class_names,
type = "multinomial”)

29

multiclass_probability_tibble
Generate a multiclass probability tibble

Description

Maturing

30 multiclass_probability_tibble

Generate a tibble with random numbers containing one column per specified class. When the soft-
max function is applied, the numbers become probabilities that sum to 1 rowwise.

Usage

multiclass_probability_tibble(
num_classes,
num_observations,
apply_softmax = TRUE,

FUN = runif,
class_name = "class_"
)
Arguments
num_classes The number of classes. Also the number of columns in the tibble.

num_observations
The number of observations. Also the number of rows in the tibble.

apply_softmax Whether to apply the softmax function rowwise. This will transform the num-
bers to probabilities that sum to 1 rowwise.

FUN Function for generating random numbers. The first argument must be the num-
ber of random numbers to generate, as no other arguments are supplied.
class_name The prefix for the column names. The column index is appended.
Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach cvms
library(cvms)

Create a tibble with 5 classes and 10 observations

Apply softmax to make sure the probabilities sum to 1

multiclass_probability_tibble(num_classes = 5,
num_observations = 10,
apply_softmax = TRUE)

Using the rnorm function to generate the random numbers
multiclass_probability_tibble(num_classes = 5,
num_observations = 10,
apply_softmax = TRUE,
FUN = rnorm)

Creating a custom generator function that

exponentiates the numbers to create more "certain” predictions

rcertain <- function(n){

(runif(n, min = 1, max = 100)*1.4)/100

3

multiclass_probability_tibble(num_classes = 5,
num_observations = 10,
apply_softmax = TRUE,
FUN = rcertain)

participant.scores 31

participant.scores Farticipant scores

Description
Made-up experiment data with 10 participants and two diagnoses. Test scores for 3 sessions per
participant, where participants improve their scores each session.

Format
A data frame with 30 rows and 5 variables:

participant participant identifier, 10 levels

age age of the participant, in years

diagnosis diagnosis of the participant, either 1 or 0
score test score of the participant, on a 0-100 scale
session testing session identifier, 1 to 3

Author(s)
Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

precomputed. formulas Precomputed formulas

Description

Fixed effect combinations for model formulas with/without two- and three-way interactions. Up to
eight fixed effects in total with up to five fixed effects per formula.

Format
A data frame with 259,358 rows and 5 variables:

formula_ combination of fixed effects, separated by "+" and "x"
max_interaction_size maximum interaction size in the formula, up to 3

max_effect_frequency maximum count of an effect in the formula, e.g. the 3 A’sin "AxB +A % C
+ A * D”

num_effects number of unique effects included in the formula
min_num_fixed_effects minimum number of fixed effects required to use the formula, i.e. the

index in the alphabet of the last of the alphabetically ordered effects (letters) in the formula,
so 4 for the formula: "A +B + D"

Details

Effects are represented by the first eight capital letters.
Used by combine_predictors.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

32 select_metrics

reconstruct_formulas Reconstruct model formulas from results tibbles

Description

Maturing

In the results tibble from cross_validate and validate, the model formulas have been split into
the columns Dependent, Fixed and Random. Quickly reconstruct the model formulas from these
columns.

Usage

reconstruct_formulas(results, topn = NULL)

Arguments
results Data frame with results from cross_validate() or validate(). (tbl)
Must contain at least the columns "Dependent" and "Fixed". For random effects
the "Random" column should be included.
topn Number of top rows to return. Simply applies head() to the results tibble.
Value

List of model formulas.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

select_metrics Select columns with evaluation metrics and model definitions.

Description

Maturing

When reporting results, we might not want all the nested tibbles and process information columns.
This function selects the evaluation metrics and model formulas only.

Usage

select_metrics(results, include_definitions = TRUE, additional_includes = NULL)

Arguments

results Results tibble from cross_validate() or validate().
include_definitions
Whether to include the Dependent, Fixed and (possibly) Random columns. (Log-
ical)
additional_includes
Names of additional columns to select. (Character)

validate 33

Details

The first element in the Family column is used to identify the relevant columns.

Value

The results tibble with only metric and model definition columns.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

validate Validate regression models on a test set

Description

Stable

Train gaussian or binomial models on a full training set and validate it by predicting the test/validation
set. Returns results in a tibble for easy reporting, along with the trained models.

Usage

validate(
train_data,
models,
test_data = NULL,
partitions_col = ".partitions”,
family = "gaussian”,
link = NULL,
control = NULL,
REML = FALSE,
cutoff = 0.5,
positive = 2,
metrics = list(),
err_nc = FALSE,
rm_nc = FALSE,
parallel = FALSE,
model_verbose = FALSE

)
Arguments
train_data Data Frame.
models Model formulas as strings. (Character)

n o n

E.g. c("y~x","y~z").
Can contain random effects.
E.g. c("y~x+(1[r)", "y~z+(1|r)").
test_data Data Frame. If specifying partitions_col, this can be NULL.

34 validate

partitions_col Name of grouping factor for identifying partitions. (Character)

Rows with the value 1 in partitions_col are used as training set and rows
with the value 2 are used as test set.

N.B. Only used if test_data is NULL.

family Name of family. (Character)
Currently supports "gaussian” and "binomial”.

link Link function. (Character)
E.g. link = "log" with family = "gaussian” will use family = gaussian(link
="log").

See stats: :family for available link functions.

Default link functions:
Gaussian: 'identity'.
Binomial: 'logit’.
control Construct control structures for mixed model fitting (i.e. Imer and glmer). See
Ime4: :1merControl and 1me4: :glmerControl.
N.B. Ignored if fitting 1m or glm models.

REML Restricted Maximum Likelihood. (Logical)

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only

positive Level from dependent variable to predict. Either as character or level index (1
or 2 - alphabetically).

E.g. if we have the levels "cat” and "dog"” and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after

cat".
Used when calculating confusion matrix metrics and creating ROC curves.

N.B. Only affects evaluation metrics, not the model training or returned predic-
tions.

N.B. Binomial models only.

metrics List for enabling/disabling metrics.

E.g. 1list ("RMSE"” = FALSE) would remove RMSE from the results, and 1ist("Accuracy”
= TRUE) would add the regular accuracy metric to the classification results. De-
fault values (TRUE/FALSE) will be used for the remaining metrics available.

Also accepts the string "all”.
N.B. Currently, disabled metrics are still computed.

err_nc Raise error if model does not converge. (Logical)
rm_nc Remove non-converged models from output. (Logical)
parallel Whether to validate the list of models in parallel. (Logical)

Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

model_verbose Message name of used model function on each iteration. (Logical)

Details

Packages used:
Models:

Gaussian: stats::lm, 1me4: : Imer
Binomial: stats::glm, Ime4::glmer

validate 35

Results: Gaussian:

r2m : MuMIn: :r.squaredGLMM

r2c : MuMIn: :r.squaredGLMM

AIC : stats: :AIC

AICc : MuMIn: :AICc

BIC : stats: :BIC

Binomial:

Confusion matrix: caret: :confusionMatrix
ROC: pROC: : roc

MCC: mltools: :mcc

Value
List containing tbl (tibble) with results and the trained model object. The tibble contains:

Shared across families:

A nested tibble with coefficients of the models from all iterations.

Count of convergence warnings. Consider discarding models that did not converge on all itera-
tions. Note: you might still see results, but these should be taken with a grain of salt!
Count of other warnings. These are warnings without keywords such as "convergence".
Count of Singular Fit messages. See ?1me4: : isSingular for more information.
Nested tibble with the warnings and messages caught for each model.

Specified family.

Specified link function.

Name of dependent variable.

Names of fixed effects.

Names of random effects, if any.

Gaussian Results:

RMSE, MAE, r2m, r2¢, AIC, AICc, and BIC.
A nested tibble with the predictions and targets.

Binomial Results:

Based on predictions of the test set, a confusion matrix and ROC curve are used to get the follow-
ing:

ROC:

AUC, Lower CI, and Upper CI

Confusion Matrix:

Balanced Accuracy, F1, Sensitivity, Specificity, Positive Prediction Value, Negative Predic-
tion Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC (Matthews
correlation coefficient).

Other available metrics (disabled by default, see metrics): Accuracy.

Also includes:

A tibble with predictions, predicted classes (depends on cutoff), and the targets.

A tibble with the sensativities and specificities from the ROC curve.

36 validate

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other validation functions: cross_validate_fn(), cross_validate()

Examples

Attach packages

library(cvms)

library(groupdata2) # partition()
library(dplyr) # %>% arrange()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(7)

Partition data

Keep as single data frame

We could also have fed validate() separate train and test sets.
data_partitioned <- partition(data,

p=20.7,
cat_col = 'diagnosis',
id_col = 'participant',

list_out=FALSE) %>%
arrange(.partitions)

Validate a model

Gaussian

validate(data_partitioned,
models = "score~diagnosis”,
partitions_col = '.partitions',

family="'gaussian',
REML = FALSE)

Binomial

validate(data_partitioned,
models = "diagnosis~score"”,
partitions_col = '.partitions',

family="binomial')
Use non-default link functions

validate(data_partitioned,

models = "score~diagnosis”,
partitions_col = '.partitions’,
family = 'gaussian',

link = 'log',

REML = FALSE)

Feed separate train and test sets

validate

Partition data to list of data frames
The first data frame will be train (70% of the data)
The second will be test (30% of the data)
data_partitioned <- partition(data, p = 0.7,
cat_col = 'diagnosis',
id_col = 'participant',
list_out=TRUE)
train_data <- data_partitioned[[1]]
test_data <- data_partitioned[[2]]

Validate a model

Gaussian

validate(train_data,
test_data = test_data,
models = "score~diagnosis”,
family='gaussian',
REML = FALSE)

37

Index

*Topic data participant.scores, 31
compatible.formula.terms, 10 precomputed.formulas, 31
participant.scores, 31 predict(), 16, 17
precomputed. formulas, 31 pROC: :roc, 4, 12,17, 26, 35

baseline, 2 reconstruct_formulas, 32

broom: :tidy(), 17, 26
select_metrics, 32

caret::confusionMatrix, 4, 12, 17, 26, 35 stats::AIC, 4, 12,17, 26, 35
coef (), 17, 26 stats::BIC, 4, 12,17, 26, 35
combine_predictors, 8, 10, 31 stats::family, 11, 34
compatible.formula. terms, 10 stats::glm, 12, 34
cross_validate, 10, 19, 22, 32, 36 stats::1m, 4, 12, 34
cross_validate(), 15

cross_validate_fn, 13, 15, 36 tidyr::unnest, 6
cross_validate_fn(), 10)

cv_plot, 22 validate, 13, 19, 32, 33
cvms, 21

e1071::svm, 16
evaluate, 23

formula, 16

generate_formulas (combine_predictors),
8

glm, 11, 34

glmer, 11, 34

group_by, 24, 25

groupdata2::fold(), 11, 16

Im, 11,34

1me4: :glmer, 12, 34

1me4: :glmerControl, 11, 34
Ime4::isSingular, 12, 35
1me4: :1mer, 12, 34

1me4: :1merControl, 11, 34
lmer, 11, 34

mltools::mcc, 4, 12, 17, 26, 35
multiclass_probability_tibble, 3, 29
MuMIn::AICc, 4, 12,17, 26, 35
MuMIn::r.squaredGLMM, 4, 12, 17, 26, 35

nnet::multinom, /16

38

	baseline
	combine_predictors
	compatible.formula.terms
	cross_validate
	cross_validate_fn
	cvms
	cv_plot
	evaluate
	multiclass_probability_tibble
	participant.scores
	precomputed.formulas
	reconstruct_formulas
	select_metrics
	validate
	Index

