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Intro

This note will compare the dynamic logistic model in dynamichazard with others methods within the package
and methods from the timereg and mgcv packages. Further this note will serve as an illustration of how to
use the ddhazard function for the logistic model. We will use the pbc2 dataset from the survival package.
The motivation is that the pbc2 data set is commonly used in survival analysis for illustrations. It is suggested
first to read the ddhazard vignette to get an introduction to the models and estimation methods in this
package

The note is structured as follows: First, we cover the pbc2 data set. Then we estimate two non-dynamic
logistic regression models using glm. This is followed by a fit using a Generalized Additive model with the
gam function in the mgcv package. Next, we will estimate a cox-model with time varying parameters using the
timecox function in the timereg package. Finally, we will end by illustrating the methods in this package
for time varying parameters in a logistic regression

You can install the version of the library used to make this vignettes from github with the devtools library
as follows:

current_version # The string you need to pass devtools::install_github

## [1] "boennecd/dynamichazard@@1a48adecf51906cfafd3593dd4ee8b9019b03aa1"

devtools::install_github(current_version)

You can also get the latest version on CRAN by calling:

install.packages("dynamichazard")

The pbc data set

The pbc data set contains data from the Mayo Clinic trial on primary biliary cirrhosis. We use this dataset
to compare with results previously found analyzing the data set. We will focus on a the subset of co-variates
used in Martinussen & Scheike (2007). The dataset can be created by:

# PBC data set from survival with time variying covariates

# Details of tmerge are not important in this scope. The code is included

# to make you able to reproduce the results

# See: https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf

library(survival)

temp <- subset(pbc, id <= 312, select=c(id, sex, time, status, edema, age))

pbc2 <- tmerge(temp, temp, id=id, death = event(time, status))

pbc2 <- tmerge(pbc2, pbcseq, id=id, albumin = tdc(day, albumin),

protime = tdc(day, protime), bili = tdc(day, bili))

pbc2 <- pbc2[, c("id", "tstart", "tstop", "death", "sex", "edema",

"age", "albumin", "protime", "bili")]

as described in the vignette Using Time Dependent Covariates and Time Dependent Coefficients in the Cox

Model in the survival package. The resulting data frame is structured as follows:
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head(pbc2)

## id tstart tstop death sex edema age albumin protime bili

## 1 1 0 192 0 f 1 58.8 2.60 12.2 14.5

## 2 1 192 400 2 f 1 58.8 2.94 11.2 21.3

## 3 2 0 182 0 f 0 56.4 4.14 10.6 1.1

## 4 2 182 365 0 f 0 56.4 3.60 11.0 0.8

## 5 2 365 768 0 f 0 56.4 3.55 11.6 1.0

## 6 2 768 1790 0 f 0 56.4 3.92 10.6 1.9

The data set is in the usual start and stop time format used in survival analysis. Each individual in the trial
has one or more observations. The id column identifies the individual. The tstart column indicates when
the row is valid from and the tstop column indicates when the row is valid to. The death column is the
outcome which is 2 when the individual dies at tstop (1 indicates that the individual gets a transplant). The
sex, edema and age are baseline variables while albumin, protime and bili are laboratory values updated
at follow ups with the patient. As an example, we can look individual 282:

(ex <- pbc2[pbc2$id == 282, ])

## id tstart tstop death sex edema age albumin protime bili

## 1708 282 0 258 0 f 0 33.9 3.52 9.5 1.3

## 1709 282 258 370 0 f 0 33.9 3.39 9.5 1.1

## 1710 282 370 744 0 f 0 33.9 3.28 10.1 1.2

## 1711 282 744 1455 0 f 0 33.9 3.04 10.2 1.3

She (sex is f) has had four laboratory values measured at time 0, 258, 370 and 744. Further, she does not
die as the death column is zero in the final row

Logistic model

We can start of with a simple logistic model where we ignore tstart and tstop variable using glm:

glm_simple <- glm(death == 2 ~ age + edema + log(albumin) + log(protime) +

log(bili), binomial, pbc2)

glm_simple$coefficients

## (Intercept) age edema log(albumin) log(protime) log(bili)

## -9.3834 0.0537 1.4354 -4.4379 2.9274 1.1925

Though, we want to account for the fact that say the second the row of individual 282 has a length of 112
days (370 minus 258) while the fourth row has a length 711 days. A way to incorporate this information is
to bin the observations into periods of a given length. Example of such binning is found in Tutz & Schmid
(2016) and Shumway (2001)

Say that we set the bin interval lengths to 100 days. Then the first row for id = 282 will yield three
observation: one from 0 to 100, one from 100 to 200 and one from 200 to 300 (since we know that she survives
beyond time 300). That is, she survives from time 0 to time 100, survives from time 100 to time 200 etc. We
can make such a data frame with the get_survival_case_weights_and_data function in this package:

library(dynamichazard)

pbc2_big_frame <- get_survival_case_weights_and_data(

Surv(tstart, tstop, death == 2) ~ age + edema + log(albumin) + log(protime) +

log(bili), data = pbc2, id = pbc2$id, by = 100, max_T = 3600,

use_weights = F)

pbc2_big_frame <- pbc2_big_frame$X
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The code above uses the Surv function on the left hand side of the formula. The Surv function needs a
start time, a stop time and a outcome. The right hand side is as before. The by argument specifies the
interval length (here 100 days) and the max_T specify the last time we want to include. We will comment on
use_weights argument shortly. As an example, we can look at individual 282 in the new data frame:

pbc2_big_frame[pbc2_big_frame$id == 282, ]

## id tstart tstop death sex edema age albumin protime bili Y t

## 282 282 0 258 0 2 0 33.9 3.52 9.5 1.3 FALSE 100

## 590 282 0 258 0 2 0 33.9 3.52 9.5 1.3 FALSE 200

## 703 282 0 258 0 2 0 33.9 3.52 9.5 1.3 FALSE 300

## 1207 282 258 370 0 2 0 33.9 3.39 9.5 1.1 FALSE 400

## 1410 282 370 744 0 2 0 33.9 3.28 10.1 1.2 FALSE 500

## 1667 282 370 744 0 2 0 33.9 3.28 10.1 1.2 FALSE 600

## 1939 282 370 744 0 2 0 33.9 3.28 10.1 1.2 FALSE 700

## 2201 282 370 744 0 2 0 33.9 3.28 10.1 1.2 FALSE 800

## 2556 282 744 1455 0 2 0 33.9 3.04 10.2 1.3 FALSE 900

## 2791 282 744 1455 0 2 0 33.9 3.04 10.2 1.3 FALSE 1000

## 3029 282 744 1455 0 2 0 33.9 3.04 10.2 1.3 FALSE 1100

## 3209 282 744 1455 0 2 0 33.9 3.04 10.2 1.3 FALSE 1200

## 3425 282 744 1455 0 2 0 33.9 3.04 10.2 1.3 FALSE 1300

## 3646 282 744 1455 0 2 0 33.9 3.04 10.2 1.3 FALSE 1400

## 3862 282 744 1455 0 2 0 33.9 3.04 10.2 1.3 FALSE 1500

## weights

## 282 1

## 590 1

## 703 1

## 1207 1

## 1410 1

## 1667 1

## 1939 1

## 2201 1

## 2556 1

## 2791 1

## 3029 1

## 3209 1

## 3425 1

## 3646 1

## 3862 1

Notice that three new columns have been added: Y which is the outcome, t which is the stop time in the bin
and weights which is the weight to be used in a regression. We see that the first row in the initial data frame
for individual 282 has three rows now since the row is in three bins (the bins at times (0, 100], (100, 200] and
(200, 300]). We could just use weights instead. This is what we get if we set use_weights = T:

pbc2_small_frame <- get_survival_case_weights_and_data(

Surv(tstart, tstop, death == 2) ~ age + edema + log(albumin) + log(protime) +

log(bili), data = pbc2, id = pbc2$id, by = 100, max_T = 3600,

use_weights = T)

pbc2_small_frame <- pbc2_small_frame$X

The new data rows for individual 282 looks as follows:

pbc2_small_frame[pbc2_small_frame$id == 282, ]

## Y id tstart tstop death sex edema age albumin protime bili weights

## 1708 0 282 0 258 0 f 0 33.9 3.52 9.5 1.3 3
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## 1709 0 282 258 370 0 f 0 33.9 3.39 9.5 1.1 1

## 1710 0 282 370 744 0 f 0 33.9 3.28 10.1 1.2 4

## 1711 0 282 744 1455 0 f 0 33.9 3.04 10.2 1.3 7

Further, individuals who do die are treated a bit differently. For instance, take individual 268:

pbc2[pbc2$id == 268, ] # the orginal data

## id tstart tstop death sex edema age albumin protime bili

## 1652 268 0 164 0 f 0.5 55.4 2.75 11 6.4

## 1653 268 164 1191 2 f 0.5 55.4 2.78 11 6.8

pbc2_small_frame[pbc2_small_frame$id == 268, ] # new data

## Y id tstart tstop death sex edema age albumin protime bili weights

## 1652 0 268 0 164 0 f 0.5 55.4 2.75 11 6.4 2

## 1653 0 268 164 1191 2 f 0.5 55.4 2.78 11 6.8 9

## 16531 1 268 164 1191 2 f 0.5 55.4 2.78 11 6.8 1

Notice, that we have to add an additional row with weight 1 where Y = 1 as it would be wrong to give a
weight of 10 to a the row with Y = 1. She survives for 11 bins and dies in the 12th bin

Finally, we can fit the model with the glm function using either of the two data frames as follows:

glm_fit_big <- glm(Y ~ age + edema + log(albumin) + log(protime) +

log(bili), binomial, pbc2_big_frame)

glm_fit_small <- glm(Y ~ age + edema + log(albumin) + log(protime) +

log(bili), binomial, pbc2_small_frame,

weights = pbc2_small_frame$weights) # <-- we use weights

We can confirm that the two models give the same estimate:

all.equal(glm_fit_big$coefficients, glm_fit_small$coefficients)

## [1] TRUE

Further, the binning affects the estimates as shown below. In particular, it affects the estimates for edema

and log(albumin). The standard errors from the simple fit are also printed. However, these standard errors
do not account for the dependence as we use multiple observations from the same individual

knitr::kable(

rbind("glm with bins" = glm_fit_big$coefficients,

"glm without bins" = glm_simple$coefficients,

"Sds with bins" =

summary(glm_fit_big)[["coefficients"]][, "Std. Error"],

"Sds without bins" =

summary(glm_simple)[["coefficients"]][, "Std. Error"]),

row.names = T)

(Intercept) age edema log(albumin) log(protime) log(bili)

glm with bins -10.34 0.046 1.066 -3.661 2.824 1.057
glm without bins -9.38 0.054 1.435 -4.438 2.927 1.193
Sds with bins 2.20 0.010 0.282 0.548 0.787 0.110
Sds without bins 2.25 0.012 0.370 0.624 0.815 0.129

To end this section, you can skip making data frame with get_survival_case_weights_and_data by calling
the static_glm function from dynamichazard package. The call below yields the same results as shown:
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static_glm_fit <- static_glm(

Surv(tstart, tstop, death == 2) ~ age + edema + log(albumin) + log(protime) +

log(bili), data = pbc2, id = pbc2$id, by = 100, max_T = 3600)

all.equal(static_glm_fit$coefficients, glm_fit_big$coefficients)

## [1] TRUE

For details, see the help file by typing ?static_glm

Generalized Additive Models using mgvc

The first method we will compare with is Generalized Additive Models (GAM) by using the gam function in
the mgcv package. The model we fit is of the form:

logit(πi) = γtimeftime(ti) + γageftime(ti)ai + γedefede(ti)ei + γalbfalb(ti) log alit

+ γprofalb(ti) log pit + γbiilfbili(ti) log bit

where πit is the probability that the i’th individual dies of cancer, t is the stop time of the bin and ai, ei,
alit, pit and bit are respectively the i’th individual’s age, edema, albumin, protime and bilirunbin. The extra
subscript t is added to refer to the level of the covariate in the bin at time t. It is important to notice that
we will use the same bins as in later fits. In particular, we will use the pbc2_big_frame data frame from
before. f

·
is a smooth function. We will use cubic regression splines with knots spread evenly through the

covariate values. We fit the model with the following call:

library(mgcv, quietly = T)

spline_fit <- gam(

formula = Y ~

# cr is cubic spline with k knots

s(t, bs = "cr", k = 3, by = age) +

s(t, bs = "cr", k = 3, by = edema) +

s(t, bs = "cr", k = 5, by = log(albumin)) +

s(t, bs = "cr", k = 5, by = log(protime)) +

s(t, bs = "cr", k = 5, by = log(bili)),

family = binomial, data = pbc2_big_frame,

method = "GCV.Cp") # estimate smoothing parameters with generalized cross

# validation

The above estimates the GAM model where the likelihood is penalized by a L2 norm for each of the spline
functions. The tuning parameters are chosen by generalized cross validation. Below are plots of the estimates

plot(spline_fit, scale = 0, page = 1, rug = F)

Further, we compare the result with static model. Recall that our static model had the following estimates:

glm_fit_big$coefficients

## (Intercept) age edema log(albumin) log(protime) log(bili)

## -10.3437 0.0461 1.0659 -3.6611 2.8239 1.0571

These do seem to correspond with the plots. Further, the intercept in the spline model is:

spline_fit$coefficients["(Intercept)"]

## (Intercept)

## -10.2
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Figure 1: Plots of estimated effects in the GAM model. The effective degree of freedom is noted in the
parentheses on the y axis and is computed given the number knots and final tuning parameter for spline
function. For instance, s(t,2.43):age means that the effective degrees of freedom for age is 2.43
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which again seems to match. The plot suggest that there may be time varying effects for bili particularly

Time varying cox model from timereg

Another method we can try is a time varying effects Cox model. We will use the Cox model from the package
timereg based on Martinussen & Scheike (2007). The model differs from a regular Cox model (e.g. by
using the coxph function from the survival package) by replacing the coefficient β by β(t) such that the
instantaneous hazard is:

λ(t) = λ0(t) exp (xβ(t))

where each element of β(t) is estimated recursively with an update equation. The update equation is simplified
through a first order Taylor expansion on the score function and by adding a smoothness by using weighting
depending on time changes with a uniform continuous kernel. For details see Martinussen & Scheike (2007)
in chapter 6. The estimation method differs from other alternatives in R that use splines for the time varying
effects (like the cox.ph in the mgcv package). The baseline is λ0(t) = exp(α0(t)) where α0(t) is estimated in
a similar to way to β(t). Below we estimate a model similar to the previously fitted models

We set the last observation time (max.time) lower than in the previous model as there are issues with converge
if we do not. For the same reason we specify the effect of log(protime) to be constant (non-time varying).

To inspect the fitted model, the cumulated coefficients B(t) =
∫

t

0
β(t)dt are plotted. Thus, a constant effect

should be roughly linear

library(timereg)

cox_fit<- timecox(Surv(tstart / 365, tstop / 365, death == 2) ~ age + edema +

log(albumin) + const(log(protime)) + log(bili), pbc2,

start.time=0,

max.time = 3000 / 365, # <-- decreased

id = pbc2$id, bandwidth = 0.35)

par(mfcol = c(3, 2))

plot(cox_fit)
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The timecox packages provides two test for whether the coefficient is time invariant or not:

summary(cox_fit)

## Multiplicative Hazard Model

##

## Test for nonparametric terms

##

## Test for non-significant effects

## Supremum-test of significance p-value H_0: B(t)=0

## (Intercept) 5.53 0.000

## age 3.37 0.015
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## edema 4.65 0.000

## log(albumin) 6.16 0.000

## log(bili) 8.53 0.000

##

## Test for time invariant effects

## Kolmogorov-Smirnov test p-value H_0:constant effect

## (Intercept) 15.9000 0.211

## age 0.0785 0.797

## edema 6.1500 0.045

## log(albumin) 13.1000 0.193

## log(bili) 1.0700 0.740

## Cramer von Mises test p-value H_0:constant effect

## (Intercept) 3.61e+02 0.318

## age 5.44e-03 0.925

## edema 5.80e+01 0.064

## log(albumin) 3.72e+02 0.185

## log(bili) 2.28e+00 0.622

##

## Parametric terms :

## Coef. SE Robust SE z P-val lower2.5% upper97.5%

## const(log(protime)) 2.43 0.815 0.966 2.51 0.012 0.829 4.02

##

## Call:

## timecox(formula = Surv(tstart/365, tstop/365, death == 2) ~ age +

## edema + log(albumin) + const(log(protime)) + log(bili), data = pbc2,

## start.time = 0, max.time = 3000/365, id = pbc2$id, bandwidth = 0.35)

The above test suggest that only edema might be “border line” time varying

Dynamic hazard model

In this section, we will cover the dynamic hazard model with the logistic link function that is implemented
in this package. The model which is estimated with EM algorithm which are from Fahrmeir (1994) and
Fahrmeir (1992) when an Extended Kalman Filter is used in the E-step are. Firstly, we will briefly cover the
model. See the ddhazard vignette for a more detailed explanation of the models. Secondly, we will turn to
different ways of designing the model and fitting the model

The idea is that we discretize the outcomes into 1, 2, . . . , d bins. In each bin, we observe whether the individual
dies or survives. The state space model we are applying is of the form:

yt = zt(αt) + ǫt ǫt ∼ (0,Var(yt|αt))
αt+1 = Fαt + Rηt ηt ∼ N(0, ψtQ)

, t = 1, . . . , d

where yit ∈ {0, 1} is an indicator for whether the i’th individual dies in interval t. · · · ∼ (a, b) denotes a
random variable with mean (or mean vector) a and variance (or co-variance matrix) b. It needs not to be
normally distributed. zit(αt) = h(αtxit) is the non-linear map from state space variables to mean outcomes
where h is the inverse link function. We use the logit model in this note. Thus, h(x) = logit−1(x). The
current implementation supports first and second order random walk for the state equation. Further, we
define the conditional covariance matrix in the observational equation as Ht(αt) = Var(yt|αt). ψt is the
length of the bin and is assumed equal for values of t since we use equidistant bins

The unknown parameters are the starting value α0 and co-variance matrix Q. These are estimated with
an EM-algorithm. The E-step is calculated using a Extended Kalman filter (EKF) or Unscented Kalman
filter (UKF). Both are followed by a smoothing step. The result is smoothed predictions of α1, . . . ,αd,
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smoothed co-variance matrix and smoothed correlation matrices that we need for the M-step to update α0

and Q. Further, we assume that Q0 = κI is fixed to a large value κ in the examples. For more details see the
ddhazard vignette

Estimation with Extended Kalman Filter

We start by estimating the model using the EKF where we let all coefficients follow a first order random walk:

library(dynamichazard)

dd_fit <- ddhazard(Surv(tstart, tstop, death == 2) ~ age + edema +

log(albumin) + log(protime) + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(rep(10, 6)), Q = diag(rep(0.001, 6)))

plot(dd_fit)
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We start by estimating the model. The arguments Q_0 and Q corresponds to the co-variance matrix at time
zero and the co-variance matrix in the state equation. Q_0 will remain fixed while Q is the starting value in
the first iteration of the EM algorithm after which we update Q

Next, we plot the coefficient. That is, we plot the predicted latent variables α0, . . . ,αd. Notice that the
predicted coefficient are close to the estimates we saw previously for the GAM model
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Extra iteration in the correction step

Another idea is to take extra iterations in the correction step of the EKF. The motivation is that this step
has the form of a Newton Rapshon algorithm as pointed out in Fahrmeir (1992) and Fahrmeir (1994). For
more details see the ddhazard vignette. One of the motivation to use extra iterations is that experimental
simulation have shown decrease predicted mean square error for one step ahead forecasts (see the vignette
‘Simulation study with logit model’). Below, we estimate the model with potentially extra steps in the
correction step.

dd_fit <- ddhazard(Surv(tstart, tstop, death == 2) ~ age + edema +

log(albumin) + log(protime) + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

a_0 = glm_fit_big$coefficients,

control = list(NR_eps = 0.1), # <-- tolerance in correction step

Q_0 = diag(rep(1, 6)), # <-- decreased Q_0

Q = diag(rep(0.001, 6)))

# Plot result

plot(dd_fit)
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First, we run the code with the NR_eps element of the list passed to the control argument set to something
that is finite. The value is the threshold for the relative change of in the state vector in correction step of the
EKF. We end the code above by creating plots of the new estimates. The curves seems to be less smooth.
Notice that we decrease Q_0. The algorithm diverges if we do not
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Estimation with Unscented Kalman Filter

Another option is to perform the E-step using an unscented Kalman filter. This is done below. We start by
setting the initial co-variance matrix Q large:

dd_fit_UKF <- ddhazard(Surv(tstart, tstop, death == 2) ~ age +

edema + log(albumin) + log(protime) + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(rep(1, 6)), Q = diag(rep(0.01, 6)),

control = list(method = "UKF", beta = 0, alpha = 1,

eps = 0.1, n_max = 1e4))

plot(dd_fit_UKF)
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Clearly, the plots of the estimates are not what we expected. The reason is that Q0’s diagonal entries are
quite large. The square root of the diagonal entries are used to form the sigma points in the first iteration.
Hence, we mainly get estimates that are either zero or one when Q0 is a diagonal matrix with large entries.
You can run the code below to see how the algorithm progress:

# Not run

tmp_file <- file("pick_some_file_name.txt")

sink(tmp_file)

dd_fit_UKF <- ddhazard(Surv(tstart, tstop, death == 2) ~ age +

edema + log(albumin) + log(protime) + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(rep(1, 6)), Q = diag(rep(0.01, 6)),

control =
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list(method = "UKF", beta = 0, alpha = 1,

debug = T)) # <-- prints information in each iteration

sink()

close(tmp_file)

It will print quite a lot of information and hence it is recommended to use sink to write the output to a file.
The main take away is that the conditional co-variance matrices accumulate in each iteration will the state
vectors does not move. This motivates us to pick Q and Q0 more carefully. Our estimates from the EKF was:

diag(dd_fit$Q)

## (Intercept) age edema log(albumin) log(protime) log(bili)

## 8.90e-04 1.19e-06 6.39e-04 6.88e-04 5.90e-04 4.79e-04

which could motivate us to make the following choices:

dd_fit_UKF <- ddhazard(

Surv(tstart, tstop, death == 2) ~ age +

edema + log(albumin) + log(protime) + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(c(0.001, 0.00001, rep(0.001, 4))) * 100, # <-- decreased

Q = diag(rep(0.0001, 6)), # <-- decreased

control =

list(method = "UKF", beta = 0, alpha = 1, eps = 0.01))

plot(dd_fit_UKF)
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This is comparable to the fits from the EKF and GAM model. The main point here is:
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1. The UKF may work for certain data set. It may require “more care” for some data sets
2. The algorithm is sensitive to the choice of Q and Q0. Further, there is dependence on hyper parameters
α, κ and β which we have not explored

3. The output you get by setting debug in the list passed to the control argument can be useful. Combine
this with sink because the output may be long

4. The UKF has shown better performs than the EKF previously. Examples includes Romanenko &
Castro (2004), Kandepu, Foss, & Imsland (2008), Julier & Uhlmann (2004), Wan & Van Der Merwe
(2000) and chapter 11 of Durbin & Koopman (2012)

Estimation with fixed effects

We may want to fit a model where we assume that some of the co-variates are fixed. For instance, we may
want to fit a model where age, the intercept, log(protime) and log(albumin) are fixed. We fix these based
on the previous plots where the effects seems no to be time-varying. The model can be fitted as by the
following call:

dd_fit <- ddhazard(

Surv(tstart, tstop, death == 2) ~ ddFixed(1) +

ddFixed(age) + ddFixed(log(albumin)) + edema +ddFixed(log(protime)) + log(bili),

pbc2, id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(rep(1, 2)), Q = diag(rep(0.0001, 2)), control = list(eps = 0.02))

plot(dd_fit)
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The estimates seems similar. Moreover, the fixed effects are in agreement with the previous fits (they are
printed below):

dd_fit$fixed_effects

## (Intercept) age log(albumin) log(protime)

## -10.9390 0.0479 -3.5341 2.9739

We can also try to both fix some of terms and potentially take extra iterations in the correction step. This is
done below:
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dd_fit <- ddhazard(

Surv(tstart, tstop, death == 2) ~ ddFixed(1) +

ddFixed(age) + ddFixed(log(albumin)) + edema +ddFixed(log(protime)) + log(bili),

pbc2, id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(rep(1, 2)), Q = diag(rep(0.0001, 2)),

control = list(eps = 0.02, NR_eps = 0.1))

plot(dd_fit)
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We see that the curve is less smooth similar to what we saw previously

Second order random walk

We will end by fitting a second order random walk to model where only log(bili) effect is time varying.
The motivation is that the second order random walk tend to diverge more easily especially for small data
sets. Further, the previous models seems to suggest that it is the only covariate where we may have a time
varying coefficient. We fit the model below:

dd_fit <- ddhazard(Surv(tstart, tstop, death == 2) ~

ddFixed(1) + ddFixed(age) +

ddFixed(edema) + ddFixed(log(albumin)) +

ddFixed(log(protime)) + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

order = 2, # <-- second order

Q_0 = diag(c(10, 10)), # <-- needs more elements

Q = matrix(0.001))

plot(dd_fit)
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dd_fit$fixed_effects

## (Intercept) age edema log(albumin) log(protime)

## -11.0847 0.0492 1.4193 -3.4863 2.9585

We plot the curve after the fit. We see that the estimate is more smooth as expected with a second order
random walk. Further, we can confirm that the fixed effects are comparable with our previous fits

Summary

We have estimated a model using Generalized additive models with the mgcv package and a time varying
Cox model with the timereg package. Further, we have illustrated how the ddhazard function in the
dynamichazard package can be used. In particular, we have used the logit link function and showed how to
estimate with fixed effects, taking extra Newton Raphson steps in the correction step, fitting second order
random walks and using the Unscented Kalman filter in the E-step. All the fits have been comparable with
the Generalized Additive model

An unaddressed question is why you should this package. Some of the advantageous of the state space model
here are among other:

1. You can extrapolate beyond the last observation time. An example hereof could be any time series
where the underlying time is the calendar time such a medical trail where we may suspect a different
effects of a drug in 2015 than in 1990

2. The implementation is linear in time complexity with the number of observations. Further, the Extended
Kalman filter computes the correction step in parallel. Consequently, it is very fast even for large
number observations

3. All estimation is made in c++ with use of the Armadillo library. Thus, an optimized version of Blas

or Lapack can decrease the computation time
4. It is an alternative to spline models. This relates to 1. The main tools for including time varying

coefficient in R seems to apply of splines. Thus, this is an alternative estimation method

16



References

Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods. Oxford University Press.

Fahrmeir, L. (1992). Posterior mode estimation by extended kalman filtering for multivariate dynamic
generalized linear models. Journal of the American Statistical Association, 87 (418), 501–509.

Fahrmeir, L. (1994). Dynamic modelling and penalized likelihood estimation for discrete time survival data.
Biometrika, 81 (2), 317–330.

Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the

IEEE, 92 (3), 401–422.

Kandepu, R., Foss, B., & Imsland, L. (2008). Applying the unscented kalman filter for nonlinear state
estimation. Journal of Process Control, 18 (7), 753–768.

Martinussen, T., & Scheike, T. H. (2007). Dynamic regression models for survival data. Springer Science &
Business Media.

Romanenko, A., & Castro, J. A. (2004). The unscented filter as an alternative to the ekf for nonlinear state
estimation: A simulation case study. Computers & Chemical Engineering, 28 (3), 347–355.

Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model*. The Journal of

Business, 74 (1), 101–124.

Tutz, G., & Schmid, M. (2016). Nonparametric modeling and smooth effects. In Modeling discrete time-to-

event data (pp. 105–127). Springer.

Wan, E. A., & Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear estimation. In Adaptive

systems for signal processing, communications, and control symposium 2000. as-spcc. the ieee 2000 (pp.
153–158). Ieee.

17


	Intro
	The pbc data set
	Logistic model
	Generalized Additive Models using mgvc
	Time varying cox model from timereg
	Dynamic hazard model
	Estimation with Extended Kalman Filter
	Extra iteration in the correction step
	Estimation with Unscented Kalman Filter
	Estimation with fixed effects
	Second order random walk

	Summary
	References

