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Chapter 1

Introduction

This document is an introduction to species distribution modeling with R .
Species distribution modeling (SDM) is also known under other names including
envelope-modeling and (environemtal or ecological) niche-modeling. In SDM,
the following steps are usally taken: (1) locations of occurrence (and perhaps
non-occurrence) of a species (or other phenomenon) are compiled. (2) values
of environmental predictor variables (such as climate) at these locations are
determined. (3) the envrionmental values are used as to fit a model predicting
presence/absence, or another measure, such as abundance, associated with the
points. (4) The model is used to predict the likelihood of presence at all locations
of an area of interest (and perhaps in a future climate).

This document is not a general introduction to species distribution model-
ing itself. We assume that you are familiar with most of the concepts in this
field. If in doubt, you could consult Richard Pearson’s introduction to the sub-
ject: http://biodiversityinformatics.amnh.org/index.php?section_id=

111. More advanced readers may want to consult the recent review of the field
by Elith and Leathwick (2009).

We also assume that you are already familiar with the R language and en-
vironment. It would be particularly useful if you already had some experience
with statistical model fitting (e.g. the glm function) and with the ’raster’
package.

SDM have been implemented in R in many different ways. Here we focus on
the functions in from the ’dismo’ and the ’raster’ packages (but we also refer
to other packages such as ’BIOMOD)’. If you want to test, or build on, some of
the examples presented here, make sure you have the latest versions of these
libraries, and their dependencies, installed. If you are using a recent version of
R , you can do that with:

install.packages(c('rJava', 'XML', 'sp', 'rgdal', 'raster'))
install.packages("dismo", repos="http://R-Forge.R-project.org")
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Chapter 2

Data preparation

Data preparation is often the most time consuming part of a species distri-
bution modeling project. You need to collect a sufficient number of occurence
records that document presence (and perhaps absence) of the species of you
interest. A particularly important concern in species distribution modeling is
whether, apart from the species identification, the coordinates of the location
data are accurate enough (and whether uncertainty about the coordinates is
known or not). You also need to have accurate and relevant spatial predictor
variables at a sufficiently high spatial resolution.

2.1 Occurence data

Importing occurrence data into R is easy. But collecting, georeferencing,
and cross-checking coordinate data is tedious. While we’ll show you some useful
data prepration steps you can do in R , it is necessary to use additinal tools as
well. Discussions about species distribution modeling often focus on comparing
modeling methods, but if you are dealing with species with few and uncertain
records, your focus probably ought to be on improving the quality of the oc-
curence data. All methods do better if your occurence data is unbiased and free
of error (Graham et al., 2007) and you have have a relatively large number of
records (Wisz et al., 2008).

2.1.1 Importing occurence data

In most cases you will a file with point locality data representing the known
distribution of a species. Here is an example of using read.table to read records
that are stored in a text file. We are using a example file that is installed with
the dismo package, and for that reason we use a complex way to construct the
filename, but you can replace that with your own filename (remember to use
forward slashes!)

> library(dismo)
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raster version 1.3-4 (27-July-2010)

> filename <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
> filename

[1] "/tmp/Rinst245365170/dismo/ex/bradypus.csv"

> bradypus <- read.table(filename, header=TRUE, sep=',')
> head(bradypus)

species lon lat

1 Bradypus variegatus -65.4000 -10.3833

2 Bradypus variegatus -65.3833 -10.3833

3 Bradypus variegatus -65.1333 -16.8000

4 Bradypus variegatus -63.6667 -17.4500

5 Bradypus variegatus -63.8500 -17.4000

6 Bradypus variegatus -64.4167 -16.0000

> bradypus <- bradypus[,2:3]

> head(bradypus)

lon lat

1 -65.4000 -10.3833

2 -65.3833 -10.3833

3 -65.1333 -16.8000

4 -63.6667 -17.4500

5 -63.8500 -17.4000

6 -64.4167 -16.0000

You can also read such data directly out of Excel or from a database (see e.g.
the RODBC package). No matter how you do it, the objective is to get a matrix
(or a data.frame) with at least 2 columns to hold the coordinates (typically
longitude and latitude). In many cases you will have additional columns, e.g.,
a column to indicate the species if you are modeling multiple species; and a
column to indicate whether this is a ’presence’ or an ’absence’ record (a much
used convention is to code presence with a 1 and absence with a 0).

If you do not have any species distribution data you can get started by down-
loading data from the Global Biodiversity Inventory Facility (GBIF) (http:
//www.gbif.org/). In the dismo package there is a function ’gbif’ that you
can use for this. The data used below were downloaded using the gbif function
like this:

acaule = gbif('solanum', 'acaule', geo=FALSE)

Many records may not have coordinates. Out of the 699 records that gbif
returned (March 2010), there were only 54 records with coordinates.

> data(acaule)

> dim(acaule)

http://www.gbif.org/
http://www.gbif.org/
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[1] 699 23

> acgeo = subset(acaule, !is.na(lat) & !is.na(lon))

> dim(acgeo)

[1] 54 23

> acgeo[1:4, c(1:5,7:10)]

species continent country adm1 adm2 lat lon

13 Solanum acaule <NA> BOL <NA> <NA> -18.8167 -65.90

426 Solanum acaule Bitter America Argentina Jujuy -22.9000 -66.24

428 Solanum acaule Bitter America Bolivia La Paz Pacajes -17.4200 -68.85

429 Solanum acaule Bitter America Bolivia La Paz Pacajes -17.1200 -68.77

coordUncertaintyM alt

13 NA 3960

426 NA 4050

428 NA 3811

429 NA 3800

Here is a simple way to make a map of the occurrence localities of Solanum
acaule:

> library(maptools)

Note: polygon geometry computations in maptools

depend on the package gpclib, which has a

restricted licence. It is disabled by default;

to enable gpclib, type gpclibPermit()

Checking rgeos availability as gpclib substitute:

FALSE

> data(wrld_simpl)

> plot(wrld_simpl, xlim=c(-130,10), ylim=c(-60,60))

> points(acgeo$lon, acgeo$lat, col='red')
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The ”wrld simpl”dataset contains rough country outlines. You can use other
datasets of polygons (or lines or points) as well. For example, you can read a
shapfile into R using the readOGR function in the rgdal package or the read-

ShapePoly function in the maptools package.

2.1.2 Cross-checking

Solanum acaule is a species that occurs in the higher parts of the Andes
mountains of Peru and Bolivia. Do you see any errors on the map? There
are three records that have plausible latitudes, but longitudes of zero, which is
clearly wrong, as this puts them in the Atlantic Ocean, south of West Africa.
The gbif function (with default arguments) removes records that have (0, 0) as
coordinates, but not if one of the coordinates is zero.

Let’s have a look at these records:

> lonzero = subset(acaule, lon==0)

> lonzero[, 1:13]

species continent country adm1 adm2

544 Solanum acaule Bitter subsp. acaule <NA> BOL <NA> <NA>

551 Solanum acaule Bitter subsp. acaule <NA> BOL <NA> <NA>

567 Solanum acaule Bitter subsp. acaule <NA> PER <NA> <NA>

638 Solanum acaule Bitter subsp. acaule <NA> PER <NA> <NA>
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640 Solanum acaule Bitter subsp. acaule <NA> ARG <NA> <NA>

641 Solanum acaule Bitter subsp. acaule <NA> ARG <NA> <NA>

locality lat lon

544 Llave -16.083333 0

551 Llave -16.083333 0

567 km 205 between Puno and Cuzco -6.983333 0

638 km 205 between Puno and Cuzco -6.983333 0

640 between Quelbrada del Chorro and Laguna Colorada -23.716667 0

641 between Quelbrada del Chorro and Laguna Colorada -23.716667 0

coordUncertaintyM alt institution collection catalogNumber

544 NA 3900 IPK WKS 30050 304711

551 NA 3900 IPK GB WKS 30050

567 NA 4250 IPK WKS 30048 304709

638 NA 4250 IPK GB WKS 30048

640 NA 3400 IPK WKS 30027 304688

641 NA 3400 IPK GB WKS 30027

The records are from Bolivia (BOL), Peru (PER) and Argentina (ARG),
confirming that coordinates are in error (it could have been that the coordinates
were correct for a location in the Ocean, perhaps referring to a location a fish
was caught rather than a place where S. acaule was collected). Interestingly,
another data quality issue is revealed: each record occurs twice. This could
happen because plant samples are often split and send to multiple herbariums.
But in this case it seems that a single GBIF data provider (IPK) has these
record duplicated in its database.

It is important to cross-check coordinates by visual and other means. One
approach is to compare the country (and lower level administrative subdivi-
sions) of the site as specified by the records, with the country implied by the
coordinates (Hijmans et al., 1999). In the example below we use the ’coordi-
nates’ function from the ’sp’ package to create a SpatialPointsDataFrame, and
then the ’overlay’ function, also from ’sp’, to do a point-in-polygon query with
the countries polygons.

> library(sp)

> coordinates(acgeo) = ~lon+lat

> ov = overlay(acgeo, wrld_simpl)

> cntr = as.character(wrld_simpl@data$NAME[ov])

> which(is.na(cntr))

[1] 43 44 45 46 47 48

> i = which(cntr != acgeo@data$country)

> cbind(cntr, acgeo@data$country)[i,]

cntr

[1,] "Bolivia" "BOL"

[2,] "Bolivia" "BOL"
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[3,] "Peru" "PER"

[4,] "Peru" "PER"

[5,] "Peru" "PER"

Note that the polygons that we used in the example above are not very
precise, and they should not be used in a real analysis (see http://www.gadm.

org/ for more detailed administrative division files, or use the ’getData’ function
from the raster package (e.g. getData(’gadm’, country=’PER’, level=0) to
get the national borders of Peru. The overlay function returned indices (row
numbers) that we stored in variable ’i’. We used these in the next line to get
the country for each point. Then we ask which countries are ’NA’ (i.e., points in
oceans), and which countries have non matching names (in this case these are
all caused by using abbreviations in stead of full names).

> acgeo = acgeo[coordinates(acgeo)[,'lon'] < 0, ]

2.1.3 Georeferencing

If you have records with locality descriptions but no coordinates, you should
consider georeferencing these. Not all the records can be georeferenced. Some-
times even the country is unknown (country==”UNK”). Here we select only
records that do not have coordinates, but that do have a locality description.

> georef = subset(acaule, (is.na(lon) | is.na(lat)) & ! is.na(locality) )

> dim(georef)

[1] 89 23

> georef[1:3,1:13]

species continent country

30 Solanum acaule Bitter subsp. acaule (Juz.) Hawkes & Hjert. <NA> PER

42 Solanum acaule Bitter subsp. acaule (Juz.) Hawkes & Hjert. <NA> BOL

81 Solanum acaule Bitter subsp. acaule (Juz.) Hawkes & Hjert. <NA> ARG

adm1 adm2 locality lat lon coordUncertaintyM alt

30 <NA> <NA> km 205 between Puno and Cuzco NA NA NA 4250

42 <NA> <NA> Llave NA NA NA 3900

81 <NA> <NA> da Pena NA NA NA NA

institution collection catalogNumber

30 DEU159 DEU WKS 30048

42 DEU159 DEU WKS 30050

81 DEU159 DEU WKS 30417

Among the first records is an old acquaintance. The record, with catalog
number WKS 30048 was also in the set of records that had a longitude of zero
degrees. This time it seems that it is served to gbif via another institution
’DEU’ (I suspect that these duplicates occur because GBIF has records from

http://www.gadm.org/
http://www.gadm.org/
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aggregators such as EURISCO and national nodes, as well as from individual
institutes).

We recommend using a tool like BioGeomancer: http://bg.berkeley.edu/
latest (Guralnick et al., 2006) to georeference textual locality descriptions. An
important feature of BioGeomancer is that it attempts to capture the uncer-
tainty associated with each georeference (Wieczorek et al., 2004). The dismo
package has a function biogeomancer that you can use for this, and that we
demonstrate below, but its use is generally not recommended because you really
need a detailed map interface for accurate georeferencing.

Here is an example for one of the records with longitude = 0. We put the
biogeomacer function into a ’try’ function, to assure elegant error handling if
the computer is not connected to the Internet.

> args(biogeomancer)

function (country = "", adm1 = "", adm2 = "", locality = "",

singleRecord = TRUE, progress = "text")

NULL

> b = try( biogeomancer('Peru', locality=lonzero$locality[3], progress='') )

> b

id lon lat coordUncertaintyM

1 1 -74.99063 -9.19397 1145076

> lonzero$lat[3]

[1] -6.983333

Note that the uncertainty (expressed in meters) is quite high, and that the
latitude is rather different from the original latitude (whereas the original lati-
tude might in fact be correct).

2.2 Sampling bias

2.3 Random points

Many of the early species distribution models, such as Bioclim and Domain
are known as ’profile’ methods because they only use ’presence’ data. Other
methods also use ’absence’ data or ’background’ data. Logistic regression is the
classical approach to analyzing presence and absence data (and it is still much
used, often implemented in a generalized linear modeling (GLM) framework; and
the ’maxent’ algorithm is also closely related to logistic regression). If you have
a large dataset with presence/absence from a well designed survey, you should
use a method that can use these data (i.e. do not use a modeling method that
only considers presence data). If you only have presence data, you can still use

http://bg.berkeley.edu/latest
http://bg.berkeley.edu/latest
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a method that needs absence data, by substiting absence data with background
data.

Background data, also referred to as ’random absence’ is, in many cases, not
that different from ’true absence’ data. If you have a species with a range that is
relatively small compared to they study area, there will only a few background
points where the species is actually present. Moreover, the species might be
absent (not observable) at these sites at a given time of sampling (depending on
scale, detectability, ...). In fact, if you are modeling at, say, a 1 km2 resolution,
all species that are present within a grid cell will also be absent somewhere
within that cell. Background data establishes the environmental domain of the
study, presence data should establish under which conditions a species is more
likely to be present than on average. ’True’ absence data can be less noisy, and
help detect more subtle interactions in variables that determine distribution
and/or biogeographic barriers. However, absence data can also be biased and
incomplete and in such cases probably less useful than presence data.

dismo has a function to sample random points (background data) from a
study area. You can use a ’mask’ to exclude area with no data NA, e.g. areas
not on land. You can use an ’extent’ to further restrict the area from which
random locations are drawn.

> files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
+ pattern='grd', full.names=TRUE )

> mask <- raster(files[[1]])

> bg <- randomPoints(mask, 500 )

> par(mfrow=c(1,2))

> plot(!is.na(mask), legend=FALSE)

> points(bg, cex=0.5)

> # now with an extent

> e = extent(-80, -53, -39, -22)

> bg2 <- randomPoints(mask, 50, ext=e)

> plot(!is.na(mask), legend=FALSE)

> plot(e, add=TRUE, col='red')
> points(bg2, cex=0.5)
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Chapter 3

Raster data

3.1 Predictor variables

In species distribution modeling, predictor variables are typically organized
as raster (grid) type files. Each predictor should be a ’raster’ representing a
variable of interest. Variables can include climatic, soil and terrain, vegetation,
land use, and other variables. These data are typically stored in files in some
kind of GIS format. Almost all relevant formats can be used (including ESRI
grid, geoTiff, netCDF, IDRISI, and ASCII). Avoid ASCII files if you can, as
they tend to considerably slow down processing speed. For any particular study
the layers all should have the same spatial extent, resolution, and origin (if
necessary, see the ’raster’ package to prepare your predictor variable data).
The set of predictor variables (raster) can be used to make a ’RasterStack’,
which can be thought of as a collection of ’RasterLayer’ objects (see the raster
package for more info).

Here we make a list of files that are installed with the dismo package and
then create a rasterStack from these, show the names of each layer, and finally
plot them all.

> files <- list.files(path=paste(system.file(package="dismo"),

+ '/ex', sep=''), pattern='grd', full.names=TRUE )

> files

[1] "/tmp/Rinst245365170/dismo/ex/bio1.grd"

[2] "/tmp/Rinst245365170/dismo/ex/bio12.grd"

[3] "/tmp/Rinst245365170/dismo/ex/bio16.grd"

[4] "/tmp/Rinst245365170/dismo/ex/bio17.grd"

[5] "/tmp/Rinst245365170/dismo/ex/bio5.grd"

[6] "/tmp/Rinst245365170/dismo/ex/bio6.grd"

[7] "/tmp/Rinst245365170/dismo/ex/bio7.grd"

[8] "/tmp/Rinst245365170/dismo/ex/bio8.grd"

[9] "/tmp/Rinst245365170/dismo/ex/biome.grd"

15
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> predictors <- stack(files)

> predictors

class : RasterStack

filename :

nlayers : 9

nrow : 192

ncol : 186

ncell : 35712

projection : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

min value : -23 0 0 0 61 -212 60 -66 1

max value : 289 7682 2458 1496 422 242 461 323 14

xmin : -125

xmax : -32

ymin : -56

ymax : 40

xres : 0.5

yres : 0.5

> layerNames(predictors)

[1] "bio1" "bio12" "bio16" "bio17" "bio5" "bio6" "bio7" "bio8" "biome"

> plot(predictors)
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We can also make a plot of a single layer in a RasterStack, and plot some
additional data on top of it:

> plot(predictors, 1)

> plot(wrld_simpl, add=TRUE)

> points(bradypus, col='red', cex=0.5)

> points(acgeo, col='blue', pch='x', cex=0.5)
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The example above uses data representing ’bioclimatic variables’ from the
WorldClim database (http://www.worldclim.org, Hijmans et al., 2004) and
’terrestiral biome’ data from the WWF (http://www.worldwildlife.org/science/
data/item1875.html, Olsen et al., 2001). You can go to these websites if you
want higher resolution data. You can also use the getData function from the
raster package to download WorldClim climate data (as well as other geo-
graphic data).

Variable selection is obviously important, particularly of the objective of
a study is explanation. See, e.g., Austin and Smith (1987), Austin (2002). In
SDM, the objective tends to be prediction, in which case variable selection might
be less important (as long as there are enough variables with different spatial
patterns); but this is an area that needs further research.

http://www.worldclim.org
http://www.worldwildlife.org/science/data/item1875.html
http://www.worldwildlife.org/science/data/item1875.html
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3.2 Extracting values from rasters

We now have a set of predictor variables (rasters) and occurence points. The
next step is to extract the values of the predictors at the locations of the points.
(This step can be skipped for the modeling methods that are implemented in
the dismo package). This is very straightfoward thing to do using the xyValues
function from the raster package. In the example below we use that function first
for the Bradypus occurence points, then for 500 random background points. We
combine these into a single data.frame in which the first column (variable ’pb’)
indicates whether this is a presence or a background point. ’biome’ is catagorical
variable (called a ’factor’ in R ) and it is important to explicitly define it that
way (so that it won’t be treated like any other numerical variable).

> presvals <- xyValues(predictors, bradypus)

> backgr <- randomPoints(predictors, 500)

> absvals <- xyValues(predictors, backgr)

> pb <- c(rep(1, nrow(presvals)), rep(0, nrow(absvals)))

> sdmdata <- data.frame(cbind(pb, rbind(presvals, absvals)))

> sdmdata[,'biome'] = as.factor(sdmdata[,'biome'])
> head(sdmdata)

pb bio1 bio12 bio16 bio17 bio5 bio6 bio7 bio8 biome

1 1 263 1639 724 62 338 191 147 261 1

2 1 263 1639 724 62 338 191 147 261 1

3 1 253 3624 1547 373 329 150 179 271 1

4 1 243 1693 775 186 318 150 168 264 1

5 1 243 1693 775 186 318 150 168 264 1

6 1 252 2501 1081 280 326 154 172 270 1

> tail(sdmdata)

pb bio1 bio12 bio16 bio17 bio5 bio6 bio7 bio8 biome

611 0 174 244 154 16 370 -10 380 252 13

612 0 261 3371 1632 59 337 198 139 255 1

613 0 179 776 267 123 357 -8 365 223 8

614 0 146 659 333 10 343 4 339 72 12

615 0 195 1310 445 225 299 105 194 232 1

616 0 241 1382 558 132 325 138 187 265 7

> summary(sdmdata)

pb bio1 bio12 bio16

Min. :0.0000 Min. : 3.0 Min. : 0 Min. : 0.0

1st Qu.:0.0000 1st Qu.:176.0 1st Qu.: 827 1st Qu.: 334.8

Median :0.0000 Median :240.0 Median :1367 Median : 584.0

Mean :0.1883 Mean :213.5 Mean :1556 Mean : 630.2

3rd Qu.:0.0000 3rd Qu.:260.0 3rd Qu.:2216 3rd Qu.: 893.0
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Max. :1.0000 Max. :282.0 Max. :7682 Max. :2458.0

bio17 bio5 bio6 bio7

Min. : 0.0 Min. : 74.0 Min. :-149.00 Min. : 70.0

1st Qu.: 37.0 1st Qu.:303.8 1st Qu.: 40.25 1st Qu.:118.8

Median : 105.0 Median :319.0 Median : 155.00 Median :164.5

Mean : 161.3 Mean :310.2 Mean : 117.70 Mean :192.5

3rd Qu.: 223.0 3rd Qu.:335.0 3rd Qu.: 200.00 3rd Qu.:251.0

Max. :1496.0 Max. :394.0 Max. : 231.00 Max. :442.0

bio8 biome

Min. :-34.0 1 :274

1st Qu.:217.8 13 : 78

Median :251.0 7 : 62

Mean :226.1 2 : 48

3rd Qu.:262.0 8 : 46

Max. :297.0 (Other):107

NA's : 1

> pairs(sdmdata[,2:5], cex=0.1, fig=TRUE)

bio1
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Chapter 4

Model fitting, prediction,
and evaluation

4.1 Model fitting

Model fitting is quite similar accross the modeling methods that exist in R
. Most methods take a ’formula’ identifying the dependent and independent
variables, accompanied with a data.frame that holds these variables. Details
on specific methods are provided further down on this document, in the sections
on specific modeling methods.

A simple formula could look like: y ~ x1 + x2 + x3, i.e. y is a function
of x1, x2, and x3. Another example is y ~ ., which means that y is a func-
tion of all other variables in the data.frame provided to the function. See
help(’formula’) for more details about the formula syntax. In the example
below, the function ’glm’ is used to fit generalized linear models. glm returns a
model object.

> m1 = glm(pb ~ bio1 + bio5 + bio12, data=sdmdata)

> class(m1)

[1] "glm" "lm"

> summary(m1)

Call:

glm(formula = pb ~ bio1 + bio5 + bio12, data = sdmdata)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.84047 -0.22743 -0.07809 0.07855 0.89154

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.245e-01 9.581e-02 1.300 0.194152

bio1 1.776e-03 4.009e-04 4.431 1.11e-05 ***

bio5 -1.679e-03 4.429e-04 -3.791 0.000165 ***

bio12 1.280e-04 1.679e-05 7.626 9.27e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.1173356)

Null deviance: 94.156 on 615 degrees of freedom

Residual deviance: 71.809 on 612 degrees of freedom

AIC: 434.21

Number of Fisher Scoring iterations: 2

> m2 = glm(pb ~ ., data=sdmdata)

> m2

Call: glm(formula = pb ~ ., data = sdmdata)

Coefficients:

(Intercept) bio1 bio12 bio16 bio17 bio5

0.2661736 -0.0003203 0.0003813 -0.0004406 -0.0007732 0.0113502

bio6 bio7 bio8 biome2 biome3 biome4

-0.0114857 -0.0122030 0.0001680 -0.1238241 -0.1743785 -0.1256591

biome5 biome7 biome8 biome9 biome10 biome12

-0.0884184 -0.2419726 -0.0659922 -0.1170371 -0.1291624 -0.0776324

biome13 biome14

0.0211203 0.0759114

Degrees of Freedom: 613 Total (i.e. Null); 594 Residual

(2 observations deleted due to missingness)

Null Deviance: 94.08

Residual Deviance: 66.02 AIC: 415.2

Models implemented in dismo do not use a formula (and most models only
take presence points). For example:

> bc = bioclim(sdmdata[,c('bio1', 'bio5', 'bio12')])
> class(bc)

[1] "Bioclim"

attr(,"package")

[1] "dismo"

> bc
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class : Bioclim

variables: bio1 bio5 bio12

presence points: 616

bio1 bio5 bio12

[1,] 263 338 1639

[2,] 263 338 1639

[3,] 253 329 3624

[4,] 243 318 1693

[5,] 243 318 1693

[6,] 252 326 2501

[7,] 240 317 1214

[8,] 275 335 2259

[9,] 271 327 2212

[10,] 274 329 2233

(... ... ...)

> pairs(bc)

bio1
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4.2 Model prediction

Different modeling methods return differt type of ’model’ objects (typically
they have the same name as the modeling method used). All of these ’model’ ob-
jects, irrespective of their exact class, can be used to with the predict function
to make predictions for any combination of values of the independent variables.
This is illusrated in the example below where we make predictions with model
object ’m1’ for three records with values for variables bio1, bio5 and bio12 (the
variables used in the example above to create object m1)

> bio1 = c(40, 150, 200)

> bio5 = c(60, 115, 290)

> bio12 = c(600, 1600, 1700)

> pd = data.frame(cbind(bio1, bio5, bio12))

> pd

bio1 bio5 bio12

1 40 60 600

2 150 115 1600

3 200 290 1700

> predict(m1, pd)

1 2 3

0.1716806 0.4027829 0.2106207

> predict(bc, pd)

[1] 0.00000000 0.00974026 0.35064935

4.3 Model evaluation

Traditional measures of fit used in regression, such as r2 and textitp-values
have little place in species distribution modeling. For some methods these met-
rics do not apply. But even if they do, they should normally not be used as
all the classic assumptions on which they are based (independence of data, nor-
mality of distributions) are typically strongly violated. In stead, most modelers
rely on cross-validation. This consists of creating a model with one ’training’
data set, and testing it with another data set of known occurences. Typically,
training and testing data are created through random sampling (without re-
placement) from a single data set. Only in a few cases, e.g. Elith et al., 2006,
training and test data are from different sources and pre-defined.

Different measures can be used to evaluate the quality of a prediction (Field-
ing and Bell, 1997), perhaps depending on the goal of the study. Many measueres
are ’threshold dependent’. That means that a threshold must be set first (e.g.
0.5). Predicted values above that threshold indicate a prediction of ’presence’,
and values below the threshold indicate ’absence’. Some measures emphasize
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the weight of false absences, others give more weight to false presences. Cohen’s
kappa is an example of a threshold dependent model evaluation statistic.

Much used statistics that are threshold independent are the correlation co-
efficient and the Area Under the Receiver Operator Curve (AUROC, generally
further abbreviated to AUC). AUC is a measure of rank-correlation. If it is
high, it indicates that high predicted scores tend to be areas of known presence
and locations with lower model prediction scores tend to areas where the species
is known to be absent (or a random point). An AUC score of 0.5 means that
the model is as good as a random guess.

Below we illustrate the computation of the correlation coefficient, AUC with
two random variables. p (presence) represents the predicted value for 50 known
cases (locations) where the species is present. and a (absence) represents the
predicted value for 50 known cases (locations) where the species is absent.

Create two variables with random normally distributed values and plot them:

> p = rnorm(50, mean=0.7, sd=0.3)

> a = rnorm(50, mean=0.4, sd=0.4)

> par(mfrow=c(1, 2))

> plot(sort(p), col='red', pch=21)

> points(sort(a), col='blue', pch=24)

> legend(1, 0.95 * max(a,p), c('presence', 'absence'), pch=c(21,24), col=c('red', 'blue'))
> comb = c(p,a)

> group = c(rep('presence', length(p)), rep('absence', length(a)))

> boxplot(comb~group, col=c('blue', 'red'))
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The two variables clearly have different distributions, and the values for
’presence’ tend to be higher than for ’absence’. Below we compute the correla-
tion coeficient and the AUC:

> group = c(rep(1, length(p)), rep(0, length(a)))

> cor.test(comb, group)$estimate
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cor

0.3423600

> mv <- wilcox.test(p,a)

> auc <- as.numeric(mv$statistic) / (length(p) * length(a))

> auc

[1] 0.6976

This is how you can computing these, and other statistics, with the dismo
package (and see the ROCR package for similar functionality):

> e = evaluate(p=p, a=a)

> class(e)

[1] "ModelEvaluation"

attr(,"package")

[1] "dismo"

> e

class : ModelEvaluation

n presences : 50

n absences : 50

AUC : 0.6976

cor : 0.3423600

TPR+TNR threshold: 0.442

> par(mfrow=c(1, 2))

> density(e)

> boxplot(e, col=c('blue', 'red'))
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Now back to some real data, presence-only in this case. We’ll divide the data
in two random sets, one for training a Bioclim model, and one for evaluating
the model.

> rand <- round(0.75 * runif(nrow(sdmdata)))

> traindata <- sdmdata[rand==0,]

> traindata <- traindata[traindata[,1] == 1, 2:9]

> testdata <- sdmdata[rand==1,]

> bc <- bioclim(traindata)

> e <- evaluate(testdata[testdata==1,], testdata[testdata==0,], bc)

> e

class : ModelEvaluation

n presences : 39

n absences : 175

AUC : 0.8197802

cor : 0.3659818

TPR+TNR threshold: 0.01

> plot(e, 'ROC')
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4.4 Data partitioning

The kfold function facilitates data partitioning. It creates a vector that
assinges each row in the data matrix to a a group (between 1 to k).

Let’s first create presence and background data.

> pres <- sdmdata[sdmdata[,1] == 1, 2:9]

> back <- sdmdata[sdmdata[,1] == 0, 2:9]

The background data will only be used for model testing and does not need
to be partitioned. We now partition the data into 5 groups.

> k <- 5

> group <- kfold(pres, k)

> group[1:10]

[1] 4 4 4 4 2 3 5 5 5 4

> unique(group)

[1] 4 2 3 5 1

Now we can fit and test our model five times. In each run, the records
corresponding to one of the five group is only used to evaluate the model, while
the other four groups are only used to fit the model. The results are stored in
a list called ’e’.

> e <- list()

> for (i in 1:k) {

+ train <- pres[group != i,]

+ test <- pres[group == i,]

+ bc <- bioclim(train)

+ e[[i]] <- evaluate(p=test, a=back, bc)

+ }

We can extract several things from the objects in ’e’, but let’s restrict our-
selves to the AUC values and the ”maximum of the sum of the sensitivity (true
positive rate) and specificity (true negative rate)” (this is sometimes uses as a
threshold for setting cells to presence or absence).

> auc <- sapply( e, function(x){slot(x, 'auc')} )

> auc

[1] 0.7979130 0.8487826 0.7972083 0.7541739 0.8332609

> mean(auc)

[1] 0.8062678

> sapply( e, function(x){ x@t[which.max(x@TPR + x@TNR)] } )

[1] 0.060 0.065 0.020 0.040 0.060



Chapter 5

Modeling methods

A large number of algorithms have been used in species distribution mod-
eling. They can be classified as ’profile’, ’regression’, and ’machine learning’
methods. Profile methods only consider ’presence’ data, not absence or back-
ground data. Regression and machine learning methods use both presence and
absence or background data. The distinction between regression and machine
learning methods is not sharp, but it is perhaps still useful as way to classify
models. Below we discuss examples of these different types of models.

We will use the same data for all models, except that some models cannot
use categorical variables. So we drop that from the predictors stack.

> pred_nf <- dropLayer(predictors, 'biome')

We’ll use the Bradypus data for presence of a species. Lets make a training
and a testing set.

> group <- kfold(bradypus, 5)

> pres_train <- bradypus[group != 1, ]

> pres_test <- bradypus[group == 1, ]

To speed up processing, let’s retstruct the predictions to a more restricuted
area (defined by a rectangular extent):

> ext = extent(-90, -32, -33, 23)

Background data for training and a testing set. The first layer in the Raster-
Stack is used as a ’mask’. That ensures that random points only occur within
the spatial extent of the rasters, and within cells that are not NA, and that there
is only a single absence point per cell. Here we further restrict the background
points to be within 15% of our specified extent ’ext’.

> backg <- randomPoints(pred_nf, n=1000, ext=ext, extf = 1.25)

> colnames(backg) = c('lon', 'lat')
> group <- kfold(backg, 5)

> backg_train <- backg[group != 1, ]

> backg_test <- backg[group == 1, ]

29
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> r = raster(pred_nf, 1)

> plot(!is.na(r), col=c('white', 'light grey'), legend=FALSE)

> plot(ext, add=TRUE, col='red', lwd=2)

> points(backg_train, pch='-', cex=0.5, col='yellow')
> points(backg_test, pch='-', cex=0.5, col='black')
> points(pres_train, pch= '+', col='green')
> points(pres_test, pch='+', col='blue')

−120 −100 −80 −60 −40

−
40

−
20

0
20

40

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−
−

−

−

− −

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

− −

−

−

−

−

−

−

−

−

−

−

−−

−

−−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−
−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−
−

−

−

−

−

−

− −

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−
−

− −

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−
−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−−

−

−

−

−

−

−

− −

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−−

−

−

−

−

−

−

−

−−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

− −

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−
−

−

− −
− −

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−−

−

−

−

−

−

−

−

− −

−

−

−

−

−

−

−
−

−

−
−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−
−

−
−

−

−

−−

−
−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−
−

−
−

−

−

−

−

−

−

− −

−

− −

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−
−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

− −
−−

−

−

−

− −

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−
−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−
−

−−

−

−

−

−

−

++

++

++
+

++

+

+
++ +++++++ ++

+

+++
++

+++
++++

+

+
+

+

++

++
+

++

+++++

+
++++

++++
++++++++++++++++++

+
++++++++

+++
+++

+++

++ ++

+
+

+++ +
+

++

+++ +

+
+

+

5.1 Profile methods

The three methods described here, Bioclim, Domain, and Mahal. These
methods are implemented in the dismo package. The procedures to use these
models is therefore the same for all three.

5.1.1 Bioclim

The BIOCLIM algorithm has been extensively used for species distribution
modeling. BIOCLIM is a classic ’climate-envelope-model’. Although it generally
does not perform as good as some other modeling methods (Elith et al. 2006,
Hijmans and Graham, 2006), it is still used, among other reasons because the
algorithm is easy to understand and thus useful in teaching species distribution



5.1. PROFILE METHODS 31

modeling. The BIOCLIM algorithm computes the similarity of a location by
comparing the values of environmental variables at any location to a percentile
distribution of the values at known locations of occurence (’training sites’). The
closer to the 50th percentile (the median), the more suitable the location is. The
tails of the distribution are not distinguished, that is, 10 percentile is treated
as equivalent to 90 percentile. In the ’dismo’ implementation, the values of the
upper tail values are transformed to the lower tail, and the minimum percentile
score across all the environmental variables is used (i.e. BIOCLIM using an
approach like Liebig’s law of the minimum). This value is substracted from 1
and then mutliplied with two so that the results are between 0 and 1. The
reason for scaling this way is that the results become more like that of other
distributon modeling methods and are thus easier to interpret. The value 1 will
rarely be observed as it would require a location that has the median value of
the training data for all the variables considered. The value 0 is very common
as it is assinged to all cells with a value of an environmental variable that is
outside the percentile distribution (the range of the training data) for at least
one of the variables.

Earlier on, we fitted a Bioclim model using data.frame with each row repre-
senting the environmental data at known sites of presence of a species. Here we
fit a bioclim model simly using the predictors, and the occurence points.

> bc <- bioclim(pred_nf, pres_train)

> plot(bc, a=1, b=2, p=0.85)
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And evaluate it in a similar way, by providing presenced and background
(absence) points, and a RasterStack:

> e <- evaluate(pres_test, backg_test, bc, pred_nf)

> e

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.6798913

cor : 0.1396998

TPR+TNR threshold: 0.022

And use the RasterStack with predictor variables to make a prediction to a
RasterLayer:

> pb <- predict(pred_nf, bc, ext=ext, progress='')
> pb

class : RasterLayer

filename :

nrow : 112

ncol : 116

ncell : 12992
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min value : 0

max value : 0.7526882

projection : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

xmin : -90

xmax : -32

ymin : -33

ymax : 23

xres : 0.5

yres : 0.5

> par(mfrow=c(1,2))

> plot(pb, main='Bioclim, raw values')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pb > threshold, main='presence/absence')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> points(pres_train, pch='+')
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Please note the order of the arguments in the predict function. In the ex-
ample above, we used predict(pred_nf, bc) (first the RasterStack, then the
model object), which is little bit less effecient than predict(bc, pred nf) (first
the model, than the RasterStack). The reason for using the order we have used,
is that this will work for all models, whereas the other option only works for the
models defined in the dismo package, such as Bioclim, Domain, and Maxent,
but not for models defined in other packages (random forest, boosted regression
trees, glm, etc.).

5.1.2 Domain

The Domain algorithm (Carpenter et al. 1993) that has been extensively
used for species distribution modeling. It did not perform very well in a model
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comparison (Elith et al. 2006) and very poorly when assessing climate change
effects (Hijmans and Graham, 2006). The Domain algorithm computes the
Gower distance between environmental variables at any location and those at
any of the known locations of occurence (’training sites’).

The distance between the environment at point A and those of the known
occurences for a single climate variable is calculated as the absolute difference in
the values of that variable divided by the range of the variable across all known
occurence points (i.e., the distance is scaled by the range of observations). For
each variable the minimum distance beteen a site and any of the training points
is taken. The Gower distance is then the mean of these distances over all
environmental variables. The Domain algorithm assigns to a place the distance
to the closest known occurence (in environmental space).

To integrate over environmental variables, the distance to any of the variables
is used. This distance is substracted from one, and (in this R implementation)
values below zero are truncated so that the scores are between 0 (low) and 1
(high).

Below we fit a domain model, evaluate it, and make a prediction. We map
the prediction, as well as a map subjectively classified into presence / absence.

> dm <- domain(pred_nf, pres_train)

> e <- evaluate(pres_test, backg_test, dm, pred_nf)

> e

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.7034783

cor : 0.2102133

TPR+TNR threshold: 0.6

> pd = predict(pred_nf, dm, ext=ext, progress='')
> par(mfrow=c(1,2))

> plot(pd, main='Domain, raw values')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pd > threshold, main='presence/absence')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> points(pres_train, pch='+')
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5.1.3 Mahalanobis

The mahal function implements a species distribution model based on the
Mahalanobis distance (Mahalanobis, 1936). Mahalanobis distance takes into
account the correlations of the variables in the data set, and it is not dependent
on the scale of measurements.

> mm <- mahal(pred_nf, pres_train)

> e <- evaluate(pres_test, backg_test, mm, pred_nf)

> e

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.7761957

cor : 0.1438715

TPR+TNR threshold: -9.763

> pm = predict(pred_nf, mm, ext=ext, progress='')
> par(mfrow=c(1,2))

> pm[pm < -10] <- -10

> plot(pm, main='Mahalanobis distance')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pm > threshold, main='presence/absence')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> points(pres_train, pch='+')
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5.2 Regression models

The remaining models need to be fit presence textifand absence (background)
data. With the exception of ’maxent’, we cannot fit the model with a Raster-
Stack and points. Instead, we need to extract the environmental data values
ourselves, and fit the models with these values.

> train <- rbind(pres_train, backg_train)

> pb_train <- c(rep(1, nrow(pres_train)), rep(0, nrow(backg_train)))

> envtrain <- xyValues(predictors, train)

> envtrain <- data.frame( cbind(pa=pb_train, envtrain) )

> envtrain[,'biome'] = factor(envtrain[,'biome'], levels=1:14)

> head(envtrain)

pa bio1 bio12 bio16 bio17 bio5 bio6 bio7 bio8 biome

1 1 263 1639 724 62 338 191 147 261 1

2 1 263 1639 724 62 338 191 147 261 1

3 1 253 3624 1547 373 329 150 179 271 1

4 1 243 1693 775 186 318 150 168 264 1

5 1 271 2212 807 281 327 220 107 266 1

6 1 274 2233 877 230 329 227 102 269 1

> testpres <- data.frame( xyValues(predictors, pres_test) )

> testbackg <- data.frame( xyValues(predictors, backg_test) )

> testpres[ ,'biome'] = factor(testpres[ ,'biome'], levels=1:14)

> testbackg[ ,'biome'] = factor(testbackg[ ,'biome'], levels=1:14)
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5.2.1 Generalized Linear Models

A generalized linear model (GLM) is a generalization of ordinary least squares
regression. Models are fit using maximum likelihood and by allowing the linear
model to be related to the response variable via a link function and by allow-
ing the magnitude of the variance of each measurement to be a function of its
predicted value. Depending on how a GLM is specified it can be equivalent to
(mulitple) linear regression, logistic regression or Poisson regression. See Guisan
et al (2002) for an overview of the use of GLM in species distribution modeling.

In R , GLM is implemented in the ’glm’ function, and the link function and
error distribution are specfied with the ’family’ argument. Examples are:

family = binomial(link = "logit")

family = gaussian(link = "identity")

family = poisson(link = "log")

Here we fit two basic glm models. All variables are used, but without inter-
action terms.

> gm1 <- glm(pa ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17,

+ family = binomial(link = "logit"), data=envtrain)

> gm2 <- glm(pa ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17,

+ family = gaussian(link = "identity"), data=envtrain)

> e1 = evaluate(testpres, testbackg, gm1)

> e2 = evaluate(testpres, testbackg, gm2)

> e1

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.8275

cor : 0.2932378

TPR+TNR threshold: -2.422

> e2

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.7879348

cor : 0.3242070

TPR+TNR threshold: 0.123

> pg <- predict(predictors, gm2, ext=ext)

> par(mfrow=c(1,2))

> plot(pg, main='GLM/gaussian, raw values')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> threshold <- e2@t[which.max(e@TPR + e@TNR)]

> plot(pg > threshold, main='presence/absence')
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> plot(wrld_simpl, add=TRUE, border='dark grey')
> points(pres_train, pch='+')
> points(backg_train, pch='-', cex=0.25)
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5.2.2 Generalized Additive Models

Generalized additive models (GAMs; Hastie and Tibshirani, 1990; Wood,
2006) are an extension to GLMs. In GAMs, the linear predictor is the sum
of smoothing functions. This makes GAMs very flexible, and they can fit very
complex functions. It also makes them very similar to machine learning meth-
ods. In R , GAMs are implemented in the ’mgcv’ package. The ’grasp’ package
implements species distribution modeling with gam (Lehman et al., 2002).

5.3 Machine learning methods

There is a variety of machine learning (sometimes referred to data mining)
methods in R . For a long time there have been packages to do Artifical Neural
Networks (ANN) and Classification and Regressin Trees (CART). More recent
methods include Random Forests, Boosted Regression Trees, and Support Vec-
tor Machines. Through the dismo package you can also use the Maxent program,
that implements the most widely used method (maxent) in species distribution
modeling. Breiman (2001a) provides a accesible introduction to machine learn-
ing, and how it contrasts with ’classical statistics’ (model based probabilistic
inference). Hastie et al., 2009 provide what is probably the most extensive
overview of these methods.

All the model fitting methods discussed here can be tuned in several ways.
We do not explore that, and only show the general approach. If you want to
use one of the methods, then you should consult the R help pages (and other
sources) to find out how to best implement the model fitting procedure.
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5.3.1 Maxent

The Maxent (Maximum Entropy) species distribution model (Phillips et al.,
2004, 2006) is a stand alone Java program. Dismo has a function ’maxent’ that
communicates with this program. To use it you must first download the program
from http://www.cs.princeton.edu/~schapire/maxent/. Put the file ’max-
ent.jar’ in the ’java’ folder of the ’dismo’ package. That is the folder returned
by system.file("java", package="dismo"). Please note that this program
(maxent.jar) can not be redistributed or used for commercial purposes.

Because maxent is implemented in dismo you can fit it like the profile meth-
ods (e.g. Bioclim). That is, you can provide presence points and a RasterStack.
However, you can also fit it like the other methods such as glm. Note, however,
that in that case you cannot use the formula notation.

> jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='')
> if (file.exists(jar)) {

+ xm <- maxent(predictors, pres_train, factors='biome')
+ plot(xm)

+ } else {

+ cat('cannot run this example because maxent is not available on this system')
+ plot(1)

+ }

cannot run this example because maxent is not available on this system
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> if (file.exists(jar)) {

+ e <- evaluate(pres_test, backg_test, xm, predictors)

+ e

+ px = predict(predictors, xm, ext=ext, progress='')
+ par(mfrow=c(1,2))

+ plot(px, main='Maxent, raw values')

http://www.cs.princeton.edu/~schapire/maxent/
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+ plot(wrld_simpl, add=TRUE, border='dark grey')
+ threshold <- e@t[which.max(e@TPR + e@TNR)]

+ plot(px > threshold, main='presence/absence')
+ plot(wrld_simpl, add=TRUE, border='dark grey')
+ points(pres_train, pch='+')
+ } else {

+ plot(1)

+ }
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5.3.2 Boosted Regression Trees

Boosted Regression Trees (BRT) is, unfortunately, known by a large num-
ber of different names. It was developed by Friedman (2001), who referred
to it as a ”Gradient Boosting Machine” (GBM). It is also known as ”Gradient
Boost”, ”Stochastic Gradient Boosting”, ”Gradient Tree Boosting”. The method
is implemented in the ’gbm’ package in R .

The article by Elith, Leathwick and Hastie (2009) describes the use of BRT
in the context of species distribution modeling. Their article is accompanied
by a number of R functions and a tutorial. The functions have been slightly
adjusted and incorporated into the ’dismo’ package. These funcitons extend the
funcitons in the ’gbm’ package, with the goal to make these easier to apply to
ecological data, and to enhance interpretation. The adapted tutorial is available
as a vignette to the dismo package. You can access it via the index of the help
pages, or with this command: vignette(’gbm’, ’dismo’)

5.3.3 Random Forest

The Random Forest (Breiman, 2001b) method is an extention of Classifica-
tion and regression trees (CART; Breiman et al., 1984). In R it is implemented
in the function ’randomForest’ in a package with the same name. The function
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randomForest can take a formula or, in two seperate argumetns, a data.frame
with the predictor variables, and a vector with the response. If the response
variable is a factor (categorical), randomForest will do classification, otherwise
it will do regression. Whereas with species distribution modeling we are often
interested in classification (species is present or not), it is my experience that
using regression provides better results. rf1 does regression, rf2 and rf3 do clas-
sification (they are exactely the same models). See the function tuneRF for
optimizing the model fitting procedure.

> library(randomForest)

> model <- pa ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17

> rf1 <- randomForest(model, data=envtrain)

> model <- factor(pa) ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17

> rf2 <- randomForest(model, data=envtrain)

> rf3 <- randomForest(envtrain[,1:8], factor(pb_train))

> e = evaluate(testpres, testbackg, rf1)

> e

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.868587

cor : 0.4348065

TPR+TNR threshold: 0.11

> pr <- predict(predictors, rf1, ext=ext)

> par(mfrow=c(1,2))

> plot(pr, main='Random Forest, regression')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(pr > threshold, main='presence/absence')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> points(pres_train, pch='+')
> points(backg_train, pch='-', cex=0.25)
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5.3.4 Support Vector Machines

Support Vector Machines (SVMs; Vapnik, 1998) apply a simple linear method
to the data but in a high-dimensional feature space non-linearly related to the
input space, but in practice, it does not involve any computations in that high-
dimensional space. This simplicity combined with state of the art performance
on many learning problems (classification, regression, and novelty detection) has
contributed to the popularity of the SVM (Karatzoglou et al., 2006). They were
first used in species distribution modeling by Guo et al. (2005).

There are a number of implementations of svm in R . The most useful im-
plementations in our context are probably function ’ksvm’ in package ’kernlab’
and the ’svm’ function in pakcage ’e1071’. ’ksvm’ includes many different SVM
formulations and kernels and provides useful options and features like a method
for plotting, but it lacks a proper model selection tool. The ’svm’ function in
package ’e1071’ includes a model selection tool: the ’tune’function (Karatzoglou
et al., 2006)

> library(kernlab)

> svm <- ksvm(pa ~ bio1 + bio5 + bio6 + bio7 + bio8 + bio12 + bio16 + bio17, data=envtrain)

Using automatic sigma estimation (sigest) for RBF or laplace kernel

> e = evaluate(testpres, testbackg, svm)

> e

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.6459783

cor : 0.1292121

TPR+TNR threshold: 0.037
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> ps <- predict(predictors, rf1, ext=ext)

> par(mfrow=c(1,2))

> plot(ps, main='Support Vector Machine')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> threshold <- e@t[which.max(e@TPR + e@TNR)]

> plot(ps > threshold, main='presence/absence')
> plot(wrld_simpl, add=TRUE, border='dark grey')
> points(pres_train, pch='+')
> points(backg_train, pch='-', cex=0.25)
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The remainder of this document is to be completed.

5.3.5 Other methods

Neural networks, ...
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Chapter 6

More...

6.1 Multi-species models

6.1.1 mars

6.1.2 gdm

6.2 Model transfer

6.2.1 space

6.2.2 time: climate change

6.3 Model averaging

See the BIOMOD for on multi-model inference.

6.4 Dealing with uncertainty
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Chapter 7

Geographic models

The ’geographic models’ described here are not commonly used in species dis-
tribution modeling. They are an attempt to formalize methods to draw ’expert
range maps’. They can also be interpreted as null-models. To be completed.

7.1 Geographic models (presence-only)

7.1.1 Distance

7.1.2 Convex hulls

7.1.3 Circles

7.2 Geographic models (presence-absence)

7.2.1 Inverse distance

7.2.2 Voronoi hulls
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