Simulation study with logit model
Benjamin Christoffersen

2017-01-20

Intro

This note has four objectives. The first objective is to test how the ddhazard fits compare with a Generalized
Additive models (GAM) and a “static” logistic model with simulated data. We will look at the following
models/estimation methods from ddhazard function in the dynamichazard package:

o Fits with the Extended Kalman Filters (EKF) with and without extra iterations in the scoring step

e Second order random walks with the EKF estimation method

e Mixture of fixed and time varying effects with the EKF estimation method. Fixed effects are both
estimated with the E-step and M-step method described in ddhazard vignette

o Fits using the Unscented Kalman filter (UKF)

The second objective is to show how to estimate various models with the function ddhazard. For this reason,
the note contains intermediate R code which is not needed to understand the simulation results. Thus, we will
use * in the headers of section to distinguish the content. The headers marked with no * indicates sections
with results of simulation or contains important comments. Headers with an * and ** shows increasingly less
important code to understand the simulation. Consequently, you can skip to the headers with no * if you are
only interested in the results

The third objective is to illustrate how the various methods performs for out-of-time prediction (forecasting).
By out-of-time we mean that we only observe outcomes up to given time, d, and then predict the outcome
for future observations at time d + 1

The final fourth objective is to show that both the EKF and UKF scales linearly with the number individuals
(series)
All method use the logistic link function. We will do three runs of experiments in the following order:

1. A Model where all effects are time varying and we use the correct binning intervals

2. A model where only one parameter is time varying and we use the correct binning intervals
3. A Model where all effects are time varying but we use incorrect binning intervals

where correct or incorrect binning intervals refers to whether or not we bin at the same time where the
coefficient are simulated to change. For example, we bin correctly where we simulate the coefficients to change
at time 1,2,...,d and we estimate the coefficient at time 1,2,...,d. The models will be compared in terms
of Brier score, median absolute residuals and standard deviation of the absolute residuals. All metrics will
be reported on out-sample data or out-of-time data. All plots will have true coeflicients as continuous lines
while dashed lines are estimates

You can install the version of the library used to make this vignettes from github with the devtools library
as follows:

current_version # The string to pass devtools::install_github

[1] "boennecd/dynamichazard@f79de934e169aa6bc9f1£9341c5£f5bc601f5£348"

devtools: :install_github(current_version)

You can also get the latest version on CRAN by calling:

install.packages("dynamichazard")

Moreover, you will also find the source code for the vignette at the github page. The note is not meant to be
self contained. It is recommend to see ddhazard vignette for an introduction to the models and methods in
the dynamichazard package

Notions

For clarity, here is a list of notions used:

e Run: An experiment with one of the three previously specified settings where we make k simulations
with n series in each

e Simulation: One simulation within a run with one set of coefficients Eo, e ,ﬁd and given number n of
series

o Series/individuals: A person/individual either making it to the end of the time of the given simulation
or dying at some time during the period

« Coefficients: the entries of the vectors §; in a given simulation

e Covariates: vectors @;; for a given individual at a given time in simulation

Findings

The findings are:

e The UKF method seems to perform well for both small and larger number of series

o Taking multiple iterations in the correction step of the EKF seems to be beneficial with moderate
amount or large amount of series

o Specifying a fixed effect as time varying or setting the binning number incorrectly has little effect on
the results

o The UKF and/or the EKF method with extra iteration in the correction step perform close to a
Generalized Additive model in terms of out-sample Brier score

You will see that the the estimation sometimes fails. It is worth stressing that it is my experience that
you can always do “trail-and-error” with the initial covariance matrix in the state equation, the covariance
matrix at time zero and tuning parameters in order to get a model to fit a given dataset. Of course, it is
a disadvantage that any given data set may require some tuning by the user. Although as will be shown,
tuning by the user is not often needed with data sets like those presented here

Setup

The following values will be used in the simulation:

ns <- c(200, 800, 2000) # Number of series

n_beta <- 5 # Number of covariates

T _max <- 20 # The last time we observe

n_sims <- 100 # Number of simulation in each run

gsub(" (" .+) (/dynamichazard.+$)", "...\\2", getwd())

[1] ".../dynamichazard/vignettes/Prebuild"
source("../../R/test_utils.R")

ns is the number of series (individuals) we will estimate in each of the simulation in each of the runs. Thus,
we will perform simulations with a total of 200, 800 and 2000 series in each. Each simulation will have
n_beta = 5 covariates plus an intercept. Each run will simulate n_sims = 100 times. Finally, we source the
test.utils.R file to define the simulation function. You can find this script on the github site. T_max is the

number of bins/intervals we observe. Thus, we have 1, 2, ..., T_max + 1 covariate vectors (41 for the time
zero coefficient vector)

Fitting true model

We will make runs for various number of individuals in this section where we estimate a model where all
effects are time varying and we use the correct binning intervals. Thus, the only models that are miss specified
are the model with one time varying effect (which will be x2) and the model were we use a second order
random walk

do.call function

We will use do.call in this vignette. To my knowledge, do.call is not standard so this section is included
to give a brief introduction to do.call for users who are not familiar with do.call. We can take an example
with the mean function. We will make the following call where we set na.rm to TRUE:

mean(x = c(1, 2, NA, 6), na.rm = T)

[1] 3

This call can also be made as follows do.call:

arg_ex <- list(x = c(1, 2, NA, 6), na.rm = T)
do.call(mean, arg_ex)

[1] 3

Hence, do.call is usefull in situation where we make calls where almost all the arguments are the same.
For example, in the setting where we have arguments al, a2, ..., up to 21000 and we only want to change
argument a101 say. This can then be done as follows:

Not runable

arg_ex <- list(al = x,
a2 =y,
..., # enter all the other wvalues
al1000 = z)

do.call(some_func, arg_ex)

change only al01 argument and keep the rest as the arguments as s
arg_ex$al0l <- some_specific_value
do.call(some_func, arg_ex)

Definition of simulation function

Below, we define a list of default_args (default arguments) to our simulation function which we can later
use using do.call.

Default arguments for simulation

default_args <- list(
n_vars = n_beta, # Number of betas not including intercept
beta_start = c(-1, -.5, 0, 1.5, 2), # start value of coeffecients
intercept_start = -5, # start wvalue of intercept
sds = c(.1, rep(.5, n_beta)), # std. deviations in state equation
t_max = T_max, # Largest time we observe

x_range = 1, # range of covariates

x_mean = .5, # mean of covariates
tstart_sampl_func = # we randomly draw the start time of each serie
function(...) max(runif(1, min = -10, max = 18), 0)

)

Let Et denote the time varying covariates at time t. Then the beta_start is the time 0 values of the
coefficients and intercept_start is the starting value of the intercept. The sds are the standard deviations,
o, in the state equation. Hence,

Bjt = Bje—1+¢€u, €~ N(0,07)

where each margin is independent of the others. The x_mean and x_range defines how the covariate values are
simulated. The above setting implies that x;;; = Unif(0.5 — 1/2,0.5 + 1/2) where x;;; is the ¢’th individuals
covariate j at time ¢. The covariates vector Z;; is updated at time differences of 1 + 7 where n ~ Exp(1) and
ns are drawn separately for each individual. The motivation for this behavior is that we can have different
covariate update times than our binning time in a given study. For instance, say we are looking at a medical
study and the covariates are laboratory values. The time of laboratory values from an individual’s visit the
doctor can differ from whatever binning periods we use in the state-space model. Further, the time when
laboratory values are updated can differ between patients. One might see his doctor every week or so while
another only sees his doctor every year

Below we illustrate how the coefficients vectors from a simulation can look:

We can simulate by
set.seed(51231)
sims <- do.call(test_sim_func_logit, c(list(n_series = max(ns)), default_args))

This ts how the state wectors look

We define a function so we can re-use it later

plot_func <- function(ylim = c()){ # we define a function here so we can use it later
matplot(sims$betas, type = "1", 1ty = 1, ylab = expression(beta), xlab = "t",

ylim = range(sims$betas, ylim), col = 1:(n_beta + 1))

Add rug plot to illustrate when people die
rug(jitter(simsreststop[simsresevent==1], amount = .25) + 1,
col = rgb(0, 0, 0, .05))
}

plot_func()

The black line is the intercept while the colored lines are the coefficients for the covariates. The lines on the
x-axis illustrate when we observe that individuals die. There is one line for each death. Next, we can look at
the number of failures in each simulation:

We get a decent amount of fatlures and survivers in some of the simulations
We use do.call to avoid repeating the above argument list
set.seed (468249)
n_fails_in_sim <- rep(NA_real_, 15)
for(i in seq_along(n_fails_in_sim)){
sims <- do.call(test_sim_func_logit, c(
default_args, c(list(n_series = max(ns))))) # Take largest amount of serties
n_fails_in_sim[i] <- sum(simsresevent)
}

n_fails_in_sim # number of fatlures in each simulation

[1] 1327 1868 500 1014 1249 131 1991 838 1201 1430 74 1171 1311 1180
[15] 1316

* Defintion of fit functions

We will define functions to estimate the different models with a data frame as the first argument where the
data frame is from a test_sim_func_logit call. This will reduce the amount of code later

** Defintion of static fit

Below, we define function to fit a model where the coefficients are fixed (ﬁt = (). It is estimated using glm

library(survival); library(dynamichazard)

Set up function for static fit
fit_funcs = list()
fit_funcs$static <- function(s = sims$res)
static_glm(formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,
data = s, max_T = T_max, by = 1, id = s$id)

fit <- fit_funcs$static()
class(fit) # returns a glm object

[1] llglmll Illmll

Estimates seems plausible

plot_func(ylim = fit$coefficients)

abline(h = fit$coefficients, col = 1:(n_beta + 1), lty = 2)

* Defintion of ddhazard fit functions

Below, we define a function to fit a first order random walk model with a given learning rate and potential
extra iterations in the scoring step (see the ddhazard vignette for details):

library(survival); library(dynamichazard)

Set up function ddhazard fit function for convenience

LR: learning rate in correction step
NR_eps: tolerance in correction step. NULL ytelds mo extra iterations
fit_funcs$dd <- function(s = sims$res, LR = 1, NR_eps = NULL)
tryCatch({
ddhazard(

formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,
data = s, max_T = T_max, by = 1, id = s$id,
Q_0 = diag(10, n_beta + 1), Q = diag(.01, n_beta + 1),
control = 1ist(LR = LR, NR_eps = NR_eps, eps = 0.01))
}, error = function(...) NA) # Return NA if fails

fit <- fit_funcs$dd()

Plot estimates and actual coffecients

plot_func(ylim = fit$state_vecs)

matplot(fit$state_vecs, col = 1:(n_beta + 1), 1ty = 2,
type = "1", add = T)

5 10 15 20

Same call with extra iterations
fit <- fit_funcs$dd(LR = .5, NR_eps = .01)

Look at mew plot
plot_func(ylim = fit$state_vecs)

matplot(fit$state_vecs, col = 1:(n_beta + 1), lty = 2,
type = "1", add = T)

Below, we define a function to fit a first order random walk model with the UKF method:

Fitting with UKF
fit_funcs$dd_UKF <- function(s = sims$res, alpha = 1, beta = 0){
tryCatch({
ddhazard (
formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,
data = s, max_T = T_max, by = 1, id = s$id,
Q_0 = diag(1l, n_beta + 1), Q = diag(.01, n_beta + 1),

control = list(
eps = 0.1,
alpha = alpha, # Set tuning parameter
beta = beta, # Set tuning parameter

method = "UKF")) # Set estimation method (EKF ts default)
}, error = function(...) NA) # Return NA if fails
}

fit <- fit_funcs$dd_UKF ()

Look at new plot

plot_func(ylim = fit$state_vecs)

matplot(fit$state_vecs, col = 1:(n_beta + 1), lty = 2,
type = "1", add = T)

Below, we define a function to estimate a first order random walk model where only one parameter (x2) is
time varying:
Fitting with fized effects
fit_funcs$dd_fixed <- function(
s = sims$res, LR = 1, NR_eps = NULL,
fixed_terms_method = "M_step"){ # The method to use to estimate the fized
fized effects

tryCatch({
ddhazard(
formula = Surv(tstart, tstop, event) ~
ddFixed (1) + # Fiz intercept
ddFixed(x1) + x2 + # Note z2 is time varying

ddFixed (x3) + ddFixed(x4) + ddFixed(x5),
data = s, max_T = T_max, by = 1, id = s$id,
Q_0 = diag(1, 1), Q = diag(.01, 1),
control = list(LR = LR, NR_eps = NR_eps, eps = 0.1,
fixed_terms_method = fixed_terms_method))
}, error = function(...) NA) # Return NA if fails
}

fit <- fit_funcs$dd_fixed()

Look at new plot
plot_func(ylim = range(fit$state_vecs, fit$fixed_effects))
matplot(fit$state_vecs, col = 3, 1ty = 2,

type = "1", add = T)

abline(h = fit$fixed_effects, col = c(1:2, 4:6), 1ty = 2)

Next, we define a function to fit the model with a second order random walk:

Fitting with second order
fit_funcs$dd_2_order <- function(s = sims$res, LR = 1, NR_eps = NULL){
tryCatch({
ddhazard (
formula = Surv(tstart, tstop, event) ~ xl1 + x2 + x3 + x4 + x5,
data = s, max_T = T_max, by = 1, id = s$id,
(_0 and) needs more elements
Q_0 = diag(c(rep(l, n_beta + 1), rep(0.5, n_beta + 1))),
Q = diag(c(rep(.01, n_beta + 1))),
order = 2, # specify the order
control = 1ist(LR = LR, NR_eps = NR_eps, eps = 0.1))
}, error = function(...) NA) # Return NA if fatils
}

fit <- fit_funcs$dd_2_order ()
Look at mew plot
plot_func(ylim = fit$state_vecs)

matplot (fit$state_vecs[, 1:6], col = 1:(n_beta + 1), 1ty = 2,
type = "1", add = T)

10

** Defintion of GAM fit function

We define the estimation method for the Generalized additive model in the next code snippet. We use bam
function from the mgcv package which corresponds to gam but for very large datasets

library (mgcv)
fit_funcs$gam <- function(s = sims$res){
get data frame for fitting
dat_frame <- get_survival_case_weights_and_data(
formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,
data = s, max_T = T_max, by = 1, id = s$id, use_weights = F)$X
fit model
bam(
formula = Y ~
cr 1s cubtic basis with k knots
s(t, bs = "cr", k = 10, by = x1)
s(t, bs = "cr", k = 10, by = x2)
s(t, bs = "cr", k = 10, by = x3)
s(t, bs = "cr", k = 10, by = x4)
s(t, bs = "cr", k = 10, by = x5),
family = binomial, data = dat_frame,
method = "GCV.Cp",
control =
gam.control(nthreads = parallel::detectCores() - 1)) # Use parallel

+ 4+ 4+ +

11

fit model
fit <- fit_funcs$gam()

Compare plot
layout (matrix(1:6, nrow = 2))
for(i in 1:n_beta){
plot(fit, pages = 0, rug = F, col = i + 1, select = i, 1ty = 2,
main = pasteO("(", i, ")"))
lines(sims$betas[-1, i + 1], col =1 + 1)

}

() @3) (5)

s(t,8.96):x1
0
|
s(t,9.56):x3
0
|
s(t,6.62):x5
0
|

() (4)

s(t,7.11):x2
0
1
s(t,9.32):x4
0
1

** Definition of prediction functions

The following code snippets define predictions methods for each of the estimation methods. We start off by
defining a split function such that we can sample individuals (series) into a test set and a training test:

split_func <- function(s = sims$res)q{
Sample ids
test_ids <- sample(
unique(s$id), floor(length(unique(s$id)) / 2), replace = F)

Return seperate data frames

return(list(test_dat = s[s$id %in% test_ids, 1],
fit_dat = s[!s$id %in’% test_ids, 1))

12

Illustrate use

tmp <- split_func()

No ids intersect in the two sets
length(intersect (tmp$test_dat$id, tmpfit_datid))

[11 O

The union 1is exactly the number of ids we simulated
length(union(tmp$test_dat$id, tmpfit_datid))

[1] 2000

Having defined the splitting method, we turn to the prediction functions. The idea is to define the
brier_funcs$general function which takes in a prediction function, a fit and a data frame. Next, we then
define individual prediction functions for each of the models which will be passed to brier_funcs$general:

Define general prediction function
brier_funcs <- list()
brier_funcs$general <- function(brier_func, fit, eval_data_frame){
d_frame <- get_survival_case_weights_and_data(
formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,
data = eval_data_frame, max_T = T_max, by = 1, id = eval_data_frame$id,
use_weights = F)$X

Change start and stop times
d_frame$tstart <- d_frame$t - 1
d_frame$tstop <- d_frame$t

Compute residuals
resids <- brier_func(fit, d_frame)

Return estimates

list(brier = mean(resids~2),
median_abs_res = median(abs(resids)),
sd_res = sd(resids))

Prediction method for static model

brier_funcs$static <- function(fit, d_frame){
preds <- predict(fit, newdata = d_frame, type = "response")
return(d_frame$Y - preds)

}

Test function
fit <- fit_funcs$static(tmp$fit_dat)

unlist(
brier_funcs$general (brier_funcs$static, fit, tmp$fit_dat) [
c("brier", "median_abs_res", "sd_res")]) # in sample stats
brier median_abs_res sd_res
0.06949 0.05417 0.26363
unlist(
brier_funcs$general (brier_funcs$static, fit, tmp$test_dat) [
c("brier", "median_abs_res", "sd_res")]) # out sample stats

13

brier median_abs_res sd_res
0.06666 0.05439 0.25814

Define prediction function for ddhazard model

brier_funcs$dd <- function(fit, d_frame){
preds <- predict(fit, new_data = d_frame, tstart = "tstart", tstop = "tstop")
return(d_frame$Y - preds$fits)

}

fit <- fit_funcs$dd(tmp$fit_dat)

unlist(
brier_funcs$general (brier_funcs$dd, fit, tmp$fit_dat) [
c("brier", "median_abs_res", "sd_res")]) # in sample stats
brier median_abs_res sd_res
0.06362 0.05211 0.25203
unlist(
brier_funcs$general (brier_funcs$dd, fit, tmp$test_dat) [
c("brier", "median_abs_res", "sd_res")]) # out sample stats
brier median_abs_res sd_res
0.06116 0.05186 0.24674

Define prediction function for gam model
brier_funcs$gam <- function(fit, d_frame)q{

preds <- predict(fit, newdata = d_frame, type = "response')
return(d_frame$Y - preds)
}
fit <- fit_funcs$gam(tmp$fit_dat)
unlist(
brier_funcs$general (brier_funcs$gam, fit, tmp$fit_dat) [
c("brier", "median_abs_res", "sd_res")]) # in sample stats
brier median_abs_res sd_res
0.06310 0.04101 0.25122
unlist(
brier_funcs$general (brier_funcs$gam, fit, tmp$test_dat) [
c("brier", "median_abs_res", "sd_res")]) # out sample stats
brier median_abs_res sd_res
0.06068 0.04148 0.24627

** Definition of multiple simulations function

To make things easier, we define a function that takes in a function to simulate from. Given a function to
simulate with, the new function perform n_sims = 100 simulations for each of values ns (200, 800 and 2000):

simulate_n_print_res <- function(
sim_func, # Function that takes one argment which ts number of series
NR_eps = c(.01, NA)) # Tolerance in scoring step
{
for(n in ns){
out <- array(NA_real_, dim = c(n_sims, 8, 3),

14

dimnames = list(
NULL,
c("static", "Extra correction", "Single correction",

"2 order EKF", "Fixed E-step", "Fixed M-step", "UKF", ”gam”),

c("Brier", "Median abs res", "sd res")))

n_failures_and_surviers <- array(
NA_integer_, dim = c(2, n_sims),
dimnames = list(c("# failures", "# survivers"), NULL))

FEok ok kK

Progress bar for inpatient people (me)

pb <- tcltk::tkProgressBar(paste("Estimating with n =", n),
0, n_sims, 50)

nn
>

Tk A KKK

for(i in 1:n_sims){
FER A AR F A
info <- sprintf("}.2f%), done", 100 * (i - 1) / n_sims)
tcltk: :setTkProgressBar(pb, i - 1, paste("Estimating with n =", n), info)
oKk Kk Kk

Sample until we get an outcome have sufficient amount of deaths and
survivers
repeatq{

sims <- sim_func(n)

We want some survivers and some deaths
if (sum(simsresevent) > 25 && n - sum(simsresevent) > 25)
break

3

n_failures_and_surviers["# failures", i] <- sum(simsresevent)
n_failures_and_surviers["# survivers", i] <- n - sum(simsresevent)

Split data
sim_split <- split_func(sims$res)

Fit static model
static_fit <- fit_funcs$static(sim_split$fit_dat)

Fit dd model
dd_fits <- list(rep(NA, length(NR_eps)))
for(k in seq_along(NR_eps)){
dd_fits[[k]] <- fit_funcs$dd(
sim_split$fit_dat,
NR_eps = if(is.na(NR_eps[k])) NULL else NR_eps[k])

Fit second order
dd_2_order <- fit_funcs$dd_2_order(sim_split$fit_dat)

Fit fized effect

15

dd_fixed_E_step <- fit_funcs$dd_fixed(sim_split$fit_dat,
fixed_terms_method = "E_step")

dd_fixed_M_step <- fit_funcs$dd_fixed(sim_split$fit_dat,
fixed_terms_method = "M_step")

UKF fit
dd_UKF <- fit_funcs$dd_UKF (sim_split$fit_dat)

Fit gam model
gam_fit <- fit_funcs$gam(sim_split$fit_dat)

Evalute on test data
models <- c(list(static_fit), dd_fits,
list(dd_2_order, dd_fixed_E_step, dd_fixed_M_step,
dd_UKF, gam_fit))

eval_funcs = c(brier_funcs$static,
replicate(length(dd_fits) + 4, brier_funcs$dd),
brier_funcs$gam)

for(j in seq_along(models)){
if (length(models[[jl1]) == 1 && is.na(models[[j]]1))
next # We have to skip model fits that fatiled

metrics <- brier_funcs$general(
eval_funcs[[j]], models[[jl], sim_split$test_dat)
out[i, j, "Brier"] <- metrics$brier
out[i, j, "Median abs res"] <- metrics$median_abs_res
out[i, j, "sd res"] <- metrics$sd_res
}
}

FER KA A A A K

close(pb)
HRAKAKAK

Print results
did_fit <- apply(out[, , 1], 2, function(x) n_sims - sum(is.na(x)))
n_cases_all_success <- sum(complete.cases(out[, , 1]))
metric_where_all_fit <-

t (apply(out [complete.cases(out[, , 1]), , , drop = F], 3, colMeans))

metric_where_all_fit <- formatC(metric_where_all_fit ,format="f", digits=3)
n_cases_all_success <- formatC(n_cases_all_success, format="d")

print(knitr::kable(cbind(
t(metric_where_all_fit), "# succesful fits" = did_fit),
caption = paste(
"Mean of metrics with", n/2, "series in test and fit data. Only simulations that succeeds for all s
align = "r"))
cat("\n")

Prints the metrics for all the simulation that succeeds for given setup

16

Out commented as the metrics are comparable. Download the code and
comment back if you are interested
print (knitr: :kable(t (apply(out, 3, colMeans, na.rm = T)), digits = 3,

caption = paste(
"Mean of metrics with", n/2, "series in test and fit data. All simulations for each setup where
cat("\n")
X
}
Simulating

We are now able to simulate from the model where all effects are time varying and we use the correct binning
intervals with the code below:

set.seed(1243)
Use simulation function
simulate_n_print_res(
sim_func = function(n)
do.call(test_sim_func_logit, c(default_args, c(list(n_series = n)))))

Table 1: Mean of metrics with 100 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 82
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.047 0.039 0.208 100
Extra correction 0.100 0.058 0.217 82
Single correction 0.045 0.041 0.203 100
2 order EKF 0.048 0.041 0.207 100
Fixed E-step 0.047 0.050 0.207 100
Fixed M-step 0.046 0.035 0.206 100
UKF 0.045 0.035 0.203 100
gam 0.045 0.025 0.204 100

Table 2: Mean of metrics with 400 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 93
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.048 0.041 0.202 100
Extra correction 0.063 0.042 0.198 93
Single correction 0.043 0.035 0.193 100
2 order EKF 0.043 0.039 0.193 100
Fixed E-step 0.045 0.043 0.197 100
Fixed M-step 0.045 0.033 0.197 100
UKF 0.043 0.033 0.193 100
gam 0.043 0.027 0.193 100

17

Table 3: Mean of metrics with 1000 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 94
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.060 0.058 0.228 100
Extra correction 0.052 0.035 0.214 95
Single correction 0.053 0.044 0.216 100
2 order EKF 0.052 0.048 0.214 100
Fixed E-step 0.055 0.055 0.219 100
Fixed M-step 0.055 0.043 0.220 99
UKF 0.052 0.042 0.213 100
gam 0.052 0.037 0.213 100

We should only compare across methods with mean metrics where all succeeded to fit. The logic being
that those where the ddhazard method fail may be have different errors than those where all succeed to fit.

Conclussion on run

All models perform better than the static model apart from the case where the number of individuals in the
training data is only 100. The miss specified models (2 order EKF and Fixed ...) tend to perform worse
than the others models. Though, they still perform better than the static model labeled static

The UKF performs close to the gam model when the training data has less than 1000 observations while
taking extra iterations in the EKF seems to be worth it in terms of out-sample Brier score when the training
data has 1000 observations. This may suggest that the UKF method is better for smaller data sets while the
EKF with extra iterations in the scoring step is better suited for larger data sets. In all cases, at least one of
models is close to the gam model in terms of out-sample Brier score

Single time varying parameter

In this part, we will look at the performs when only singe coefficient (x2) varies. Thus, we can see if the
models where only (x2) is modeled as varying performs performs better

** Definition of simulation function

We start by defining the simulation function. The main change here is that we only set a single standard
deviation and that we set it larger than before:

Use simulation function
set.seed(9999)
sim_one_varying <- function(n){
test_sim_func_logit(
n_series = n,
sds = c(sqrt(3)), # Large wvariance
is_fixed = c(1:2, 4:6), # All but param three is fized

Same wvalues as before
n_vars = n_beta,

18

beta_start = c(-1, -.5, 0, 1.5, 2),
intercept_start = -4,

t_max = T_max,

x_range = 1,

x_mean = .5)

* Tllustration of single simulation

We get a more wariable number of failures and survivers (we simulate 200

series)
replicate(10, sum(sim_one_varying(200)resevent)) # print number of failures

[1] 199 200 123 197 156 64 200 69 200 82

Here ©s an example of a series

tmp <- sim_one_varying(200)

matplot (tmp$betas, type = "1", lty = 1, ylab = "Beta", xlab = "Time")

o p—
n _
|
ot
5]
m
o
— —
[
o)
‘—| p—
[
I I I
5 10 15 20
Time
Simulating

We can simulate with the following call:

19

Use simulation function
set.seed(8080)
simulate_n_print_res(sim_func = sim_one_varying)

Table 4: Mean of metrics with 100 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 75
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.039 0.030 0.190 100
Extra correction 0.074 0.050 0.210 75
Single correction 0.039 0.030 0.189 100
2 order EKF 0.039 0.038 0.190 100
Fixed E-step 0.039 0.036 0.189 100
Fixed M-step 0.038 0.027 0.187 100
UKF 0.038 0.028 0.187 100
gam 0.039 0.019 0.190 100

Table 5: Mean of metrics with 400 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 81
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.053 0.052 0.217 100
Extra correction 0.062 0.045 0.214 81
Single correction 0.051 0.044 0.213 100
2 order EKF 0.050 0.049 0.211 100
Fixed E-step 0.050 0.048 0.212 100
Fixed M-step 0.051 0.036 0.212 100
UKF 0.050 0.043 0.211 100
gam 0.049 0.038 0.210 100

Table 6: Mean of metrics with 1000 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 91
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.060 0.058 0.235 100
Extra correction 0.054 0.040 0.224 91
Single correction 0.056 0.048 0.228 100
2 order EKF 0.055 0.052 0.225 100
Fixed E-step 0.055 0.049 0.226 100
Fixed M-step 0.056 0.038 0.227 100
UKF 0.055 0.042 0.226 100
gam 0.054 0.041 0.224 100

20

Conclussion on run

The main interest here is how the models labeled Fixed ... roughly as good as the other fits. It seems to
make a minor difference in terms of out-sample Brier score for all the settings for specify the coefficients as
time varying. This may suggest that specifying an effects as time varying does not affect the result

Incorrect binning time

Now, what happens if we get the binning wrong? This is the next experiment we will perform. Specifically,
we will set the binning length to 0.1 instead 1 when we simulate. Thus, coefficients are updated at time
0,0.1,0.2,... and whether an individual dies is evaluated at the same times when we simulate. However, the
fitted model will still be based on bins of length 1

** Definition of simulation function

set.seed(9001)
sim_finer_binning <- function(n){
time_denom = 10 # how much finer do we want to bin?

res <- test_sim_func_logit(
n_series = n,

We multiply through appropiately

beta_start = c(-1, -.5, 0, 1.5, 2),

intercept_start = - 8, # Note, we changed the intercept

sds = c(.1, rep(1, n_beta)) / sqrt(time_denom),

t_max = T_max * time_denom,

lambda = 1 / time_denom, # note we change the time when covariates are
updated (the lambda parem in the rate ~ exp(.)
in the time increaments)

n_vars = n_beta,
x_range = 1,
Xx_mean = .5)
Change time denominator
resreststart <- resreststart / time_denom

resreststop <- resreststop / time_denom

res

* Tllustration of single simulation

We get more wariable outcomes (we simulate 200 series)
replicate(10, sum(sim_finer_binning(200)resevent)) # Number of failures

[1] 189 142 8 200 164 103 193 34 105 104

21

Here 1s an example of the series
tmp <- sim_finer_binning(200)
matplot ((1:nrow(tmp$betas) - 1) / 10,

tmp$betas, type = "1", 1ty = 1, ylab = "Beta", xlab = "Time")

m p—
8 o -
o
m
o _
|
| | | | |
0 5 10 15 20
Time
Simulating

We are now able to simulate with the following call:

Use simulation function
set.seed(747)

simulate_n_print_res(sim_func = sim_finer_binning)

Table 7: Mean of metrics with 100 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 86
of these simulations. The last line shows the number of successful

fits for each setup

Brier Median abs res sd res # succesful fits
static 0.035 0.031 0.179 100
Extra correction 0.087 0.065 0.194 86
Single correction 0.038 0.024 0.180 100
2 order EKF 0.033 0.026 0.174 100
Fixed E-step 0.035 0.038 0.177 100
Fixed M-step 0.035 0.020 0.178 100

22

Brier Median abs res sd res # succesful fits

UKF 0.033 0.023 0.172 100
gam 0.033 0.012 0.173 100

Table 8: Mean of metrics with 400 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 75
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.034 0.034 0.162 100
Extra correction 0.047 0.024 0.163 85
Single correction 0.036 0.025 0.160 98
2 order EKF 0.031 0.025 0.155 100
Fixed E-step 0.033 0.032 0.158 93
Fixed M-step 0.034 0.016 0.161 98
UKF 0.032 0.019 0.156 99
gam 0.029 0.017 0.152 100

Table 9: Mean of metrics with 1000 series in test and fit data. Only
simulations that succeeds for all setups are included. There are 89
of these simulations. The last line shows the number of successful
fits for each setup

Brier Median abs res sd res # succesful fits

static 0.041 0.040 0.184 100
Extra correction 0.035 0.019 0.173 92
Single correction 0.038 0.029 0.180 100
2 order EKF 0.038 0.033 0.178 100
Fixed E-step 0.040 0.038 0.182 99
Fixed M-step 0.041 0.021 0.185 100
UKF 0.037 0.025 0.175 98
gam 0.035 0.022 0.172 100

Conclussion on run

The UKF seems to perform well in all settings. Moreover, the extra iteration seems to be worth it when
there are a moderate amount of observations. The miss specified Fixed effect seems to perform worse than
the other fit/estimates. Finally, the mean Brier score is again similar to the gam fit for the model/method
with the best result

Out-of-time prediction

We will investigate how the different estimation method performs when the following period have to be
predicted in the following paragraphs. Thus, we cannot use the GAM model because it uses in-sample splines.
Though, we can still use the state-space models as we can predict the following state vector given the previous.
Further, we can use the static model to compare with

23

** Define simulation and data splitting function

We start by defining a simulation function and a function to split the data into the first time period which
we will use for estimation and the later time period which we will use for the test

Define simulation function
out_sample_args <- default_args
out_sample_args$t_max <- 21

sim_func <- function(n_series = 200)
do.call(test_sim_func_logit, c(list(n_series = n_series), out_sample_args))

Define split function

split_data_func <- function(d_frame, split_time = 20){
Find data before split_time and set event flag and stop time
in_sample <- d_frame[d_frame$tstart < split_time,]
in_sample$event <- in_sample$event & in_sample$tstop <= split_time
in_sample$tstop <- pmin(in_sample$tstop, split_time)

Find data that ends after split_time and set start time
out_sample <- d_frame[split_time < d_frame$tstop,]
out_sample$tstart <- pmax(out_sample$tstart, split_time)

Return
list(in_sample = in_sample, out_sample = out_sample)

}

We extend the period (t_max) by one which is the only difference in the simulation. Notice that individuals
can be in both estimation data and test data. Any failure beyond time 20 will only count as a failure in the
test data. Thus, we need to change the event flag for these in the in_sample data if the stop time is beyond
time 20. Below, we illustrate how this looks for an individual who do die beyond time 20:

Illustrate with exzample
set.seed(1117)
tmp <- sim_func()

Illustrate for individual 146
tmp$res [tmp$res$id == 146,]

id tstart tstop event x1 x2 x3 x4 x5
784 146 0.00 1.81 0 0.9495 0.58882 0.2244 0.6772 0.23857
785 146 1.81 3.27 0 0.5870 0.01161 0.2709 0.6255 0.24397
786 146 3.27 5.45 0 0.9181 0.15308 0.4282 0.3712 0.87772
787 146 5.45 8.20 0 0.6698 0.98267 0.2053 0.2813 0.03428
788 146 8.20 9.26 0 0.6440 0.62564 0.9090 0.5274 0.17542
789 146 9.26 11.80 0 0.2434 0.60591 0.2036 0.2170 0.07848
790 146 11.80 13.70 0 0.7454 0.29490 0.9624 0.2426 0.33665
791 146 13.70 14.94 0 0.6580 0.40228 0.3234 0.7857 0.34378
792 146 14.94 16.28 0 0.2397 0.31621 0.1368 0.7452 0.13836
793 146 16.28 18.52 0 0.4724 0.10613 0.7525 0.7799 0.88757
794 146 18.52 21.00 1 0.2503 0.20445 0.8681 0.1589 0.49792

Split data
d_split <- split_data_func(tmp$res)

In sample data (notice event flag is changed and last tstop)

24

d_split$in_sample[d_split$in_sample$id == 146,]

it id tstart tstop event x1 x2 x3 x4 x5
784 146 0.00 1.81 FALSE 0.9495 0.58882 0.2244 0.6772 0.23857
785 146 1.81 3.27 FALSE 0.5870 0.01161 0.2709 0.6255 0.24397
786 146 3.27 5.45 FALSE 0.9181 0.15308 0.4282 0.3712 0.87772
787 146 5.45 8.20 FALSE 0.6698 0.98267 0.2053 0.2813 0.03428
788 146 8.20 9.26 FALSE 0.6440 0.62564 0.9090 0.5274 0.17542
789 146 9.26 11.80 FALSE 0.2434 0.60591 0.2036 0.2170 0.07848
790 146 11.80 13.70 FALSE 0.7454 0.29490 0.9624 0.2426 0.33665
791 146 13.70 14.94 FALSE 0.6580 0.40228 0.3234 0.7857 0.34378
792 146 14.94 16.28 FALSE 0.2397 0.31621 0.1368 0.7452 0.13836
793 146 16.28 18.52 FALSE 0.4724 0.10613 0.7525 0.7799 0.88757
794 146 18.52 20.00 FALSE 0.2503 0.20445 0.8681 0.1589 0.49792
Out sample data (notice tstart is changed)
d_split$out_sample[d_split$out_sample$id == 146,]

id tstart tstop event x1 x2 x3 x4 x5
794 146 20 21 1 0.2503 0.2044 0.8681 0.1589 0.4979

Simulation

We can now run the simulation with the following code. We end the code by printing the mean Brier score
for the test data:

Setup
N <- 100 # number of simulations
n <- 1000 # number of series

out <- matrix(NA_real_, nrow = N, ncol = 4) # matriz for output

Run simulation
set.seed(42)
for(i in 1:N){
Stmulate data and split
repeatq{
sims <- sim_func(n)

We want some survivers and some deaths
if (sum(simsresevent) > 50 && n - sum(simsresevent) > 50)
break
}
d_split <- split_data_func(sims$res)

Estimate models

static_fit <- fit_funcs$static(d_split$in_sample)

ekf_fit <- fit_funcs$dd(d_split$in_sample)

ekf_extra_fit <- fit_funcs$dd(d_split$in_sample, NR_eps = .01)
ukf_fit <- fit_funcs$dd_UKF(d_split$in_sample)

Predict outcome
error <- list(
static =
predict(static_fit, d_split$out_sample, type = "response"),

25

ekf = if(is.na(ekf_fit)) NA else
predict(ekf_fit, new_data = d_split$out_sample,
tstart = "tstart", tstop = "tstop")$fits,

ekf_extra = if(is.na(ekf_extra_fit)) NA else
predict(ekf_extra_fit, new_data = d_split$out_sample,
tstart = "tstart", tstop = "tstop")$fits,

ukf = if(is.na(ukf_fit)) NA else
predict(ukf_fit, new_data = d_split$out_sample,
tstart = "tstart", tstop = "tstop")$fits)

Compute Brier score
error <- unlist(lapply(
error, function(x) if(is.na(x)) NA else
mean.default((x - d_splitout_sampleevent)~2)))

Save results
out[i,] <- error

Print mean for cases where all could fit
colnames(out) <- c("Static", "EKF", "EKF with extra correction", "UKF")
colMeans (out [complete.cases(out), 1)

Static EKF
0.09634 0.07533
EKF with extra correction UKF
0.07840 0.07713

Print median
apply (out [complete.cases(out),], 2, median)

Static EKF
0.05372 0.05301
EKF with extra correction UKF
0.05422 0.05358

Print number of cases where all methods succeed to estimate
sum(complete.cases(out))

[1] 95

Above, we do 100 simulations with 1000 series in each simulation. The EKF does best. Another question is
how often the various method got a given rank within a simulation in terms of their Brier score. We answer
this question below (the rank are given as the first printed value such that one implies being the lowest Brier
score in a given simulation):
Look at number of cases where each method got each rank
knitr: :kable(apply(t(apply(out[complete.cases(out), 1, 1, rank)),
2, function(x) xtabs(~x)),
caption = "Number of times each set got a given rank in terms of Brier Score",
row.names = T)

26

Table 10: Number of times each set got a given rank in terms of
Brier Score

Static EKF EKF with extra correction UKF

1 18 29 24 24
2 4 50 13 28
3 18 15 27 35
4 55 1 31 8

The main take away is that the EKF method does better with these specification in terms of getting the
lowest mean out-sample Brier score and getting the lowest Brier score in most of the simulation

Linear Time complexity

We will illustrate that the EKF and UKF have linear time complexity in the number of observation. This
is particularly easy because the simulation function start of by simulating the coefficients as shown below
(hence, variation will not be due to different coefficients vectors and only the number of series):

some_seed <- 69284
set.seed(some_seed)
res_1 <- test_sim_func_logit(100)

set.seed(some_seed)
res_2 <- test_sim_func_logit(1000) # different number of series

all.equal(res_1$betas, res_2%betas) # Coeffecients are equal

[1] TRUE

Next, we plot the computation time versus the number of simulation for the EKF and UKF method. Further,
we print the linear regression slope for the log-log regression. The slope is close to one implying that the
linear time complexity is linear in the number of observations

Define function to record run time for a given number of series
run_time_func <- function(n, sim_args = default_args){
set.seed(7851348) # Use the same seed
sim_args$n_series <- n
sims <- do.call(test_sim_func_logit, sim_args)

time_EKF <- system.time(fit_EKF <- fit_funcs$dd(sims$res))
time_UKF <- system.time(
fit_UKF <- ddhazard(
formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,
data = sims$res, max_T = T_max, by = 1, id = simsresid,
Q_0 = diag(.1, n_beta + 1), Q = diag(.1, n_beta + 1),
control = list(

eps = 0.1,
alpha = 1,
beta = 0,
method = "UKF")))

Check that both succed to fut
if(is.na(fit_EKF) || is.na(fit_UKF))

27

stop()

list(time_EKF = time_EKF, time_UKF = time_UKF)
}

n_for_test <- 27(10:19)
run_time <- sapply(n_for_test, run_time_func)

Plot EKF and print log-log regression slope
ekf_time <- sapply(run_time["time EKF",], function(x) x[["user.self"]])
plot(n_for_test, ekf_time, type = "p", log = "xy",

xlab = "Number of series", ylab = "Computation time for EKF")

<

S% 0]
L — O
X o
Ll o O
- —
2] o
£

O

£ 9o _
s ° 0
= —
g o o
5 o _
E O
O
O — o

-

o | O

I I I I I I
le+03 5e+03 2e+04 5e+04 2e+05 5e+05

Number of series

coef (Im(log(ekf_time) ~ log(n_for_test))) # log-log slope is roughly one

#it (Intercept) log(n_for_test)
-8.5828 0.9296
Plot UKF and print log-log regression slope
ukf_time <- sapply(run_time["time UKF",], function(x) x[["user.self"]])
plot(n_for_test, ukf_time, type = "p", log = "xy",
xlab = "Number of series", ylab = "Computation time for UKF")

28

50.0
I

O
LL — O
%
5 S o
gi —
o — (@]
= o
c |
2 a o
8
> L0
g o] °
(@] O
O —
- | o}
o ©)
| | | | | | |
1le+03 5e+03 2e+04 5e+04 2e+05 5e+05

Number of series
coef (Im(log(ukf_time) ~ log(n_for_test))) # log-log slope is roughly one

#Hit (Intercept) log(n_for_test)
-9.597 1.009

29

	Intro
	Notions
	Findings
	Setup

	Fitting true model
	do.call function
	Definition of simulation function
	* Defintion of fit functions
	** Defintion of static fit
	* Defintion of ddhazard fit functions

	** Defintion of GAM fit function
	** Definition of prediction functions
	** Definition of multiple simulations function
	Simulating
	Conclussion on run

	Single time varying parameter
	** Definition of simulation function
	* Illustration of single simulation
	Simulating
	Conclussion on run

	Incorrect binning time
	** Definition of simulation function
	* Illustration of single simulation
	Simulating
	Conclussion on run

	Out-of-time prediction
	** Define simulation and data splitting function
	Simulation

	Linear Time complexity

