ddhazard

Bengjamin Christoffersen

2017-01-20

Introduction

This note will cover the ddhazard function used for estimation in the dynamichazard library. You can install
the version of the library used to make this vignette from github with the devtools library as follows:

current_version # the string you need to pass to devtools::install_github

[1] "boennecd/dynamichazard@la48adecf51906cfafd3593dd4ee8b9019b03aal"

devtools: :install_github(current_version)

You can also get the latest version on CRAN by calling:

install.packages("dynamichazard")

The ddhazard function estimates a dynamic binary regression model where the parameters are assumed to
time-varying and follow a random walk.

Why and when to use this package

The package is implemented for situation where you have a dynamic binary regression model with time-varying
coefficients. The advantage of the state spaces methods used here is that you can extrapolate to time periods
beyond the data used in estimation. An example is forecasting firm failures given the firms present accounting
data. The task is to use the present data to estimate a model and forecast the likelihood of default for the
firms in the following year. Another use of this package is as an alternative to other methods of modelling
time-varying coefficients for binary regression such as Generalized Additive models

The estimation function ddhazard is implemented such that:

1) The time complexity of the computation is linear in the number of observations and in time

2) The dimension of the observation equation can vary through time allowing for late entry and censoring

3) It is fast due to the C++ implementation which uses Armadillo library and use of multithreading
through the standard library thread

All are important in the analysis of firm failures. Firstly, you can easily have 40-50.000 firms at risk at each
point in time. Thus, point 1) is key to be able to fit the models. Moreover, the number of firms at risk will
vary as time progress. Some firms default, some are opened, some merge, some are acquired etc. This relates
to point 2)

Guide to vignettes

The vignette here is the primary vignette where the models and estimation methods are explained. The
package also contains two supplementary vignettes. Simulation study with logit model presents a simulation
study where the methods in this package are compared to each other and to Generalized Additive models.
Comparing methods for time-varying logistic models applies the methods to a real world data set. Both
vignettes illustrate how to use the estimation function ddhazard and other functions in this package. They
only use the discrete time model. This vignette also describes the continuous time model

Dynamic binary regression

We will introduce the model in the following paragraphs. Let x;; denote the co-variate vector for individual ¢
at time ¢ and let Y;; be the random variable for whether the ¢’th individual dies within time (¢ — 1,¢]. Next,
denote the parameters at time ¢t by «;. For given parameters at time ¢ the probability of death is:

P(Yiu=1y1,...,yi-1,04) = h(af z;)

where h is the inverse link function. For example, this could be the inverse logistic function such that
H(n) = exp(n)/(1 + exp(n)). The ddhazard function estimates models in the state space form:

Y = z(0n) + € € ~ (0, Var (y:| ay))

o t=1....d
o1 = Fa, + R, e ~ N(0,9:Q)

y; is the vector of the binary outcomes and the associated equation is the observational equation. ~ (a,b)
denotes a random variable(s) with mean (vector) a and variance (co-variance matrix) b. It needs not be a
normal distribution. «; is the state vector with the corresponding state equation. v is the length of the
interval number ¢. Thus, ¥y = 1) when we use equidistant time intervals which is the only option at this point.
Further, we define the observational equations covariance matrix as H(a;) = Var (y:| o)

The mean z;(ca;) and variance H(a;) are state dependent with:
zin(ew) = B (Yo) = h(af @)

B [Var (Y| o) i=]
H;ji(ar) = { 0 otherwise

_ {Zit(at)(l—zit(at)) i=J

0 otherwise

The state equation is implemented with a 1. and 2. order random walk. For the first order random walk
F = R = I, where ¢ is the number of regression parameters and I, is the identity matrix with dimension q.
As for the second order random walk, we have:

o 21, -1, R — I,
0, I,)’ 0,
where 0, is a ¢ X ¢ matrix with zeros in all entries. The vector in the state equation is ordered as

a; = (al',al’)T to match the definition of F and R. The likelihood of the model where a; are observed
can be written as follows by application of the markovian property of the model:

P(ag,...,aaly,...,yr) < L (e, ..., o)

= plao) [[P (eul ce1) [] P (wirl o)

1€ER:

~+
=

which we can expand to:

E(ao,...,ad):logL(ao,...,ad):ff(agfao)TQal (g — ap)

d
+ Z Z lit(ox)

t=11€R;

lit(at) = yir log h(asg;at) + (1 — y;t) log (1 — h(a:g;at))

The unknown parameters are the initial state vector oy and the covariance matrix Q . We estimate these using
an EM-algorithm. The E-step is carried out by an Extended Kalman filter (EKF) or an Unscented Kalman
filter (UKF). The method is chosen by passing a list to the control argument of ddhazard with 1ist (method
= "EKF", ...) or list(method = "UKF", ...) respectively. Both the UKF and EKF require an initial
state vector ay, co-variance matrix Q and initial co-variance matrix Qg to start

A key thing to notice (and a likely source of errors if forgotten) is that the Q argument for Q is scaled by the
length of the time interval, ¢;. The motivation for this behavior is that you can alter ¢y and get comparable
estimates of Q. Further, it will also be useful if unequal intervals lengths are implemented later. As a last
comment in this context, Q_0 is not scaled and thus will exactly match Qg in the estimation. The logic here
is that Qg is independent of our time interval length and reflects our uncertainty of a

We will use a small example to illustrate how to fit a model and illustrate that the lengths of the time
intervals do not have a big effect on Q. The data frame we use is in the usual start and stop time format:

knitr::kable(head(simple_ex, 10), digits = 4)

id tstart tstop event x1 x2
1 0.00 1.00 1 0.785 0.8468
2 0.00 16.96 0 0.563 0.2664
2 16.96 19.54 0 0.959 0.7323
2 19.54 24.06 0 0.623 0.2150
2 24.06 28.00 0 0.031 0.0985
3 12.02 23.03 0 0.182 0.2629
3 23.03 28.00 0 0.339 0.5262
4 0.00 3.51 0 0.294 0.7766
4 3.51 8381 0 0.568 0.7893
4 8.81 10.96 0 0.282 0.3075

The column id shows which individual the row belongs to, tstart is point at which the row is valid from
and tstop is when the row is valid to. event is one if the individual dies at tstop and x1 and x2 are two
covariates. Thus, the individual with id 1 dies at time 1 while id 2 survives all the periods we observe. Next,
we can fit a model as follows:

library(dynamichazard)
library(survival)
dd_fit_short <- ddhazard(
Surv(tstart, tstop, event) ~ x1 + x2, # Formula like for coxph from survival
data = simple_ex,

by = 1, # Length of time intervals

Q = diag(0.1, 3), # Covariance matriz in state eqn

Q_0 = diag(10, 3), # Covariance matriz for initial state
wvector

max_T = 28, # Last time we observe

id = simple_ex$id, # 1d of individuals

control =

list(ridge_eps = 0.0001)

H

Penalty term explained later

Print diagonal of covariance matric
diag(dd_fit_short$Q)

(Intercept) x1 x2
#it 0.549 0.779 0.451

Above, we estimate the model with a time intervals of length by = 1. The model is the logistic model which
we introduced later and we will return to the ridge_eps shortly. For now, let us see what happens if we
increase the interval length by changing the by argument:

library(dynamichazard)

library(survival)

dd_fit_wide <- ddhazard(

Surv(tstart, tstop, event) ~ x1 + x2,
data = simple_ex,
by = 2, # increased
Q = diag(0.1, 3),
Q_0 = diag(10, 3),
max_T = 28,
id = simple_ex$id,
control =
list(ridge_eps = 0.0002)) # increased

Print relative differences between diagonal of covariance matrices
Q_short <- dd_fit_short$Q

Q_wide <- dd_fit_wide$Q

diag((Q_wide - Q_short) / Q_short)

(Intercept) x1 x2
-0.3972 0.0093 0.2767

We see that the diagonal entries are not far from each other with the two fits. To ease the notation, we
assume that ¢, = 1 in the rest of the vignette. The rest of this vignette is structured as follows. The section
‘EM algorithm’ will cover the EM algorithm. This is followed by the sections ‘Extended Kalman Filter’
and ‘Unscented Kalman Filter’ which respectively covers the EKF and UKF used in the E-step of the EM
algorithm. Finally, we end with the sections ‘Logistic model’ and ‘Continuous time model’ which cover the
models implemented in this package

I encourage you to use the shiny app while reading this vignette. You can launch the shiny app by installing
this package and running:

dynamichazard: :ddhazard_app()

The app will allow you to compare the methods and models described here on simulated data sets

EM algorithm

An EM algorithm is used to estimate the initial state space vector aig and the co-variance matrix Q. Optionally
Qo is also estimated if control = list(est_Q_0 = T, ...). Define

a’t|s:E(at|y17"'ayS)7 Vt\s:E(Vt|y1a"'7ys)

for the conditional mean and co-variance matrix. Notice that the letter ‘a’ is used for mean estimates while
‘alpha’ is used for the unknown state as is typical in the state space literature. The notation above both covers
filter estimates in the case where s < ¢t and smoothed estimates when s > t. We suppress the dependence of
the co-variates (x;;) here to simplify the notation

The initial values for ag, Q and Qg can be set by passing a vector for the a_0 argument of ddhazard for «ay
and matrices to Q_0 and Q argument of ddhazard for respectively Qg and Q

E-step

The outcome of the E-step are the smoothed estimates:

B y®

a0 t|d

t=0,1,....d

where d is the number of periods we observe. Superscripts -(*) is used to distinguish between the estimates
from each iteration of the EM-algorithm. Thus, a(ill?l is the smoothed state space vector for interval i in
iteration k of the EM algorithm.

The required input to start the E-step is an initial mean vector agkil) and co-variance matrix Q(k_l). Given
these input, we compute the following estimates either by using the EKF or UKF:

aj‘j,l, ai‘i, Vj\j*h Vi|i’ 2207177d/\j:1,2,,d

Then the estimates are smoothed by computing:

ng) = thutleVfl

tle—1
k k
a(tjlld = at_1|t_1 + Bt(a(tl()i — at|t_1) t= d7 d — 1, ey 1
k k
V(t_)”d =V i1+ Bt(V(t\C)l —Vy-1)B]

Kalman Filter

The standard Kalman filter is carried out by recursively doing a filter step and a correction step. This also
applies for the EKF and UKF used in the E-step. Thus, this paragraph is included to introduce general
notions. The first step in the Kalman Filter is the filter step where we estimate a;;_; and V;_; based on
a;_1;4—1 and V_1;_1. Secondly, we carry out the correction step where we estimate a;; and V4; based on
ay¢—1 and V), and the observations. We repeat the process until ¢ = d

M-step

(k—1

The M-step updates the mean a) and co-variance matrices Q(k_l) and Q(()kfl) (the latter being optional).

These are computed by:

~(k k Ak k
& = al), (B _ y®

d
~ 1 g
K T (k) (k) (k) (k)
QV=3> R (<atld -Fay,) (s - Falyy)
t=1

k k)~ (k B~)\ T k
+ v - FBPV) (FB§ >vg|;) +FVY FT R

We test the relative norm of the change in the state vectors to check for convergence. You can select the
threshold for convergence by setting the eps element of the list passed to the control argument of ddhazard
(e.g. list(eps = 0.0001, ...))

Extended Kalman Filter

The idea of the Extended Kalman filter is to replace the observational equation with a first order Taylor
expansion. This approximated model can then be estimated with a regular Kalman Filter. The EKF presented
here is originally described in Fahrmeir (1994) and Fahrmeir (1992)

The formulation in Fahrmeir (1994) differs from the standard Kalman Filter by re-writing the correction step
using the Woodbury matrix identity. This has two computational advantages. The first one is that the time
complexity is O(p) instead of O(p?®) where p denotes the dimension of the observation equation. Secondly, we
do not have store an intermediate p X p matrix

The EKF starts with filter step where we compute:

Ayp—1 = Fat71|t715
Vi1 =FV,_ 1, F" + RQR”

Secondly, we perform the correction step by:

-1 -1
Vt\t = (Vt\tfl + Ut(at\t—l))

Ay = ay—1 + Viypug(ag)

where u¢(a;—1) and Ug(ay,—1) are given by:

Oh(n)/0
won) = 3 walon), wlen) = 2 G (e~)|
1ERy n=zTa,
dh(n)/om)?
Uilew) = Z Ui(ow), Uploy) = zitzl?;(H(iZ)(/a:]))
1ER WZZ;";OLt

Ry is the set of indices of individuals who are at risk in time interval ¢. It is commonly referred to as the risk
set. Thus, the dimension the observational equation can vary as individual dies or are right censored

Divergence

Initial testing shows that the EKF has issues with divergence for some data set. The cause of divergence
seems to be overstepping in the correction step where we update a ;. In particular, the signs of the elements
of ay; tends to alter between ¢ — 1,¢, + 1 etc. and the absolute values tends to increase in each iteration
when the algorithm diverges. The following section describes solutions to this issue

Fahrmeir (1992) mentions that the correction step can be viewed as a single Fisher Scoring step. This
motivates:

1) To take multiple steps if @y, is far from a4;—q
2) Introduce a learning rate

Simulated datasets show that the learning rate solves the issues with divergence. Let [> 0 denote the learning
rate and enr denote the tolerance in the correction step. We then set @ = a,;_; and compute:

a;=a+1-Vyu(a)
-1

Vo= (Vi + Unla)

if [|ay; — all/(|la[+J) < exr then exit

else set @ = ay); and repeat

where d is small like 1079, Selecting [< 1 in case of divergence can solve the npn-convergence issue. Thus,
the following procedure is used if the algorithm fails with initial learning rate I: try a learning of I in place
of I above for given 0 < ¢ < 1. If that fails then try a rate of (2. The process is stopped when we succeed to
fit the model or we fail to estimate the model with a learning rate of [(" for a given integer w.

While Fahrmeir (1992) does not observe improvements with multiple iterations, we find improvements in
terms of out-of-sample prediction (for example by setting exg = 1072 or lower) with a moderate or large
amount of observations. See the vignette “Simulation study with logit model” for details

The value of | and exg are set by respectively setting the elements LR and NR_eps of the list passed to the
control argument of ddhazard. By default, LR = 1 and NR_eps = NULL which yields a learning rate of 1
and a single Fischer scoring step. These arguments can be altered by setting e.g. control = list(LR =
0.75, NR_eps = 0.001) for a learning rate of 0.75 and a threshold in the Fisher Scoring of 10~3

In addition, a minor term is added covariance matrix as in ridge linear regression. Thus, the score and
information matrix are computed with:

~ Oh(n)/0n
* Hiit(on) + ¢

_ _ _r(Oh(n)/on)?
= ZitZ; Hyir(ow) + €

(yit — h(n))

ui(oy) = z

_,T
N=2;1 Xt

Ui (ay)

—-T
n=zj;on

where £ > 0 is a small number. The default can be changed by altering the ridge_eps in the list passed to
the control argument of ddhazard

Parallel BLAS or LAPACK

All the computations use objects from the Armadillo library. Thus, an optimized version LAPACK and
BLAS can speed up the computation. A multithreaded version of LAPACK or BLAS can cause issues with
performance. The majority of the computation time is spent in the correction step of the EKF, where
we compute us(a;) and Ui(ay), when the number of regression parameter is low and we have a lot of
observations. For this reason, this part of the code is computed in parallel with the C++ standard library
thread. The reduction in computation time can be offset if a multithreaded version of LAPLACK or BLAS
is used as the code already use multithreading

A specific solution to the issues is implemented for Windows users who compiles with openBLAS. The
src/Makevars.win checks if there is C:\OpenBLAS folder. If so, we assume that the structure is:

C:/0OpenBLAS/

|--1ib/
|--libopenblas.a

| -—include/
|--cblas.h
|--f77blas.h

The code will be compiled with this openBLAS instead of the BLAS library used to compile R. This will allow
parts of the matrix operations to be run in parallel by using openBLAS for multithreading. The number of
threads openBLAS will use is set to 1 before the part that use the thread library is run and reset after the
this part is completed.

Uncented Kalman Filter

The UKF selects state vectors called sigma point with given sigma weigths chosen to match the moments
of observation equation. Thus, we approximate the density rather than approximating the observational
equation. The idea is similar to a Monte Carlo method for state space models but where the state vectors are
chosen deterministically rather than randomly drawn

The motivation to use the UKF in place of the EKF is that we avoid the linerization error in the EKF. Julier
& Uhlmann (1997) introduce a UKF that approximate the first two moments and up to fourth moment in
certain settings. Julier & Uhlmann (2004) further develop the UKF and extended to what is later called
the Scaled Unscented Transformation. We will cover the the Scaled Unscented Transformation with the
parametrizion from Wan & Van Der Merwe (2000) and formulas from Menegaz (2016)

One of the reasons the UKF has received a lot of attention (especially in engineering) is for settings where
the observation equation is complicated since the UKF does not require that computation of the Jacobian
matrix. However, deriving the Jacobian matrix for the models in this package is not difficult

The usual UKF formulation

We start by introducing a common notation used in the UKF literature. For two random vectors a; and by,
let:
Pa, b, = Cov(a, byi,...,yt)

Notice that Pu, o, = V. The UKF start with the filter step. As pointed out in Julier & Uhlmann (2004)
and Menegaz (2016), the regular Kalman filter filter step can be used when the state equation is a linear
Gaussian model. Thus, the filter step is:

Ayp—1 = Fa’t71|t715

Vi1 = FVt—llt—lFT +RQR”

That is, we use the closed form solution. This version is both exact given the previous estimates a;_+—;
and V,_y;_; and computationally less demanding. Then we select 2¢ + 1 so-called sigma points (where q is
the dimension of the state equation) denoted by @, @1, ..., @24+1 according to:

ap = Q-1

ai:at|t_1+\/q+7)\<\/m% i:1727--~7q
irg = ayr~ Vi A (V).

where (« / Vt‘t,l)i is the 4’th column of the lower triangular matrix of the Cholesky decomposition of V;;_;.
We assign the following weights to each sigma point (we will cover selection of the hyperparameters a, 8 and
k shortly):

A
Wy):m
W()(C):H%H—a%ﬁ
Wg@:q%H_a
wim =W :m, i=1,...,2q

A=a’(g+k)—q

Then we proceed to the correction step. We start by defining the following intermediates:

v =z (@), 1=0,1,...,2q
Y:(gOa"'ngq)

2q q
g=> WMy, AY=Y-g1T, H=) WIH@&)
1=0 3
AA = (@o, ..., d2q) — @y 117

2q
Pyy = > W (@ -9)@ —9)" +H) = A¥diag(W)AY" + H
i=0
2q
Pz .y = Z Wi(cc)(ai —ay1)(Yi — ?)T = Az&diag (W(CC)>A?T
i=0

The correction step is then:
Ay = Qg1 + me,,ytP;t];yt (y: —79)

_ —1 T
Vt|t - Vﬂt*1 - thytht,ytht:yt

Re-writting

The above formulation has the drawback that we have to invert P, ,, which is infeasible when the number
of observations is large (say greater than 1000). We can re-write the correction step above by using the
Woodbury matrix identity to get algorithm O(|Ry|) instead of O(|R;|?) where R; is the indices at risk in the
7’th interval. In other words, the new formulation is linear in time complexity with the dimension of the
observational equation

The correction step can be computed as:

Y= A?Tﬁ_l(yt -7)
G =AYTH!AY

c=§—-G (diag(W(m))_l + G) - §
L-G-G (diag(W(c))l + G) e

Ayl = Qyfp—1 + A:&diag(W(CC))c

Vi = Vi1 — AAdiag(W) Ldiag (W)) AAT

where g, G, L and ¢ are intermediates. The above algorithm is O(|R;|) since His a diagonal matrix and all
products involves at most multiplications of m X |R¢| or |R;| X m matrices

Ridge regression

As with the EKF, a minor addition is made to the covariance matrix of the observational equation such that
we replace H by:

H=H+¢

The addition makes divergence less common and shrinks the coefficient estimates

Selecting hyperparameters

We still need to select the hyperparameters k, o and 5. We will cover these in the given order. & is usually
set to k =0 or K =3 — m. Julier & Uhlmann (1997) state is that the latter is a “useful heuristic” when the
state equation is Gaussian and o = 1.

The default in this package is x = ¢/a? — ¢ and can be altered by setting the list element kappa in the
list passed as the control argument to ddhazard. For example, control = list(kappa = 1, ...) yields
k = 1. The default makes Wém) = 0 such that all weights are positive. This ensures that V;;_; and Py, 4,
are positive semi-definite. This follows since both are sum of outer products with positive weights and as H is
a diagonal matrix with positive entries. Notice though that this means that o only affects Wéc) =1-a?+3
and Wécc) =1-«

0 < a < 1 controls the spread of the sigma points. Notice that A +m — 07, wéc),wém) — —o0 and

wgc), wgm) — 00 (i > 0) as @ — 0T. Thus, the lower the value of «, the lower the spread but the higher the
absolute weights. It is generally suggested to choose o small. See Gustafsson & Hendeby (2012) and Julier &
Uhlmann (2004). However, initial simulation studies showed that o = 1 yields the smallest mean square error
of estimated coefficients. Thus, this is the default. The parameter can be altered through the alpha element

of the list passed to the argument control of ddhazard.

Lastly, 3 is a correction term to match the fourth-order term in the Taylor series expansion of the covariance
of the observational equation. Julier & Uhlmann (2004) show in the appendix that the optimal value with a
Gaussian state equation is 5 = 2. Though, initial simulation showed that 8 = 0 yielded the best results and
is therefore the default. It can be altered through the beta element of list passed to the argument control
of ddhazard.

Selecting starting values

Experience with different data sets and the UKF shows that the method is sensitive to the starting values of
Q and Qg (where the latter may be fixed). The reason for divergence can be illustrated by the effect of Qp.
We start the filter by setting Voo = Qo. Say that we set Qo = kL, and ag = 0. Then the i’th column of the
Cholesky decomposition V g is a vector with Vk in the i’th entry and zero in the rest of the entries. Suppose
that we set k large. Then the linear predictors computed with the [< g + 1 sigma point is \/q +)\\/Exju
where z;1; is the I’th entry of individuals j’s co-variate vector at time 1. This can be potentially quite large
in absolute terms if xy;; is moderately different from zero. This seems to lead to divergence in some cases
where all the predicted values becomes either zero or one with variance close to zero. The later is an issue as
we divide by the weighted average of the variances in the correction step.

Q has a similar effect although it is harder to illustrate with a small example as it occurs in an intermediate
computations in the UKF. Based on experience, it seems that Qg should be a diagonal matrix with “somewhat”
large values and Q should be a diagonal matrix with small values. Though, what is “somewhat” large and
what is small dependent on the data set.

Fixed effects

This section will cover how fixed effects (non time-varying effects) are estimated. The fixed effects can be
estimated with two methods. The first one is by adding the fixed effects to state equation with their elements
of the covariance matrix Q set to zero. That is, we estimate the fixed effects in the E-step. The second
method is to estimate the fixed effects in the M-step

10

Estimation in the E-step

The fixed effect can be estimated in the E-step in a similar manner to Harvey & Phillips (1979). The method
in Harvey & Phillips (1979) is similar to Recursive Least Squares where some of the effects are time-varying.
The elements with the fixed effects has a large value in the diagonal of Qq (say 10°) and zero in the elements

of the covariance matrix Q. Thus, we end with Recursive Least Squares for the linear model if all effects are
fixed

In this package, we set the entries of Qp and Q in the same way. Nothing else is changed in the E-step.
Further, we set the all rows and columns of the fixed effects in Q to zero after the update in the M-step

This seems to work with the EKF for a large range of diagonal elements (anything greater than 10° in the
diagonal of Qq for the fixed effects). However, the choice of the diagonal entry in Qq for fixed effects do have
an impact with the UKF. “Large” but not too large values tends to work. Though, what is large depends
data set and model. The default for the diagonal elements of Qg for the fixed effects can be altered by setting
the Q_O_term_for_fixed_E_step of the list passed to the control argument of ddhazard. Moreover, this
method to estimate the fixed effect is used when you set the fixed_terms_method = "E_step" in the list
passed to the control argument

Estimation in the M-step

We start be re-stating the log likelihood and introducing new notation in the EM-algorithm. We need the
new notation to find the M-step for the model with fixed effects that are estimated in the M-step. The log
likelihood up to a normalization constant is:

1 _
L(ag,...,0q) =log L(a,...,0q) = — 5(040*00)TQ()1(0£0*00)

1

- 5 Z (Oét - Fat—l) Q ! (at - Fat—1)

t=1

1 1

— 5 log|Qo| — 5 logQ
d

+ Z Z Lit(cer)
t=11€R;

Lit(at) = yir log h(a:g;at) + (1 — y;t) log (1 — h(wz;at))

We perform the E-step by approximately integrating out the latent variables av, ..., a4 conditional on Qg

and the current estimates of Q*~1) and a(()k_l)

Ey (L (av,...,a) = B (£ (ao, ... a)| Qo, Q4. aff V)

= / L (aOa ey ad) fa07...,ad (x07 sy Ly QOa Q(k_l); a‘(()kil))dxo e d(I:d
Q.- Od

oy (43 Qo, Q=1 a(()k_l)) is the conditional density function of the latent variables «y, ..., ayq

given Qo, Q*~1 @l The resulting expected likelihood can be summarized by the conditional means,
(k) (k) (k)
Ao g 0‘d,...,Vd‘d

af?

covariance matrices V and matrices ng)7 . ,Bfik) when we update Q*) and

Notice that the entries in o, Q and Qq only appears in the first three lines of the log likelihood L (axg, . . ., atg).
Hence, we only need these three sets of terms to update Q*) and a(()k). To stress this point, the conditional

11

likelihood in the M-step is:

Ep (L (o, ... aq) =Ey (— (o —a0)" Qy* (ag — ag)

d
B %Z (ar =Fay1) Q7' (ar — Fey)
t=1
1 1
3 |Qo| — 2d |Q|>

Suppose now that we assume that some of the effects are fixed such that we replace the linear predictor =% a
by & ay + &y where ~ is the fixed effects and &;; are the corresponding co-variates. The new definition of
;¢ is:

Lit (G, Y) = yir log h(Zh0u + L) + (1 — yir) log (1- h(zl o + 573;"/))

Suppose that we fix y*~1 doing the E-step and estimate v(*) doing the M-step. Then the new expected log
likelihood is: _
B (£ (@0, @) = B (£ (@0,)| Qo, QFD, &l 4(1)

We observe that:

1. The %=1 term acts like offsets in the E-step where ~ =1 is fixed. Thus, we only need to add
these offsets to the linear predictors in the UKF or EKF in the implementation

(k)
0

2. v is estimated separately from &y~ and Q*) in the M-step. Thus, no changes are needed in the

update formulas for Q*) and a(()k)

However, the update of v(¥) requires that we optimize

d

B (Y3)
t=11€R;

with respect to . The update formulas are not as simple as for &gk) and Q) as the terms of l;; are

non-linear in the time-varying effects ag...,@4. A simple way to overcome this is to make a zero order

Taylor expansion around the mean estimates 6(017217 . ,6(5;:

d d
Ek (Z Z lit(at)> ~ Z Z lit(a(tlrgl)

t=1 iR, t=14i€R,
This expansion coincides with a first order Taylor expansion as the first order terms are zero. The advantages
are:

3. zha; acts like offsets in the M-step when we estimate ~(*)
4. ~(¥) is estimated in the M-step as a generalized linear model with offsets for distributions from the
exponential family

Point 2., 3. and 4. are apparent by noticing that the conditional log likelihood in the M-step differentiated
with respect to = is:

12

PR _ d 9, =~k
2 E Z Z Lit(a) | ~ Z Z S-li(ayy)

0
R t=11€R;

when we use the zero order Taylor expansion for B, (Zle > iR, lit(&t)). This is a score equation for a

generalized linear model if we use a distribution from the exponential family. This method will be used to
estimate the fixed effects when you set fixed_terms_method = M_step in the list passed to the control
argument

Implementation

Point number 4 above implies that we can use a typical Newton Raphson algorithm to update the estimate of
~ when we are using a distribution from the exponential family. This can be solved by a QR decomposition
as done in glm. However, point 3 implies that every observation will have a different offset in every time
interval the observation is in. Thus, we can end with a large design matrix

To overcome the potential memory issue this can cause, this package use the same Fortran function that the
bigglm function in the biglm package uses. The Fortran function recursively performs a QR update for each
row in the design matrix. Hence, we do not need to store the entire design matrix at any given point. The
Fortran code is described in Miller (1992) and written by Miller. It is an updated version of the algorithm
described in Gentleman (1972) which has a time complexity of O(|y|?) for the QR-update of each row in the
design matrix

The M-step recursively updates the ~ starting with the previous estimated value. The estimation stops when
7" — A E=D /(|7 * =D ||4-6) < € where superscripts denote the iteration number, € is the tolerance and § is
a small number. € can be changed by setting eps_fixed_params element of the list passed to the control
argument of ddhazard.

The estimation will stop if the criteria given by € is not meet within a given number of iterations. The
maximum number of iterations can be set by setting the max_it_fixed_params element of the control
argument to ddhazard. The user is warned if the criteria is not meet within max_it_fixed_params iterations.

Surely, other methods to solve the QR problem or fit a generalized linear model could be used that does not
require us to store the entire design matrix and are faster and/or more stable. An example could be the
algorithm described in Hammarling & Lucas (2008). The current method is used since it has shown to work
well in the bigglm function and as we assume that few parameters will be fixed. Thus, the O(|y|?) cost of
doing the M-step should not be an issue. Other options are for example stochastic gradient descent methods
or methods from Online learning.

Other options

Another option is to use higher order expansions of E, (Zle ZieRt lit(&t)> , approximate E, (Ele ZieRt lit(&t))
(k) ~(k)

with an MC like method using the conditional means 60| FIRRRRE P and conditional covariance matrices
V(Ok‘zi, . ,V(CZL, or any other method to approximate Ey (Zle > iR, lit(&t)) At this point, the zero order

Taylor expansion is the only implemented method to estimate ~ in the M-step

Which method to use

Neither the method that use the Recursive Least Squares like method in the E-step, nor the zero order Taylor
expansion in the M-step have performed consistently better on the data sets seen so far. Hence, both are
valid alternatives at this point

13

Fixed terms can be estimated by wrapping the co-variates in the formula of ddhazard in the ddFixed function.
As an example, ddhazard (Surv(tstart, tstop, y) ~ x1 + ddFixed(x2), ...) will fit a model where
x1 is time-varying and x2 is not.

Logistic model

The logistic model uses the inverse logit function as the inverse link function h. That is h(n) = exp(n)/(1 +
exp(n)). The logistic model is fitted by setting model = "logit" in the call to ddhazard. The UKF and
EKF are implemented as mentioned above without any complications. The following paragraphs will cover
the loss of information due to using time intervals instead of event times which motivates the continuous time
model. It is important to stress that the logistic model yields similar estimates as a to Generalized Additive
model as shown in the vignette Comparing methods for time-varying logistic models and Simulation study
with logit model. Consequently, it is a valid alternative

Event times to binary variables

This section will illustrate how we go from event time to binary variables for the logistic model and how this
can lead to loss of information. It is elementary but included to stress this point and motivate the continuous
time model. We will use figure 1 as the illustration. Each horizontal line represent an individual. A cross
represents when the co-variate values change for the individual and a filled circle represents the death of an
individual. Lines that ends with an open circle are right censored

0 1 2 3
a ! ! ! *
: : 0 1
b . . e
0 | 1 | 2 I
c i i . :
0 \ 1 \ 2 \ 3 4
d : : : S,
0 : : :
e T ° |)
0 \ 1 \ 2 :
f [[b]
0 | 1 :
g : ON :
: 1st interval . 2ndinterval .

Figure 1: Illustration of of going from event time to binary varibles. Each horizontal line represents an
individual. A cross indicates that new covariates are observed while a filled circle indicates that the individual
have died. Open circles indicates that the individual is right censored. Vertical dashed lines are time interval
borders

We will return to the vertical lines shortly. First, we notice that the example is where we assume that the
covariates are step functions. An example hereof is a medical trial where patients get tests taken at different
point in time (when they have a time at their doctor, visit the hospital or similar). Ideally we would like to
model that we know that for example individual a has the covariates from 0 to 1 and survives, the covariates
from 1 to 2 and survives etc. That is, we would like to model the event times

14

However, we do not model event times in the logistic model. Instead, we model binary outcomes in each time
interval. The vertical dashed lines represents the time interval borders. The first vertical line from the left is
where we start our estimation, the second vertical line is where the first time interval ends and the second
time intervals starts and the third vertical line is where the time interval ends. Thus, we only have two time
intervals in this example

We can now cover how the individuals (horizontal lines) are used in the estimation:

a is a control in both time intervals. We use the co-variates from 0 in the first time interval and the co-variates
from 1 in the second time interval b is not included in any of the time intervals. We do not know the
co-variates values at the start of the second time interval so we cannot include him c is a control in the
first time interval with the co-variates from 0. He will count as a death in the second time interval with the
co-variates from 1 d acts like a. e is a death in the first time interval with co-variates from 0 f is a control
in the first time interval with the co-variates from 0. He is a death in the second time interval with the
co-variates from 1 g is not included in any time intervals. We do not know if he survived the entire period of
the first time interval and thus we cannot include him

The example illustrates that:

1. We loose information about co-variates that are updated within time intervals. For instance, a, ¢, d and
f all use the co-variates from 0 for the entire period of the first time interval despite that the co-variates
change at 1. Moreover, we never use the information at 2 from a, d and f

2. We loose information when we have right censoring. For instance, g is not included at all since we only
know that survives parts of the first time interval

3. We loose information for observation that only occurs within time intervals as is the case for b

The above motivates the continuous time model that will be covered in the next sections where going from
event times to binary outcomes is not an issue

Continuous time model

The following section introduce the continuous time model. Four different methods will be introduced to
estimate the model. We start by describing the assumption of the continuous time model. Then we turn to
different estimation methods

Assumptions

We make the following assumption in the continuous time model:

1. Coeflicients (that is state variables a1, ..., aq) change at end of time interval 1,2,...,d

2. The individuals co-variates change at discrete times

3. We have piecewise constant instantaneous hazards given by exp(x a) given an individual’s current
co-covariate vector and state variable «

The instantaneous hazard change when either the individuals co-variates change or the coefficients change
when we change time interval. We make the following definitions to formalize the assumptions above. Let x;;
denote the 7’th individuals j’th co-variate vector. For each individual we observe j = 1,2,...,1l; values of
the co-variate vector. Each co-variate vector is valid in a period (ti’j,l, ti,j]. This definition differs from the
previous definition of x;; where the subscript j referred to the time interval number. The new notation is
used to cover the cases where update of co-variate values do not coincide with the end or start time one of
the time intervals. For instance, this is the case for the examples in the figure in the section before

Let T; denote the random event time of the ¢’th individual and let y;; = LiTiet; j_1.t:,]y e the indicator for
whether the 7’th individual dies in period (t; j—1,; ;]. Further, define the indicator g, ; s = Yijlis—1<t; ;<s}

15

which is one if individual ¢ dies in time interval s with covariates j. The log likelihood up to a normalization
constant is:

)" Q! (o — an)

l:(a()a"'vad):_i

Q
S
|
e
S

~Fay1)" Q7! (ay — Fay_y)

o~
Il
—

m\r—\ w\»—l DN
M&

0g |Qo| — 1og = \Q|
Z Lijs(xs)
(i,j)e{(m) 1 }

lijs(as) :(mzjas)yms — exp (mg:jas) (min{s,t; ;} —max{s — 1,t; ;_1})

+
1

where the ; ; ; terms come from the log likelihood:

log (P (1) = ai(t)Ta(t) ~ [exp (as(a) ax(w) wd

0

which simplifies into the terms of I; ; ;s when both the covariates x;(t) and state space parameters o(t) are
piecewise constant. Thus, the first sum from s = 1,...,n in the log likelihood is for the change in state space
parameters and the inner sum is for the changes in covariate vectors. The following sections will introduce
four methods to estimate the above model. They are:

1. Using a right clipped time variable

2. Using a binary variable

3. Using a right clipped time variable with a jump term
4. Combining method 1. and 2.

The methods with the binary outcome and the right clipped time variable with a jump term seem to do best
on simulated data. It is needed to define clipping before we proceed since the term clipping is not commonly
used as far as I am aware. By right clipping a random variable X at ¢ we mean that the clipped variable X is:
- X X<c¢
X = { c X>c¢

Right clipped observations time

We start by defining the clipped observation time Ajg:

o Ti—tis1 T <t
Bio = (T mtooma) + lfis =T Lmize) = {ti,s —tis—1 T >tis
These time variables are connected to the stop time T; as follows. Suppose that all the interval has length
one such that ¢; s — t; s_1 = 1 if we do not have an event (T; > t; ;). Then:

P(T,=t)=P(T,> V)P(T,>2|T,>1)---P(T, =|T; > [t] — 1)
=P(Ai1=1)P(Ap=1A0=1)---P(A;rg =t —([t] = 1)| Ay 5121 = 1))

P(T>t)=P(T; >1)P(T;>2|T; >1)---P(T, > t| T; > [t] - 1)
=P(Ai1=1)P(Aip=1[Aja=1)---P(Aypq >t —([t] —1)] Ay -1 = 1))

The conditional probabilities simplifies into separate terms in the log likelihood due to the memoryless
property of the exponential distribution. Thus, computing the conditional mean, h, can be done as follows.

16

Assume for simplicity of notation that the observation (¢; j_1,t; ;| has at most length one and is inside a
time interval such that [¢; ;] —1 = [t; j—1]. Then:

E(a) =F (Ai,j‘ Ai,j—l = ti,j—l - ti,j—Q A a[tiﬂ =, a[ti,ﬂfla sy ao)
A
= hi()], _yr

B tij—tij—1 B
= (tij —tij—1)P(T' >t j —tij-1) + / rfp(r)dr, tij = [tijlyijs + (1= vigs)tij
0

where s is the time interval number that the observation is in, 7' ~ Exp (exp(a:g;-a)), f7 is the density
function of T" and hfj is the inverse link function for the right clipped time variables for individual i’s jth
observation. Set A = exp(mz;a) and 6 =t;; —t; j—1. The resulting conditional mean is:

Za) = M

Moreover, we can show that the variance is:

Var (Ai,s| Ai,j—l =tjj—1—tij—2 N\ o,] = OGO =15+ Oéo)
1 —exp(—20)) — 2Xdexp (—6N)
= 2

We call these variables right clipped observation times because each A;; is a right clipped exponential variable
conditional that individual ¢ has survived up to time ¢; ;_;. A point has to be made about how we compute
the mean and the variance in the case of right censoring and in the case of death in the previous equations.
Right censoring is treated by having ¢; ;, < [¢;;,]. We only know that the individual survived up to time ¢;;,
and do not know if he survived the entire period (which is [¢;,])

Further, we round up in the case of a death, T; = t;;,, when we compute the mean and variance in the
correction step of the filter (EKF or UKF). If we do not make the this adjustment then there is no difference
in the model between a death, right censoring, new covariates or change of time intervals. Consequently, the
state vectors will tend towards values such that the linear predictors goes to minus infinity

We will make a the following example to show the state vector will tend towards values such that the linear
predictors goes to minus infinity. Suppose that we use the UKF and we only have an intercept such that
x;s =« = (1) for all 7 and s. Further, we use a first order random walk such that a; = (d;). This implies
that all the linear predictors are given by ”a; = d;. The predicted mean for given observation A, ; can be
t; s —ti,s—1 at most since we do not round up. Further, the predicted outcome will tend towards ¢; s — t; s—1
as the linear predictor, dj, tend towards minus infinity. Since the predicted mean can at most be t; s —t; s—1,
all the residuals in the correction step, y; — y, will be positive. Recall that the correction step in the UKF is:

dj =aj;=ajj1+Pe Pyl (Y —9) =dj 1+ Pqg, 4, Pl (y; —7)

Yj,Yj Y Yj

where we can show that thytP;&yt (which is a scalar) is negative in the example given here. Hence,
di,ds, ... will decrease in every iterations of the UKF. On the other hand, if we do round up in the case of
death then the residuals, y; — ¥, can be negative in the case of death. Consequently, a death can increase d;
value if the residual is negative. Another way to reason about this is that the individual could have survived

the entire time period, [; 5|, but only survived up to time ¢; ;. Thus, we use #; ;

A draw back to this model is that it will not work if the reported time scale is coarse as we cannot distinguish
between a change of time interval, new covariates vector, right censoring or death when the times coincides.
As an extreme example, we cannot use this method if all times are reported on the grid of integers 1,2, ...
and we use time intervals of length 1. You can estimate with the right clipped time method by setting the
argument model = "exp_clip_time" in the call to ddhazard

17

Binary outcome

The next method is to replace the likelihood with binary variables y; ; s as the outcome. Then the likelihood
given data has:

li,j,s(as) = ¥i,j,s log hZ/j (fﬂ;{jas) + (1 - yz‘,j,s) log (1 - th(ijas))
where the inverse link function is the inverse cloglog function. That is,

th(ijas) =1—exp(— exp(:cg:jas) (min{s, t; ;} — max{s — 1,4, ;-1}))

if we assume that the observation (¢; j_1,%; ;] has at most length one and is inside a time interval such that
[tij] —1=[t;j—1]. This is assumed to be the case in the following paragraphs

There are two points to be made here. Firstly, we do not round up by using ¢; ; in place of ¢; ; when we
have a death. Thus, we do take into account the moment the person dies at in that log h},/j (mg?jas) is the
likelihood of dying sometime in the period ¢; ; — t; s—1 given that he survived up to ¢; s_1. Moreover, an
individual can have multiple observations in the same time interval if he does not die but his co-variate
vectors change within the interval in the state space model. Thus, we do not have issue with going from
event times to binary outcomes as with the logistic model

The con is that the term log hzj(mzjas) is only the log likelihood of dying sometime in the period ¢; ; —t; j_1.
It is not the likelihood of dying after exactly t; ; —t; j—1. We do not loose this information with the right
clipped observation time. This may be a minor drawback in settings where we have interval censoring. Here
the exact time of death may be unknown and the given stop time is an upper bound for the death time. You
can estimate with the binary outcome method by setting the argument model = "exp_bin" in the call to
ddhazard

Right clipped observations time with jump

This section will cover the right clipped time with a jump term. The motivation is that the two previous
methods are not flawless: the binary method has the drawback that we do not keep the information about
the exact time of death and the right clipped time method cannot distinguish some deaths from censoring
with a coarse time scale

A way to deal with the latter is to add a jump term in case of censoring. Particularly, we set:

0ij =tij —tij—1
Nij = 0ijlir>e,y + (T — tij—1 — 6i5) Lmi<e ;)

T —t; 0 T <t
= 5i’j1{Ti>ti,j} + (T3 - ti’j)l{TiStiJ} - { z(sz'jm Tz ; t?j’

where we use A instead of A to distinguish between the two time variables. It is key to notice that we use
T; —t;,; when T; ; <t; ; instead of T; —¢; ;_1. Thus, the value is negative if an individual dies. The above
implies that A; ; € [—0; 7,00 U{d; ;}. A;; <0 implies that we have an event and the smaller the value the

sooner the event happened. A; ; = d; ; implies that the variable is right clipped. The mean is given by:

2(0) _ (1 — eXp (_(j\/\)) (6)‘ — 1)

where the definition of é and A is the same as in the right clipped time variable section. I.e. we are looking at
a particular observation for individual i and define A = exp(x};a) and § = ¢; j — t; j_1. The mean is plotted
below as a function of A with § =1

18

o e
]]
[} [}
b= b=
Q
T T T T
1e-03 le-01 le+01 1e+03
A A
Lastly, the variance is given by:
O
(1 —exp (—3X)) (1 — 6)) (5%2 (3exp (—8X) — exp (—26X)) + A (2exp (—26X) — 4exp (—6A)) — exp (—26A) + 1)2

AD

The at risk length is computed in the same way as the right clipped time variable. That is, we use ¢; ; instead
of the min term in case of a death. You can estimate with the right clipped time variable by setting the
argument model = "exp_clip_time_w_jump" in the call to ddhazard

Combining the first two

Another idea is to use the binary variable and the first mentioned right clipped time at the same time.
Though, this method has shown worse performance on simulated data. Thus, the description of the method
is left as an appendix

Fixed effects

Fixed effects in the M-step are estimated using a Poisson model with an offset equal to the logarithm of the
time observed in each time interval plus the estimated offset from time-varying effects. That is, we use that
if an arrival time T is exponential distributed with rate A then having an outcome at at time ¢ is Poisson
distributed Y ~ Poisson(\t). For example, say that we fit the following model:

The data we use
head(data_frame)

id tstop tstart y x1 x2
1 1 0 20 0.13 0.12
2 1 2 30 0.95 1.48
3 1 3 41 0.18 -1.08
4 2 0 20 -0.44 -1.08
5 2 2 4 0 -0.55 0.15
The fit

fit <- ddhazard(Surv(tstart, tstop, y) ~ xl1 + ddFixed(x2), data_frame,
by = 1, # time interval lengths are 1
id = data_frame$id, model = "exponential')

Take the individual with id = 1. As in the logistic model, he will yield four observations in the M-step. Each

will have an offset of log(1) = 0 plus a term form x1 because the interval length is 1 plus a4 times the value
of x1. Say instead that the data frame was:

19

head(data_frame_new)

id tstop tstart y x1 x2
1 1 0.0 0.50 0.43 0.33
2 1 0.5 2.00 0.13 0.12
3 1 2.0 3.00 0.95 1.48
4 1 3.0 4.01 0.18 -1.08
5 2 0.0 2.0 0 -0.44 -1.08
6 2 2.0 4.0 0 -0.55 0.15

Then individual 1 will yield five observations. The first row would only has an offset of log 0.5 plus @ |4 times
0.43. The second row will yield two observations: one with an offset of log 0.5 plus @ |4 times 0.13 and the
other with an offset of log 1 plus @y times 0.13

Further tasks and ideas

The last section will cover further task and ideas. Please, let me know what you think. Is it relevant, got
ideas to the question I pose and how would you priorities? What can make the package more useful for you

Confidence bounds

How do we construct confidence bounds both for the state vectors and for the predicted values? Bootstrapping
data seems to be the way forward given the use of a random walk. An extension would be to make functions
that makes this easy

Diagnostics

I am thinking of making a another vignettes with diagnostics. It will contain raw residuals, Pearson residuals,
non-standardized and standardized state space error. They are all ready implemented with s3 method for
predict. See ?predict.fahrmeier_94

Further, I need to look into tests the effects are time-varying or not. One idea is to test entries in Q. Though,
this involves tests on the boundary of the parameter space. Another idea is to make an F-test. This thread
here suggest the idea when make all the parameter time invariant http://stats.stackexchange.com/a/161917

Other state equations
We can replace the state equation with other models then a given order random walk. For example, we can
replace it with a stationary process:
a=p+Fa; 1 +Rmy
where we require F is such that the process is stationary. F and p can be estimated in the M-step with

closed form solutions when the noise is Gaussian. Another idea is to generalize to ARMA models. Further,
we can change the distribution of 1 or change make a non-linear dependence between a; and a1

Other observational models

The methods here could easily be generalized to other than binary outcome. For example we could use
competing risk models as in Fahrmeir & Wagenpfeil (1996) or counting models

20

http://stats.stackexchange.com/a/161917

Active learning

The methods and models could be used for active learning setting as in Lee & Roberts (2010). Though,
this do require an update formula for data set to quickly update estimates once a new set of observations is
observed. This update could easily be implemented if we do not update the estimates Q and «.

A further point in this connection is that computing upper bounds for the predicted outcome given an input
variable is straight forward if we the predicted point-wise covariance matrix. Thus, the method could be
applied in a bandit setting

Appendix

Combining the first two continuous models

An idea is to combine the binary method and the first mentioned time variable for the continuous time model.
Thus, we can use tuples (y; s, A; ;) for each observation. Further, we change the inverse link function for
the binary outcome to:

h}jj(mzjjas) =1—exp(— exp(a:zjas) (t;,; —max{s — 1,¢;;1}))
such that we round the stop time for the binary in case of death (we use ¢; ; instead of the min term). The
motivation is to ease derivation and as we can compute the mean without knowing the actual outcome time.

The use of tuples means that we get covariance terms in the observational equation. This will affect the score
vector and information matrix (u¢(a@;;—1) and Us(a,,—1)) in the EKF. Further, it will affect the covariance

matrix H in the UKF. First though, we have to derive the covariance. Assume that all observations in the
time interval s that focus on have (ti,j,l, ti,j] with at most length one and are inside a time interval such
that [t; ;] —1 = |t;j—1]. Then, we can drop the third subscript on the binary outcomes. Further we define
the following variables to ease the notation:

0= Ei,j - ti,j—la A= exp (m%ag) y Z ~ EXp (A)

Consequently, we have the following relation (conditional on having survived up to time #; ;_1):

7 Yii=1
Yij~lizepsy, Dig~Z+ (60— 2)izepo)) = {5 Yj —0

where ~ denotes “similarly distributed” and 1.y is one if the condition in the braces are satisfied and zero
otherwise. Hence, we can find the covariance by:

Cov (Lize,61y, Z + (0 = Z)1izef5,0013)
= Cov (L{zep.s3}: Z) + 6Cov (Lzeo,6}): Lzes,opy) — Cov (Lze,syy: Z1(zels0}})

= —exp(—=A6)d + 6 (— (1 — exp(—AJ)) exp(—Ad)) — — (1~ exp(=A9)) exp(=A9)(1 + 1)

A
_exp(=2Ad) (1 + Adexp(Ad) — exp(Ad))
- A
Next, define,
Var (Yi;) =0y, ., Var(dj) =04, ,, Cov(Yi;Aij) =&

where we suppress the dependents on a;. Further, order the observational equation such that

T
Y = (yl,’ilJ ’ A17i1,1 > Ylyig oo A171'1,2 s Ymie, ks Am,im,k)

21

where i;; is an index that correspond to the index of the j’th individuals i’th observation in this time
interval. Although this notation is tedious, it is included to stress that any given individual could have
none, one or multiple entries in this time interval s. Further, notice that y; refers to the whole observation
vector (including clipped stop times) while y; ; refers to the indicator for whether individual ! dies at his j’th
observations. The co-variance matrix Hy(a) is then a block diagonal matrix with the form:

Hl,il,l (OLS) 0 T 0
0 H,; : o2)
Hs(as) = L2 (ae) 5 Hl,j(as) = (Yis fQZ’J)

0 €l;j O’Al_j

0 a 0 Hyi, ()
You can estimate with the tuples method by setting the argument model = "exp_combined" in the call to
ddhazard
EKF

Next, we turn to the EKF. In order to update the EKF we have to go back to the formulas for the score
vector and information matrix. They are:

. Oz
zs(as) = (r‘):]n)

nN=0os

us(as) - zs(at)Hs(as)_l (ys - zs(as)) 5 Us(as) = z.s(as)Hs(aS)_lz.:S(aS)T

where we get the simpler expression we saw previously when Hg (o) is a diagonal matrix. In the present
case the inverse covariance matrix is block diagonal matrix given by:

H17i1,1(a5)_1 0 0
i —1
Hs(as)il — 0 H1711,2 (Ots)
: . . 0
0 - 0 Hpi,, (o)™}

Setting K; ; = H; ;(aes) ! gives us the following score matrix:

wnlo) = 3o () @he) (Kug)y s + ey 2) (g — bl e)
L.j

I
oy (hiy) (@i o) ((Kig)ys + (Kiy)y o) (A — hiy (@l o))

li ~ !
where (hﬁ-) and (hlyj) are the first derivatives of the inverse link functions w.r.t. the linear predictor for

the clipped waiting time and the binary outcome. Similarly, hfj and h}fj are the inverse link functions the
clipped waiting time and the binary outcome. We need the subscript because each observation can be at risk
for different amount of time in the time interval we are focusing on. Lastly, (-);; is the (4, j)’th entry of the
matrix in the parenthesis. Finally, the information matrix can be computed by:

r N 2 ’
Us(a) =Y i, (((hzj) (@l50)) (Kug)y o+ (W) (e o) - (1) (@lion) <Kz,j>1,2) =l
i=1

2

~ I / /
+ ((hﬁ-) (el - (i)' (@) (K1), + () (@l j00)) (Kz,»z,z) 2l

22

The method with the tuples is more prone to diverge due to the correlation between the tuples. Thus, a ridge
regression like solution is used where H (o) is replaced by:

H,(a,) = Hy(a,) + €1

Below, the formulas are given for each of elements of the block diagonal matrices of the inverse covariance
matrix with the ridge regression like term:

(~ —26 j A j exp (751’j>\l,j) — exp (7251 jxl,j) +§>\l27. +1
K - L
1)
1 S Y . _ . . 2 . _ . . 2 22 _gx2 _ g 8 _ . . 232
(,xp(51,_7>\z,_7)(268y 50,5 + AT +1) +pr(25,1_7&,]) (ST TN T 2) +pr(351)_7)\11_7) TEEINT T+
(N A?j (—exp (—25193-&‘]')) +>\2 S oxp (—6M-AH> +§>\2
K = ’
Z,J)
2
exp (ﬂsl’jxl,j) <72551’jxl'j *5*12,1 +1) + exp (725”-&7].) (l2]>\l2j §>\2 7572) + exp (7351,]‘&1]-) +€2>\l2,j +¢
- s omn (<200570,) o (=500 (51032, —])
Ris) =
(71,2 exp (=6, x;) (=266, xn; +€x2 +1) +exp (=26, ia; 5) (=62 A2 —ex2 —¢—2) +exp (=36 ;x; ;) +E222 4 ¢
1,55 1,35 1§ 1,j ™G 1,515 1,5 LG g 1,5

where)\ ; = exp(acfjas). Though, it is numerically more stable to reduce the following three factors where
the two first are used for the score vector and the last factor is used for the information matrix
<h ’j) wljas ((Kl’j)22 + (Kl’j)l 2

1,2)
.

00 i) ((R0),), +2(0E) - 02 6l (R),, + (08 ehion) (50),,

) et (((5),), + (&

~——

UKF

As with the UKF for the logit model, the multiplication by the inverse of H can be an issue. More so, the
covariance terms does not help in this regard as the matrix can become (even) closer to singular. Hence, we
replace the H by:

H=H+¢I

The matrix inversion of the matrix is easily computed since it only involves inversions of 2 x 2 matrices

References

Fahrmeir, L. (1992). Posterior mode estimation by extended kalman filtering for multivariate dynamic
generalized linear models. Journal of the American Statistical Association, 87(418), 501-509.

Fahrmeir, L. (1994). Dynamic modelling and penalized likelihood estimation for discrete time survival data.
Biometrika, 81(2), 317-330.

Fahrmeir, L., & Wagenpfeil, S. (1996). Smoothing hazard functions and time-varying effects in discrete
duration and competing risks models. Journal of the American Statistical Association, 91(436), 1584-1594.

Gentleman, W. M. (1972). Basic procedures for large, sparse, or weighted linear least squares problems.

Gustafsson, F., & Hendeby, G. (2012). Some relations between extended and unscented kalman filters. IEEE

23

Transactions on Signal Processing, 60(2), 545-555.
Hammarling, S., & Lucas, C. (2008). Updating the qr factorization and the least squares problem.

Harvey, A. C., & Phillips, G. D. (1979). Maximum likelihood estimation of regression models with
autoregressive-moving average disturbances. Biometrika, 66 (1), 49-58.

Julier, S. J., & Uhlmann, J. K. (1997). New extension of the kalman filter to nonlinear systems. In
AeroSense’97 (pp. 182-193). International Society for Optics; Photonics.

Julier, S. J.,; & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the
IEEE, 92(3), 401-422.

Lee, S. M., & Roberts, S. J. (2010). Sequential dynamic classification using latent variable models. The
Computer Journal, 53(9), 1415-1429.

Menegaz, H. M. T. (2016). Unscented kalman filtering on euclidean and riemannian manifolds.

Miller, A. J. (1992). Algorithm as 274: Least squares routines to supplement those of gentleman. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 41(2), 458-478.

Wan, E. A., & Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear estimation. In Adaptive
systems for signal processing, communications, and control symposium 2000. as-spcc. the ieee 2000 (pp.
153-158). Ieee.

24

	Introduction
	Why and when to use this package
	Guide to vignettes
	Dynamic binary regression

	EM algorithm
	E-step
	Kalman Filter

	M-step

	Extended Kalman Filter
	Divergence
	Parallel BLAS or LAPACK

	Uncented Kalman Filter
	The usual UKF formulation
	Re-writting
	Ridge regression
	Selecting hyperparameters
	Selecting starting values

	Fixed effects
	Estimation in the E-step
	Estimation in the M-step
	Implementation
	Other options

	Which method to use

	Logistic model
	Event times to binary variables

	Continuous time model
	Assumptions
	Right clipped observations time
	Binary outcome
	Right clipped observations time with jump
	Combining the first two
	Fixed effects

	Further tasks and ideas
	Confidence bounds
	Diagnostics
	Other state equations
	Other observational models
	Active learning

	Appendix
	Combining the first two continuous models
	EKF
	UKF

	References

