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Abstract

Raftery et al. (2010) introduce an estimation technique, which they refer to as Dynamic
Model Averaging (DMA). In their application, DMA is used to predict the output strip
thickness for a cold rolling mill, where the output is measured with a time delay. Recently,
DMA has also shown to be useful in macroeconomic and financial applications. In this
paper, we present the eDMA package for DMA estimation implemented in R. The eDMA
package is especially suited for practitioners in economics and finance, where typically a
large number of predictors are available. Our implementation is up to 133 times faster
then a standard implementation using a single–core CPU. Thus, with the help of this
package, practitioners are able to perform DMA on a standard PC without resorting
to large clusters, which are not easily available to all researchers. We demonstrate the
usefulness of this package through simulation experiments and an empirical application
using quarterly U.S. inflation data.

Keywords: Dynamic model averaging, Multi core CPU, Parallel computing, R, OpenMP.

1. Introduction

Modeling and forecasting economic variables such as real GDP, inflation and equity premium
is of clear importance to researchers in economics and finance. For instance, forecasting
inflation is crucial for central banks with regards to conducting optimal monetary policy.
Similarly, understanding and predicting equity premium is one of the most widely important
topics discussed in financial economics as it has great implications on portfolio choice and
risk management, see for instance Dangl and Halling (2012) among many others.

In order to obtain the best forecast as possible, practitioners often try to take advantage of
the many predictors available and seek to combine the information from these predictors in
an optimal way, see Stock and Watson (1999), Stock and Watson (2008) and Groen et al.
(2013) just to mention a few references. Recently, in the context of forecasting U.S. and UK
inflation, Koop and Korobilis (2011) and Koop and Korobilis (2012), implement a technique
developed by Raftery et al. (2010), referred to as Dynamic Model Averaging (DMA). The
original purpose of the DMA introduced in Raftery et al. (2010) is more oriented towards
engineers. Particularly, their aim is to predict the output strip thickness for a cold rolling
mill, where the output is measured with a time delay. DMA consists of many time–varying
coefficient regression models formed from all possible combinations of the predictors available
to a practitioner. Moreover, besides allowing for time–variation in the regression coefficients,
interpreting inclusion probabilities of each individual model, DMA also allows the relevant
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model set to change with time as well through a forgetting factor. This way, past model
performance receives relatively less weight than current model performance and the estimation
procedure adapts better to the incoming data. Koop and Korobilis (2011) and Koop and
Korobilis (2012) argue that by slightly adjusting the original framework of Raftery et al.
(2010), DMA can be useful in economic applications, especially inflation forecasting.1 Dangl
and Halling (2012) provide further suggestions on how to improve DMA such that it can better
adapt to the patterns typically observed in economic and financial data. The aforementioned
authors, also provide a useful variance decomposition scheme using the output from the
estimation procedure. Byrne et al. (2017), among others, use the modifications proposed in
Dangl and Halling (2012) to model currency exchange–rate behavior. We must also emphasize
that DMA is not solely limited to these series and can be used in a wide range of economic
applications such as: Forecasting realized volatility as well as house, oil and commodity prices.

However, from a practical point of view, designing an efficient DMA algorithm remains a chal-
lenging issue. As we demonstrate in Section 3, DMA considers all possible combinations of
predictors and forgetting factor values at each time–period. Typically, many candidate vari-
ables are available and, as a consequence, it poses a limit given the computational facilities
at hand, which for many practitioners typically consists of a standard 8 core CPU. In most
cases, averaging over a relatively small number of model combinations (usually between 1000
to 3000) allows one to perform DMA using standard loops and software. However, handling
larger number of combinations can quickly become very cumbersome and impose technical
limits on the software at hand, especially with regards to memory consumption, see for exam-
ple, Koop and Korobilis (2012). In order to deal with this issue, Onorante and Raftery (2016)
suggest a strategy that considers not the whole model space, but rather a subset of models
and dynamically optimizes the choice of models at each point in time. However, Onorante
and Raftery (2016) have to assume that models do not change too fast over time, which is
not an ideal assumption when dealing with financial and in some cases monthly economic
data. Furthermore, it is not clear to us how one can incorporate the modifications suggested
in Dangl and Halling (2012) within the framework of Onorante and Raftery (2016).

In this paper, we introduce the eDMA package for R (R Core Team 2016), which efficiently
implements a DMA procedure based on Raftery et al. (2010) and Dangl and Halling (2012).
The routines in the eDMA package are principally written in C++ using the armadillo

library of Sanderson (2010) and then made available in R exploiting the Rcpp and RcppAr-
madillo packages of Eddelbuettel et al. (2016a) and Eddelbuettel et al. (2016b), respectively.
Furthermore, the OpenMP API (OpenMP 2008) is used to speedup the computations when a
shared memory multiple processors hardware is available, which, nowadays, is standard for
the majority of commercial laptops. However, if the hardware does not have multiple proces-
sors, the eDMA package can still be used with the classical sequential CPU implementation.
Our aim is to provide a package that can be used by a broad audience from different aca-
demic fields who are interested in implementing DMA in their research and obtain quantities
such as: Inclusion probabilities, out–of–sample forecasts or to perform variance decomposi-
tion. Furthermore, our package enables practitioners, to perform DMA using a large number
of predictors without needing to understand and possibly implement complex programming
concepts such as “how to efficiently allocate memory”, or “how to efficiently parallelize the
computations”.

1Specifically, Koop and Korobilis (2012) change the conditional volatility formula of Raftery et al. (2010)
arguing that the original formula is not suited for the analysis of economic data.
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It is also worth noting that, within the R environment, the dma package of McCormick et al.
(2016) downloadable from CRAN can be used to perform the DMA of Raftery et al. (2010).
However, dma has several weaknesses such as (i): It does not allow for the extensions men-
tioned in Dangl and Halling (2012), which are important in the context of interpreting the
amount of time–variation in the regression coefficients and performing a variance decompo-
sition analysis, (ii): It is slow compared to the package introduced in this paper, (iii): It
requires a very large amount of RAM when executed for moderately large applications, and
(iv): It does not allow for parallel computing. We refer the reader interested in these aspects
to Section 5, where we report a comparative analysis between dma and eDMA using simu-
lated data. Moreover, eDMA permits us to also perform Bayesian Model Averaging (BMA)
and Bayesian Model Selection (BMS) for linear regression models with constant coefficients
implemented, for example, in the R packages BMA (Raftery et al. 2015) and BMS (Zeugner
and Feldkircher 2015). At the same time, we obtain quantities such as: Posterior inclusion
probabilities and average model size, which allow us to compare DMA (as well as Dynamic
Model Selection, DMS) with BMA (BMS) with regards to model shrinkage and the magnitude
of variation in the average model size.

The structure of this paper is as follows: Sections 2 and 3 briefly introduce DMA and its
extensions. Section 4 presents the technical aspects. Section 5 provides an intuitive description
of the challenges that DMA posses from a computational point of view and proposes solutions.
Section 6 provides an empirical application to demonstrate the advantages of eDMA from a
practical point of view. Therefore, practitioners who are solely interested on how to implement
DMA using the eDMA package can skip Sections 2 and 3. Finally, Section 7 concludes.

2. Framework

Many forecasting applications are based on a model where the variable of interest at time
t, yt, depends on exogenous predictors and possibly lagged values of yt itself. For instance,
in panel (a) of Figure 1, we plot the quarterly U.S. inflation rate, 1004 lnPt, where Pt
denotes the U.S. Gross Domestic Product implicit price deflator (GDPDEF) from 1968q1
to 2011q2. We then recursively (i.e., using data up to time t) estimate an autoregressive
model of order 2, AR(2), of yt and report the sum of the autoregressive coefficients, which
can be considered as a basic measure of inflation persistence in Panel (b). Our general
conclusions from panels (a)–(b) are: Inflation is persistent and generally tends to be higher
during recessions than tranquil periods. It does not appear to follow an identical cyclical
pattern either. For example, inflation increases less aggressively towards the Great Recession
of 2008 than the corresponding downturns in the 1970s, 1980s or the early 2000s. Furthermore,
even in this simple model, we still observe some time–variation in the AR coefficients. We
then extend the plain AR(2) model to also include the lagged unemployment rate (UNEMP)
as a regressor. This way, we end up with a basic Philips curve. In panel (c), we report
the recursive OLS estimates of UNEMP and in panel (d), we report the recursive p–values
associated to the null hypothesis that this estimate is equal to zero. Panel (d) shows that the
unemployment rate in some periods seems to be a usefull predictor of inflation.

Results from panels (a)–(d) of Figure 1 suggest that two channels can potentially help to
improve the accuracy of inflation forecasts, (i): Incorporating time–variation in the regression
coefficients. (ii): Augmenting the AR model with exogenous predictors that can capture
information beyond that already contained in lagged values of yt. Thus, in many economic
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Figure 1: Panel (a): Quarterly GDPDEF inflation from 1968q1 to 2011q2. Panel (b): Inflation
persistence estimates from an AR(2) model. Panel (c): Recursive OLS estimates of, θ4, in
yt = θ1 + θ2yt−1 + θ3yt−2 + θ4UNEMPt−1 + et, where et ∼ N

(
0, σ2

)
. Panel (d): Recursive

p–values for the null hypothesis of θ4 = 0 at the 5% level. The gray vertical bars indicate
business cycle peaks, i.e., the point at which an economic expansion transitions to a recession,
based on National Bureau of Economic Research (NBER) business cycle dating.
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applications, we eventually end up with a model such as:

yt = θ1t + θ2tyt−1 + θ3tyt−2 + θ4txt−1 + ...+ θntzt−1 + εt, εt ∼ N (0, Vt) . (1)

Obviously, n can be large and as a consequence, we may have to deal with a very large
number of model combinations. For example, if our set of models is defined by whether each
of the n potential predictors is included or excluded, then we can have as high as k = 2n

model combinations to consider, which raises substantive challenges for model selection. This
aspect is referred to as “model uncertainty”, i.e., the uncertainty that a practitioner faces in
choosing the correct combination of predictors. It is important to note, that discarding this
aspect can have severe consequences on out–of–sample results. This is due to the fact that,
simply adding additional predictors in our model without designing an optimal model selection
strategy, can deteriorate out–of–sample performance due to the bias–variance trade–off (the
additional reduction in bias afforded by including additional predictors does not offset the
increased forecast variance related to the more heavily parameterized model). Besides model
uncertainty, a practitioner also faces uncertainty regarding the nature of time–variation in the
regression coefficients, i.e., “parameter uncertainty”. Underestimating or overestimating the
magnitude of time–variation in the regression coefficients also has important consequences as
our model adapts either too slowly or too quickly to new data, generating either too rigid or
too volatile forecasts. The DMA methodology provides an optimal way to deal with these
sources of uncertainty. Moreover, it is simple, parsimonious and allows us to evaluate out–of–
sample forecasts based on a large set of model combinations in real–time (no need to condition
on the full sample at time t) without resorting to simulation.

To provide more details on the underlying mechanism of DMA, we start by assuming that
any combination of the elements on the right–hand–side of (1) can be expressed as a Dynamic
Linear Models (DLM), see West and Harrison (1999) and Raftery et al. (2010). Particularly,

let F
(i)
t denote a p × 1 vector based on a given combination of our total predictors, Ft =

(1, yt−1, yt−2, xt−1, ..., zt−1)
′. Then, we can express our i–th DLM as:

yt = F
(i)′
t θ

(i)
t + ε

(i)
t , ε

(i)
t ∼ N

(
0, V

(i)
t

)
(2)

θ
(i)
t = θ

(i)
t−1 + η

(i)
t , η

(i)
t ∼ N

(
0,W

(i)
t

)
, (3)

where the p× 1 vector of time–varying regression coefficients, θ
(i)
t =

(
θ
(i)
1t , . . . , θ

(i)
pt

)′
, evolves

according to (3) and determines the impact of F
(i)
t on yt. Note, we do not assume any

systematic movements in θ
(i)
t . On the contrary, we consider changes in θ

(i)
t as unpredictable.2

The conditional variances, V
(i)
t and W

(i)
t , are unknown quantities associated with the obser-

vational equation, (2), and the state equation, (3). Obviously, when W
(i)
t = 0 for t = 1, . . . , T ,

then θ
(i)
t is constant over time. Thus, (2)–(3) nests the specification of constant regression

coefficients. For W
(i)
t 6= 0, θ

(i)
t varies according to Equation 3. However, this does not mean

that θ
(i)
t needs to change at every time period. For instance, we can easily have periods where

2See Dangl and Halling (2012) and Koop and Korobilis (2012) for a similar model specification.
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W
(i)
t = 0 and thus θ

(i)
t = θ

(i)
t−1. Ultimately, the nature of time variation in the regression

coefficients is dependent on the data at hand.3

In DMA, we consider a total of k = 2n − 1 possible combinations of the predictors at each

point in time while contemporaneously assuming that θ
(i)
t can evolve over time.4 DMA then

averages forecasts across the different combinations using a recursive updating scheme based
on the predictive likelihood. The predictive likelihood measures the ability of a model to
predict yt, thus making it the central quantity of interest for model evaluation. Models
containing important combinations of predictors receive high predictive likelihood values,
which means that they obtain relatively higher posterior weights in the averaging process.
Besides averaging, we can also use the forecasts of the model receiving the highest probability
among all model combinations considered at each point in time. In this case, we are performing
Dynamic Model Selection (DMS), see also Koop and Korobilis (2012).

As indicated in (3), we must specify W
(i)
t , i = 1, . . . , k. Obviously, this task can be very

daunting if we were to specify W
(i)
t for each of the total k models. However, DMA avoids

the difficult task of specifying W
(i)
t for each individual model relying on a forgetting factor,

0 < δ ≤ 1. This in turn simplifies things greatly from a practical point of view as instead
of working with many parameters, we only need to worry about δ. Now, we briefly explain
how this mechanism works. We start by defining the variables of the Kalman recursions

for the i–th model as follows: (i): R
(i)
t , the prediction variance of θ

(i)
t (see Equation 17 in

Appendix A at the end of paper), (ii): C
(i)
t , the estimator for the covariance matrix of θ

(i)
t ,

(see Equation 19), and (iii): S
(i)
t , the estimator of the observational variance. Then, using

δ, we can rewrite R
(i)
t = C

(i)
t−1 + W

(i)
t in Appendix A as R

(i)
t = δ−1C

(i)
t−1, indicating that

there is a relationship between W
(i)
t and δ, which is given as W

(i)
t = (1− δ) /δC(i)

t−1. In
other words, the loss of information is proportional to the covariance of the state parameters,

C
(i)
t . Clearly, we can control the magnitude of the shocks that impact θ

(i)
t by adjusting δ

instead of directly estimating W
(i)
t . Accordingly, δ = 1 corresponds to W

(i)
t = 0, which

means that θ
(i)
t equals its value at time t − 1. For δ < 1, we introduce time–variation in

θ
(i)
t . For instance, when δ = 0.99, in the context quarterly data, observations five years ago

receive approximately 80% as much weight as last period’s observation, which corresponds

to gradual time–variation in θ
(i)
t . When δ = 0.95, observations 20 periods ago receive only

about 35% as much weight as last period’s observations, suggesting that a relatively larger
shock hits the regression coefficients. Evidently, while this renders the model more flexible to

adapt to changes in the data, the increased variability in θ
(i)
t also results in higher prediction

variance. Thus, estimating (2)–(3) depends not only on the choice of the predictors in F
(i)
t

but also the choice of δ.

Conditional on δ, the DMA probability of model Mi conditional on the current information

3We model time–variation in θ
(i)
t through a forgetting factor, δ, see below for more details. Moreover,

we show that the recursive updating of the forgetting factor based on the predictive likelihood, avoids any
unreasonable behavior of θ

(i)
t even though, we do not specifically put any structure on θ

(i)
t . We also refer the

reader to Appendix A.3 of Dangl and Halling (2012), where it is shown that (3) outperforms the autoregressive
structured counterpart.

4The model yt = εt is not considered in the universe of models, see also Dangl and Halling (2012).
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set at time t, Ft, is then defined as:

p (Mi | Ft) =
p (yt |Mi,Ft−1) p (Mi | Ft−1)∑k
l=1 p (yt |Ml,Ft−1) p (Ml | Ft−1)

,

where p (yt |Mi,Ft−1) is the predictive likelihood of model Mi evaluated at yt, p (Mi | Ft−1) =
p (Mi | Ft−1)α /Σk

l=1p (Ml | Ft−1)α where 0<α ≤ 1 is the forgetting factor for the entire model
chosen by the practitioner and p(Mi|Ft−1) is the model probability at time t−1. The forgetting
factor parameter, α, induces time–variation in the entire model set. Clearly, the lower the
value of α, the lesser weight is given to past performance. Raftery et al. (2010) and Koop and
Korobilis (2012) recommend setting α close to one. Dangl and Halling (2012), on the other
hand, fix α at 1.

Finally, we must also determine a way to model the evolution of V
(i)
t , i = 1, . . . , k. Here,

we have two options, which we go into more details below, see point (c). Thus in order to
initialize the DMA recursions, a practitioner must:

(a): Consider the number of predictors. Typically, in economic applications, we use exoge-
nous variables as well as lagged values of yt as predictors. For instance, in the context
of forecasting quarterly inflation, besides considering predictors such as unemployment
and T–bill rates, Koop and Korobilis (2012) also consider the first three lags of yt as
predictors.

(b): Choose δ and α. In many applications α ∈ {0.98, 0.99, 1} works well and generally
results do not change drastically across different values of α5. On the other hand, as
previously mentioned, we often find that the choice of δ is more important. Koop and
Korobilis (2012) fix δ at {0.95, 0.98, 0.99, 1.00} and run DMA using each of these values.
They find that results differ considerably in terms of out–of–sample forecasts. Evidently,
in many economic applications, it is plausible that δ would indeed be time–varying. For
instance, it is plausible to expect that δ is relatively low in recessions or periods of

market turmoil (where there is considerable time–variation in θ
(i)
t ). Conversely, δ is

ought to be close to 1.00 during tranquil periods, where basically nothing changes.
Dangl and Halling (2012) propose an elegant solution to this problem by considering
a grid of values for δ and incorporate this in the DMA setting by averaging over all
possible combinations of the predictors as well as the corresponding grid of δ. At the

same time, this strategy means that we avoid any unreasonable behavior of θ
(i)
t as δ

values incompatible with the data (and of course results in bad behavior on θ
(i)
t ) do not

receive a weight in the averaging process. Furthermore, this procedure can also be used
to obtain more information from the data through a variance decomposition scheme,
see below for more details.

(c): Evolution of V
(i)
t : We can make things easy for conjugate analysis by assuming that

V
(i)
t = V (i) for all t. At time t = 0, we specify a Normal prior on θ

(i)
0 and a Inverted–

gamma prior on V (i), i.e., V (i)|F0 ∼ IG
(
1
2 ,

1
2S

(i)
0

)
, where IG

(
v
2 ,

κ
2

)
stands for the

Inverted–gamma distribution with scale, v, and shape κ, see also Prado and West (2010).

5Recently, in the context of binary regressions, McCormick et al. (2012) suggest a technique where one can
model α as time–varying.
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Then, the posterior of V (i) follows an IG distribution with parameters, S
(i)
t , n

(i)
t , where

the time t point estimate of V (i), S
(i)
t , is given as

S
(i)
t = S

(i)
t−1 +

S
(i)
t−1

n
(i)
t

(
e
2(i)
t

Q
(i)
t

− 1

)
,

n
(i)
t = n

(i)
t−1 + 1, e

(i)
t and Q

(i)
t are given in Appendix A and Prado and West (2010).

Clearly, S
(i)
t approaches to a constant level as n

(i)
t increases. More importantly, under

these assumptions, we find that, when we integrate the conditional density of yt over the

values of θ
(i)
t and V (i), the corresponding predictive density has a closed–form solution

given by, T
n
(i)
t

(
ŷ
(i)
t , Q

(i)
t

)
, where T

n
(i)
t

stands for the Student’s t–distribution with n
(i)
t

degrees–of–freedom, mean and scale given by ŷ
(i)
t = F

(i)′

t a
(i)
t−1 and Q

(i)
t , see Appendix A

for more details.

However, in many applications, allowing for time–variation in the conditional error variance
better suits our underlying economic assumptions. Therefore, we follow Prado and West

(2010) and in a similar fashion as for W
(i)
t adopt a discount factor to induce time–variation in

V
(i)
t . Particularly, we do this by imposing a forgetting factor, 0 < β ≤ 1, which enters the scale

and the shape parameters of the Inverted–gamma distribution, such that n
(i)
t = βn

(i)
t−1 + 1.

This way, V
(i)
t is updated according to new data, forgetting past information to reflect changes

in volatility. This approach means that, if β < 1, the time t estimate of V
(i)
t is given as:

S
(i)
t = (1− β)

t−1∑
s=0

βs

(
e
2(i)
t−sS

(i)
t−s−1

Q
(i)
t−s

)
. (4)

In other words, V
(i)
t has form of an exponentially weighted moving average (EWMA) and

older data are further discounted as time progresses. When β = 1, then we recover V
(i)
t =

V (i)6. This extension obviously requires the practitioner to also consider a value for β. By
experimenting with small models based primarily on simulated data, we find that δ and β in
many ways are intertwined, in the sense that we can recover the same magnitudes of variation

in θ
(i)
t using different values of δ and β. For example, when we fix β close to 1 (below 1, say

0.95), we find that a relatively lower (higher) value of δ is needed to recover the fundamental
dynamics in the regression coefficients. This is understandable as allowing for variation in
the conditional variance takes always some dynamics from the regression coefficients, whereas

more dynamics in θ
(i)
t are required in order to compensate for the possible lack of time–

variation in V
(i)
t . Overall, our conclusion is that if a practitioner chooses to fix β < 1, then it

is best to fix δ close to 1, say at 0.96, which is also to the value used by Riskmetrics (1996).

This way, we maintain a parsimonious model structure and allow for time–variation in V
(i)
t .

More importantly, we are never in doubt whether we are under (over) estimating the true

magnitude of variation in θ
(i)
t

7.

6We would like to thank an anonymous referee for this suggestion.
7We observe the same phenomena when we allow α to vary with δ. Overall, our conclusion is that it is

best to use (c) and fix α close to 0.99 for monthly and quarterly data. However, if a practitioner wishes to set
β < 1, then we generally recommend β > 0.96 and α = 0.99.
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3. Modified DMA

Below, we present the DMA algorithm modified to incorporate the extensions mentioned in
Section 2. Let Mi denote a model containing a specific set of predictors chosen from a set
of k = 2n − 1 candidates and δj denotes a specific forgetting factor value chosen from a pre–
specified grid of values, {δ1, . . . , δd}. The total posterior density of model Mi and forgetting
factor value δj at time t, p (Mi, δj |Ft), is then given as

p (Mi, δj |Ft) = p (Mi|δj ,Ft) p (δj |Ft) .

In order to obtain p (Mi|Ft) we can use the relation

p (Mi|Ft) =
d∑
j=1

p (Mi|δj ,Ft) p (δj |Ft) . (5)

The term, p (Mi|δj ,Ft), in Equation 5 is given as

p (Mi|δj ,Ft) =
p (yt|Mi, δj ,Ft−1) p (Mi|δj ,Ft−1)∑k
l=1 p (yt|Ml, δj ,Ft−1) p (Ml|δj ,Ft−1)

(6)

where

p (Mi|δj ,Ft−1) =
p (Mi|δj ,Ft−1)α∑k
l=1 p (Ml|δj ,Ft−1)α

. (7)

The second term on the right–hand side of Equation 5 is given as

p (δj |Ft) =
p (yt|δj ,Ft−1) p (δj |Ft−1)∑d
l=1 p (yt|δl,Ft−1) p (δl|Ft−1)

. (8)

where

p (δj |Ft−1) =
p (δj |Ft−1)α∑d
l=1 p (δl|Ft−1)α

.

Typically, p (Mi, δj |F0) = 1/(d · k) such that, initially, all model combinations and degrees of
time–variation are equally likely. Thereafter, as a new observation arrives, model probabilities
are updated using the above recursions.

3.1. Using the output from DMA

For practitioners, the most interesting output from DMA are:

(i) The predictive mean of yt+1 conditional on Ft, denoted by ŷt+1. This is simply an
average of each of the individual model predictive means. That is

ŷt+1 =
d∑
j=1

E
[
y
(j)
t+1|Ft

]
p (δj |Ft) , (9)
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where

E
[
y
(j)
t+1|Ft

]
=

k∑
i=1

E
[
y
(j)
i,t+1|Ft

]
p (Mi|δj ,Ft) .

The formulas for the predictive density are given as

p (yt+1|Ft) =

d∑
j=1

p(y
(j)
t+1|Ft)p(δj |Ft), (10)

where

p(y
(j)
t+1|Ft) =

k∑
i=1

p(y
(j)
i,t+1|Ft)p(Mi|δj ,Ft).

Besides averaging over the individual predictive means/densities, we can simply choose
the predictive mean/density associated with the model with the highest posterior prob-
ability. Henceforth, we label this as Dynamic Model Selection (DMS), see also Koop
and Korobilis (2012). When, δ, β and α are all fixed at 1, we have Bayesian model av-
eraging (BMA, see Raftery 1995) and Bayesian Model Selection (BMS) based on exact
predictive likelihood, see for instance Zeugner and Feldkircher (2015).8

(ii) Quantities such as the expected size, E [Sizet] = Σk
i=1Size

(i)p (Mi|Ft), where Size(i)

be the number of predictors in model i. This quantity reveals the average number of
predictors in the DMA, see Koop and Korobilis (2012). Similarly, we can compute the
number of predictors for the model with the highest posterior probability, (5), at each
point in time, which give the optimal model size at time t.

(iii) Posterior inclusion probabilities for the predictors. That is, at each t, we calculate∑k
i=1 1(i⊂m)p (Mi|Ft), where 1(i⊂m) is an indicator function taking the value of either

0 or 1 and m, m = 1, . . . , n, is the mth predictor. We can also report the highest
posterior model probability or the sum of the top 10% model probabilities among all
model combinations after the effect of δ is integrated out. This information can be
used to determine if there is a group or an individual model that obtains relatively high
posterior probability.

(iv) Posterior weighted average of δ at each point in time that is
∑d

j=1 δjp (δj |Ft), for t =
1, . . . , T .

(v) Posterior weighted average estimates of θt for DMA

E[θt|Ft] =
d∑
j=1

E[θ
(j)
t |Ft]p(δj |Ft), (11)

where

E[θ
(j)
t |Ft] =

k∑
i=1

E[θ
(j)
i,t |Ft]p(Mi|δj ,Ft).

8Zeugner and Feldkircher (2015) also implement BMA using the MC3 algorithm relying on Markov Chain
Monte Carlo (MCMC) techniques. However, their framework does not allow for time–variation in the regression
coefficients nor model size.
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(vi) Variance decomposition of the data, Var (yt+1|Ft), decomposed into:

VAR (yt+1|Ft) = Obst+1 + Coefft+1 + Modt+1 + TVPt+1 (12)

where:

Obst+1 =
d∑
j=1

[
k∑
i=1

(St|Mi, δj ,Ft) p (Mi|δj ,Ft)

]
p (δj |Ft) ,

Coefft+1 =
d∑
j=1

[
k∑
i=1

(
F′tRtFt|Mi, δj ,Ft

)
p (Mi|δj ,Ft)

]
p (δj |Ft) ,

Modt+1 =
d∑
j=1

[
k∑
i=1

(
ŷ
(j)
i,t+1 − ŷ

(j)
t+1

)2
p (Mi|δj ,Ft)

]
p (δj |Ft) ,

TVPt+1 =
d∑
j=1

(
ŷ
(j)
t+1 − ŷt+1

)2
p (δj |Ft) . (13)

The first term is the observational variance, Obs. The remaining terms are: Variance
due to errors in the estimation of the coefficients, Coeff, variance due to uncertainty
with respect to the choice of the predictors, Mod, and variance due to uncertainty with
respect to the choice of the degree of time–variation in the regression coefficients, TVP,
see Dangl and Halling (2012) for more details.

4. The eDMA package for R

The eDMA package for R offers an integrated environment for practitioners in economics
and finance to perform our DMA algorithm. It is principally written in C++, exploiting the
armadillo library of Sanderson (2010) to speed up computations. The relevant functions are
then made available in R through the Rcpp and RcppArmadillo packages of Eddelbuettel
et al. (2016a) and Eddelbuettel et al. (2016b), respectively. It also makes use of the OpenMP

API (OpenMP 2008) to parallelize part of the routines needed to perform DMA. Furthermore,
multiple processors are automatically used if supported by the hardware, however, as will be
discussed later, the user is also free to manage the level of resources used by the program.

The eDMA package is written using the S4 object oriented language, meaning that classes
and methods are available in the code. Specifically, R users will find common methods such
as plot(), show(), as.data.frame(), coef() and residuals(), among others, in order to
visualise the output of DMA and extract estimated quantities.

The eDMA package is available from CRAN at https://cran.r-project.org/web/packages/
eDMA/index.html and can be installed using the command:

R> install.packages("eDMA")

https://cran.r-project.org/web/packages/eDMA/index.html
https://cran.r-project.org/web/packages/eDMA/index.html
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Once the package is correctly installed and loaded, the user faces one function named DMA() to
perform DMA. The DMA() function then accepts a series of arguments and returns an object
of the class DMA which comes with several methods, see Section 4.2. The arguments the DMA()

function accepts are:

� formula: An object of class formula (or one that can be coerced to that class): A
symbolic description of the model to be fitted. The formula should include all the
predictors one chooses to use. The inclusion of the constant term follows the usual R
practice, i.e., it is included by default and can be removed if necessary. For instance,
in order to model y ~ x, however, without the constant, we can write for example, y
~ x - 1, see help(formula). This implementation follows the common practice for R
users, see e.g., the plm package of Croissant and Millo (2008).

� data: A data.frame (or object coercible by as.data.frame() to a data.frame) con-
taining the variables in the model. If data is an object of the class ts, zoo or xts, then
the time information is used in the graphical representation of the results as well as for
the estimated quantities. The dimension of data is T × (1 + n), containing at each row,
the dependent variables yt and the predictors Ft, that is (yt,F

′
t), for all t = 1, . . . , T .9

� vDelta: A d × 1 numeric vector representing a grid of δ. Typically we choose the
following grid: {0.90, 0.91, . . . , 1.00}. By default vDelta = c(0.90, 0.95, 0.99).

� dAlpha: A numeric variable representing α in Equation 7. By default dAlpha = 0.99.

� dBeta: A numeric variable indicating the forgetting factor for the measurement variance,
see Equation 4 and Prado and West (2010, p. 132) and Beckmann and Schüssler (2014).
By default dBeta = 1.0, i.e., constant observational variance.

� vKeep: A numeric vector of indices representing the predictors that must be always
included in the models. The models that do not include the variables declared in vKeep

are automatically discarded. The indices must be consistent with the model description
given in formula. For instance, if the first and fourth variables always have to be
included, then we must set vKeep=c(1, 4). Notice that, the intercept (if not removed
from formula) is always in the first position. vKeep can also be a character vector
indicating the names of the predictors if these are consistent with the provided formula.
Furthermore, if vKeep = "KS" the “Kitchen Sink” formulation is adopted, i.e., all the
predictors are always included, see, e.g., Paye (2012). By default all the combinations
are considered, vKeep = NULL.

� bZellnerPrior: A boolean variable indicating whether the Zellner’s prior (see Dangl
and Halling 2012) should be used for the coefficients at time t = 0. By default
bZellnerPrior = FALSE.

� dG: A numeric variable (g) equal to 100 by default. If bZellnerPrior = TRUE, then

p
(
θ
(i)
0 |F0

)
∼ N

(
0, gS

(i)
0

(
F
(i)′

1:TF
(i)
1:T

)−1)
, (14)

9Recall that the inclusion of the constant term should be managed via the formula argument.
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where

S
(i)
0 =

1

T − 1
y′1:T

(
IT − F

(i)
1:T

(
F
(i)′

1:TF
(i)
1:T

)−1
F
(i)′

1:T

)
y1:T ,

and y1:T = (y1, . . . , yT )′ and F
(i)
1:T indicating the T ×p design matrix according to model

i. If bZellnerPrior = FALSE, it represents the scaling factor for the covariance matrix

of the Normal prior for θ
(i)
0 , i.e., θ

(i)
0 ∼ N(0, g × I), i = 1, . . . , k, where I is the

identity matrix. We generally recommend practitioners to use the default prior, i.e.,
bZellnerPrior = FALSE, especially in the context of quarterly data, where we typically
have 200 to 300 observations. For longer time–series, results tend to be similar after
100 observations.

� bParallelize: A boolean variable indicating wether to use multiple processors to speed
up the computations. By default bParallelize = TRUE. Since the use of multiple pro-
cessors is basically effortless for the user, we suggest to not change this value. Fur-
thermore, if the hardware does not permit parallel computations, the program will
automatically adapt to run on a single core.

� iCores: An integer indicating the number of cores to use if bParallelize = TRUE.
By default, all but one cores are used. The number of cores is guessed using the
detectCores() function from the parallel package. The choice of the number of cores
depends on the specific application, namely the length of the time–series T and the
number of the predictors n. However, as detailed in Chapman et al. (2008), the level of
parallelization of the code should be traded off with the increase in computational time
due to threads communications. Consequently, the user can fine tune its application
depending on its hardware changing this parameter. Section 5 reports details about
code parallelization.

The DMA() function returns an object of the formal class DMA.10 This object contains model
information and the estimated quantities. It is organized in three slots: model, Est, data. The
slot, model, contains information about the specification used to perform DMA. Examples
are: The number of considered models and the computational time in seconds. The slot, Est,
contains the estimated quantities such as: Point forecasts, Predictive likelihood, Posterior
inclusion probabilities of the predictors, Filtered estimates11 of the regression coefficients, θt
(as in Equation 11), and so on. Finally, the slot, data, includes the data passed to the DMA()

function, organised in the vector of responses vY and a design matrix mF.

4.1. Using eDMA

After having installed eDMA, it can be easily loaded using

R> library("eDMA")

Thereafter, model estimation can be performed using the R commands reported below.

10see, help("class") and help("DMA-class").
11With the term “filtered estimates” we intent estimates at time t conditional on information up to time t.
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In order to illustrate how eDMA works in practice, we provide an example based on simulated
data. We also provide an application using quarterly inflation data in Section 6. We simulate
a time–series of T = 500 observations from

yt = F′tθt +
√

0.1εt, εt
iid∼ N (0, 1) . (15)

The first four elements of θt vary according to random–walks, whereas the remaining elements
in θt are equal to zero at all time periods. In other words, θt = (θ1,t, θ2,t, θ3,t, θ4,t, θ5,t, θ6,t)

′

with

θk,t = θk,t−1 +
√

0.01ηk,t, ηk,t
iid∼ N (0, 1) , (16)

for k = 1, 2, 3, 4, and ηk,t |= ηj,t, for all k 6= j. The last two elements of θt are equal to
zero, that is, θ5,t = θ6,t = 0 for t = 1, . . . , T . The first element of the 6 × 1 vector, Ft, is
one, representing the constant term. The remaining elements are generated from a standard

Gaussian distribution, i.e., Ft = (1.0, x2,t, x3,t, x4,t, x5,t, x6,t)
′, where xk,t

iid∼ N (0, 1) and
xk,t |= xj,t for all k 6= j. We simulate the data in this way (that is θ5,t = θ6,t = 0) to illustrate
that DMA is indeed able to identify the correct variables. In other words, the inclusion
probabilities of the last two predictors ought to be zero as they do not impact yt through Ft.
Conversely, inclusion probabilities of the first four predictors ought to converge to 1.

This data is simulated using the SimulateDLM() function available in eDMA, details are
reported in the R documentation, see help("SimulateDLM"). We organize the data in a
data.frame named SimData, which is included in eDMA and can be loaded into the workspace
by executing

R> data("SimData", package = "eDMA")

DMA is then performed using the function DMA() as

R> Fit <- DMA(y ~ x2 + x3 + x4 + x5 + x6 , data = SimData,

vDelta = seq(0.9, 1.0, 0.01))

Information on the DMA procedure is available by typing:

R> Fit

------------------------------------------

- Dynamic Model Ageraging -

------------------------------------------

Model Specification

T = 500

n = 6

d = 11

Alpha = 0.99

Beta = 1
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Model combinations = 63

Model combinations including averaging over delta = 693

------------------------------------------

Prior : Multivariate Gaussian with mean vector 0

and covariance matrix equal to: 100 x diag(6)

------------------------------------------

The grid for delta:

Delta = 0.90, 0.91, 0.92, 0.93, 0.94, 0.95,

0.96, 0.97, 0.98, 0.99, 1.00

------------------------------------------

Elapsed time : 0.57 secs

Note, we specify a grid of eleven equally spaced values for δ (d = 11) ranging from 0.90 to
1.00. Furthermore, since we do not specify any value for bZellnerPrior and bParallelize,
their default values, bZellnerPrior = FALSE and bParallelize = TRUE have been used.

In order to extract the quantities estimated by DMA, the user can relay on the as.data.frame()
method. as.data.frame() accepts two arguments: (i) An object of the class DMA and (ii) A
character string, which, indicating the quantity to extract. Possible values for which are:

� "vyhat": Point forecasts of DMA, see Equation 9. "vyhat_DMS" for point forecast
according to DMS.

� "mincpmt": Posterior inclusion probabilities of the predictors at each point in time, see
Koop and Korobilis (2012) for more details.

� "vsize": Expected number of predictors (average size), see Koop and Korobilis (2012)
and point (ii) at page 7.

� "vsize_DMS": Number of predictors in the model with the highest posterior model
probability, at each point in time, see Equation 5.

� "mtheta": Filtered estimates of the regression coefficients for DMA, see Equation 11.

� "mpmt": Posterior probability of the forgetting factors, see Equation 8.

� "vdeltahat": Posterior weighted average of δ, see point (iv) at page 10 of this paper.

� "vLpdfhat": Predictive log–likelihood of DMA, see Equation 10.

� "vLpdfhat_DMS": Predictive log–likelihood of DMS. That is instead of averaging over
the individual predictive likelihoods, we select the predictive likelihood of the model
combination with the highest posterior probability (i.e., (5)) at each time–period.

� "mvdec": Individual components of Equation 12, see point (vi) in page 10 and Dangl
and Halling (2012) for more details. The function returns a T ×5 matrix whose columns
contain the variables.

– vobs: Observational variance, Obs.
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– vcoeff: Variance due to errors in the estimation of the coefficients, Coeff.

– vmod: Variance due to model uncertainty, Mod.

– vtvp: Variance due to uncertainty with respect to the choice of the degrees of
time–variation in the regression coefficients, TVP.

– vtotal: Total variance, that is vtotal = vobs + vcoeff + vmod + vtvp .

� "vhighmp_DMS": Highest posterior model probability, i.e., max
i
P (Mi|Ft) , t = 1, . . . , T .

� "vhighmpTop01_DMS": Sum of the 10% highest posterior model probabilities.

The additional numeric argument, iBurnPeriod, determines the length of the burn–in period,
i.e., results before t=iBurnPeriod are discarded. By default, iBurnPeriod = NULL, meaning
that no burn–in period is considered. For instance, in order to extract the posterior inclusion
probabilities of the predictors, with a burn–in period of 50 observations, we can easily run
the following command

R> PostProb <- as.data.frame(Fit, which = "mincpmt", iBurnPeriod = 50)

which returns a (T−iBurnPeriod)× 6 matrix of inclusion probabilities for the predictors at
each point in time. Final values of PostProb are printed as

R> round(tail(PostProb), 2)

(Intercept) x2 x3 x4 x5 x6

[445,] 1 1 1 1 0.06 0.03

[446,] 1 1 1 1 0.06 0.03

[447,] 1 1 1 1 0.06 0.03

[448,] 1 1 1 1 0.07 0.03

[449,] 1 1 1 1 0.07 0.03

[450,] 1 1 1 1 0.08 0.04

Furthermore, if the supplied data is a ts, zoo or xts object, the class membership is auto-
matically transferred to the output of the as.data.frame() method.

The plot() method is also available for the class DMA. Specifically, this method prints an
interactive menu in the console permitting the user to chose between a series of interesting
graphical representation of the estimated quantities. It can be straightforwardly executed
running

R> plot(Fit)

Type 1-16 or 0 to exit

1: Point forecast

2: Predictive likelihood

3: Posterior weighted average of delta

4: Posterior inclusion probabilities of the predictors

5: Posterior probabilities of the forgetting factors



Leopoldo Catania, Nima Nonejad 17

6: Filtered estimates of the regression coefficients

7: Variance decomposition

8: Observational variance

9: Variance due to errors in the estimation of the coefficients, theta

10: Variance due to model uncertainty

11: Variance due to uncertainty with respect to the choice of

the degrees of time-variation in the regression coefficients

12: Expected number of predictors (average size)

13: Number of predictors (highest posterior model probability) (DMS)

14: Highest posterior model probability (DMS)

15: Point forecasts (highest posterior model probability) (DMS)

16: Predictive likelihood (highest posterior model probability) (DMS)

and selecting the desiderated options. The additional character argument, which, can be
supplied in order to directly plot one particular quantity. Possible values for which are the
same of the as.data.frame() method. Similar to as.data.frame(), the additional numeric
argument iBurnPeriod determines the length of the burn–in period. Typically, it takes
around 30 to 50 for the model to adapt to the time–series given the prior. Therefore, in
almost all applications, the first 30 to 50 observations should be discarded.

The code:

R> plot(Fit, which = "mincpmt", iBurnPeriod = 50)

plots the inclusion probabilities for the predictors discarding the first 50 observations. The
outcome is reported in Figure 2. As expected, x1 to x4 quickly converge to 1 after few
observations. Conversely, the inclusion probabilities of the last two predictors with loading
factor equal to zero, quickly converge to 0.

4.2. Additional methods for the DMA class

The DMA class comes with several methods for extracting and representing estimated quan-
tities. The plot(), as.data.frame() and show() methods have been previously intro-
duced, additional methods are: summary(), coef(), residuals(), inclusion.prob(), and
pred.like().

For instance, the summary method prints a summary of the estimated model directly in the
console. The code:

R> summary(Fit, iBurnPeriod = 50)

produces the output:

Call:

DMA(formula = y ~ x2 + x3 + x4 + x5 + x6 )

Residuals:

Min 1Q Median 3Q Max
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Figure 2: Posterior inclusion probabilities of the predictors using simulated data.

-2.0445 -0.3844 0.0414 0.4398 2.3759

Coefficients:

E[theta_t] SD[theta_t] E[P(theta_t)] SD[P(theta_t)]

(Intercept) 0.51 0.68 1.00 0.00

x2 -0.64 0.65 0.90 0.29

x3 2.10 1.74 0.92 0.23

x4 -1.43 1.02 0.99 0.03

x5 0.01 0.03 0.07 0.07

x6 0.00 0.01 0.06 0.04

Variance contribution (in percentage points):

vobs vcoeff vmod vtvp

64.12 34.24 1.50 0.15

Top 10% included regressors: (Intercept)

Forecast Performance:

DMA DMS

MSE 0.489 0.483

MAD 0.539 0.532
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Log-predictive Likehood -463.820 -463.076

where the quantities, E[theta_t], SD[theta_t], E[P(theta_t)] and SD[P(theta_t)] rep-
resent the means and standard deviations across the time dimension of the filtered estimates
of θt, and the inclusion probabilities after burn-in.

The last part of the summary, (Forecast Performance), prints the output of the BacktestDMA()
function implemented in eDMA. BacktestDMA() accepts a DMA object and returns a matrix

with out–of–sample mean squared error (MSE), mean absolute deviation (MAD) and log–
predictive likelihood, computed according to DMA and DMS, see help("BacktestDMA").

The additional methods: coef(), residuals(), inclusion.prob(), and pred.like() are
wrapper to the as.data.frame() method and focus on particular estimated quantities, for
instance:

- coef(): Returns a T × n matrix with the filtered regressor coefficients, θt, t =
1, . . . , T .

- residuals(): Extract the residuals of the model, i.e., yt− ŷt, t = 1, . . . , T . The addi-
tional boolean argument standardize controls if the standardize residuals should be re-
turned. By default standardize = FALSE. The additional character argument, type,
permits to choose between residuals evaluated using DMA ("DMA") or DMS ("DMS").
By default Type = "DMA".

- inclusion.prob(): Extract the inclusion probabilities of the predictors. Analogous to
as.data.frame(object, which = "mincpmt", iBurnPeriod).

- pred.like(): Extract the predictive log–likelihood series. The additional argument
type permits to choose between predictive likelihoods evaluated using DMA and DMS.
By default Type = "DMA". Similar to the above variables, pred.like() accepts iBurnPeriod.

- getLastForecast: If we extend the time–series of the dependent variable of length T
(i.e., observations that we actually observe till time T ) with an NA, resulting in a series
of length T +1, then the DMA() function computes the point forecast and the associated
variance decomposition for the future observation at time T + 1, see Appendix B for
further details. In this case, the getLastForecast can be used to extract the “true”
out–of–sample12 forecast at time T + 1.

5. Computational challenges

Although estimation of DMA does not require resorting to simulation, in many economic
applications, performing DMA can become computationally cumbersome. As it can be seen
from the set of recursions from the Section 3, DMA consists of a large number of model
combinations, where a lot of the quantities must be saved for subsequent analysis. Therefore,
in many cases, DMA tends to occupy a large chunk of Random–Access Memory (RAM).

12We use the term “true” out—of–sample to distinguish from the case of “pseudo” out–of–sample which
consists to the usual recursive out–of–sample forecasts, where one compares the forecasts with the actual
observed values.
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Often on a standard PC, the system basically runs out of memory due to the large number of
combinations and the amount of information that must be saved. Therefore, it limits the use
of DMA to middle–sized data–sets. For instance, in their seminal paper, Koop and Korobilis
(2012) use DMA to forecast quarterly inflation. Thus, yt in Equation 2 is the percentage
changes in the quarterly U.S. GDP price deflator and Ft consists of 14 exogenous predictors
and three lags of yt for a total of 17 variables. However, handling 217 combinations even in
the context of quarterly data, which at most consists of around 300 observations, reveals to be
cumbersome in their programming framework. Therefore, Koop and Korobilis (2012) choose
to include three lags of inflation in all model combinations and thus reduce the model space
to 214 model combinations. Furthermore, they do not consider a grid for different values of
δ, which would result in 214 × d combinations, making inference even more challenging.

We can argue that DMA can impose a substantial challenge for the practitioner when dealing
with a large number of predictors and high number of observations, namely that, besides
dealing with the task of transforming mathematical equations from paper to codes, handling
data and estimation issues, practitioners also has to overcome “technical/computer science
related” challenges such as how to deal with extensive memory consumption and how to
use multiple cores instead of a single core to speed up computation time. Although one
can always improve the computational procedure by “coding smarter” or discovering ways to
optimize memory allocation, it seems unreasonable to expect that practitioners in economics
should have extensive knowledge of computer science concepts such as those stated above.

In this paper, we provide practical solutions to these problems. First, reduction in compu-
tation time is implemented by writing all the code in C++ using the armadillo library of
Sanderson (2010). Second, we exploit multiple processors through the OpenMP API whenever
the hardware is suited for that. The combination of C++ routines and parallel processing
permits to dramatically speed up the computations over the same code written in plain R.

In order to provide an intuitive example of the advantages of our package, we report a compar-
ison between our code and the available dma package of McCormick et al. (2016). Note that,
the dma package is entirety written in plain R and cannot be run in parallel, consequently,
even if the algorithm we implement is slightly different from those of dma (recall that we
follow the implementation of Dangl and Halling 2012), improvement in computational time
should be principally attributed to the two aforementioned reasons.

For this experiment, since the dma package cannot operate over a grid value of δ, we fix δ at
0.95. We simulate T = {100, 500, 1000} observations from a DLM with n = {4, 6, 8, 10, 12, 14, 16}
predictors and evaluate the differences in the computational time of the dma() function in
the dma package and the DMA() function in the presented eDMA package. The experiment
is performed on a standard Intel Core i7–4790 processor with 8 threads and Ubuntu 12.04
server edition.

Table 1 reports the ratio of the CPU time for different values of T and n between dma()

and DMA(). As one can note, the decrease in computational time in favor of our package
is huge. For example, in the case T = 500 and n = 16, dma() takes 37.57 minutes while
DMA() only 1.48.13 It is also worth stressing that, the benefit of using eDMA does not only
concern the possibility of running moderately large applications in a reasonable time using a

13Also note that this cannot be considered as a one to one comparison because DMA() performs additional
operations (such as DMS and variance decomposition) which are not considered by dma(). Furthermore, the
time for the construction of the power set of all possible model combinations has not been included for dma().



Leopoldo Catania, Nima Nonejad 21

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

1 min
5 min

15 min

30 min

T = 100

(a)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

1 min
5 min

15 min

30 min

T = 200

(b)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min
5 min

15 min

30 min

T = 300

(c)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min
5 min

15 min

30 min

T = 400

(d)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min
5 min

15 min

30 min

T = 500

(e)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 600

(f)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 700

(g)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 800

(h)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 900

(i)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18n

T = 1000

(j)

Figure 3: Computational time for DMA() using simulated data. Each panel represents compu-
tation time in minutes for DMA() using different sample sizes, T , number of predictors, n, and
values of d, the number of points in the grid of δ. The values for d range between 2 and 10,
the solid line at the bottom of each subfigure is for d = 2, the one immediately above is d = 3
and so on until the last which is for d = 10. Computations are performed on a standard Intel
Core i7–4790 processor with 8 threads and 8 GB of RAM with Ubuntu 12.04 server edition.
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T/n 4 6 8 10 12 14 16

100 10.9 92.6 133.2 88.4 69.4 70.5 58.4
500 37.5 29.4 31.5 30.7 25.7 26.5 25.4
1000 13.0 15.0 13.8 12.9 12.7 13.5 13.8

Table 1: Ratio of computation time between the dma() function from the dma package of McCormick et al.
(2016) and the DMA() function of the eDMA package using different values of T and n.

commercial hardware, but also enables practitioners to run application with a large number of
exogenous variables. To give an idea of the computational time a eDMA user faces, we report
a second simulation study. We simulate from a DLM with T = {100, 200, . . . , 900, 1000},
n = {2, 3, . . . , 18} and run DMA() using a grid of values for δ between 0.9 and 1.0 with
different spaces d, namely d = {2, 3, . . . , 10}. Figure 3 displays the computational time in
minutes for all the combinations of T, n, d. The lines reported in each subfigure represent the
computational time for a specific choice of d. The line at the bottom of each subfigure is for
d = 2,14 the one immediately above is for d = 3 and so on until d = 10. From the Figure,
we can see that, when T ≤ 400, even for n = 18 and d = 10, the computational time is less
then 15 minutes. Such sample sizes are relatively common in economic applications. When
T increases, computational time increases linearly. For example, when T = 800, n = 18 and
d = 10, computational time is 30 minutes, which is the double of the same case with T = 400.

The other relevant problem with DMA is the RAM usage. Specifically, if we want to store the
quantities defined in Equations 2 and 6, we need to define two arrays of dimension T × d× k.
These kind of objects are not present in the eDMA package since we rely on the markovian
nature of the model clearly evident from Equation 2. In this respect, ,we keep track of the
quantities coming from Equation 6 and p (yt|Mi, δj ,Ft−1) only for two consecutive periods
during the loop over T .15 RAM usage is still efficiently performed in the eDMA package.
Indeed, the computer where we run all our simulations has only 8GB of RAM. A formal
analysis of RAM usage with the eDMA package is hard to implement given that RAM profiling
for C++ functions wrapped in R cannot be easily performed16. However, we find that eDMA
on a Windows 10 based system equipped with 16GB of RAM fixing T = 300 is able to handle
4’194’304 model combinations while, for example, dma only 2’097’157, i.e., half of eDMA.

6. A DMA example: Inflation data

We use a time–series of quarterly U.S. inflation rate with exogenous predictors for illustration
and then step by step show how to obtain posterior output. The example can be thought
of as a typical assignment for a researcher at a central bank who is interested in forecasting
inflation several–quarters ahead and understand the relationship between inflation, business
cycles and perform variance decomposition.

14In this case δ can take values δ = 0.9 and δ = 1.0.
15Differently, in the dma package a full T × k matrix is stored.
16This is the case also for contributed packages such as profvis of Chang and Luraschi (2017).
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6.1. Data

We rely on the data–set of Groen et al. (2013).17 As a measure of inflation, yt, we consider
quarterly log–changes in the Gross Domestic Product implicit price deflator (GDPDEF) rang-
ing from 1960q1 to 2011q2. The number of exogenous predictors are fifteen. This number is
in accordance with typical “real–world” applications, see also Dangl and Halling (2012) and
Koop and Korobilis (2012).

We start by loading the eDMA package and the data–set by typing:

R> library("eDMA")

R> data("USData", package = "eDMA")

The predictors are: Real GDP in volume terms (ROUTP), real durable personal consump-
tion expenditures in volume terms (RCONS), real residential investment in volume terms
(RINVR), the import deflator (PIMP), the unemployment ratio (UNEMP), non–farm pay-
rolls data on employment (NFPR), housing starts (HSTS), the real spot price of oil (OIL),
the real food commodities price index (FOOD) the real raw material commodities price index
(RAW), and the M2 monetary aggregate (M2), which can reflect information on the current
stance of monetary policy and liquidity in the economy as well as spending in households.
In addition, we also use data on the term structure of interest rates approximated by means
of: The level factor (YL), the slope factor (TS) and curvature factor (CS). Finally, we proxy
inflation expectations through the one–year ahead inflation expectations that come from the
Reuters/Michigan Survey of Consumers (MS). We include the data (the GDPDEF series along
with the fifteen predictors) in the eDMA package as a xts object of dimension 206×16 named
USData. A glance of GDPDEF series and the first five predictors is obtained by typing:

R> head(round(USData[,1:6], 2))

GDPDEF ROUTP RCONS RINVR PIMP UNEMP

1960-01-01 -1.14 1.66 0.62 0.55 -0.48 -0.56

1960-04-01 -0.77 -1.39 0.33 -1.84 -0.37 -0.49

1960-07-01 -0.71 -0.68 -0.71 -0.69 -0.16 -0.30

1960-10-01 -0.76 -2.32 -1.27 -0.07 -0.47 0.16

1961-01-01 -1.27 -0.19 -2.25 0.04 -0.32 0.49

1961-04-01 -1.16 1.24 0.23 0.03 -0.40 0.62

For most series, we follow Groen et al. (2013) and use the percentage change of the original
series in order to remove possible stochastic and deterministic trends. Exceptions are HSTS,
for which we use the logarithm of the respective levels, as well as UNEMP, YL, TS, CS and
MS, where we use the “raw” levels, see Groen et al. (2013) for more details. Finally, since
inflation is very persistence, besides these 15 predictors, we follow Groen et al. (2013) and
also include four inflation lags, yt−1, . . . , yt−4, as predictors. In eDMA, we implement the
function, Lag(), which allows us to lag variables delivered in the form of vector or matrices.
For instance, to lag the numeric vector X of length T by one period, we simply run

17The data is downloadable from http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.

727718.

http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.727718
http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.727718
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R> Lag(X, 1)

which returns a numeric vector of length T containing the lagged values of X. Values that are
not available are replaced by NA.

6.2. Model estimation

We have a total of 219 = 524288 model combinations.18 Furthermore, we let δ = {0.9, 0.91, ..., 1}
such that we have a total of

(
219
)
· 11 = 5767168 combinations. We set β = 0.96, a value

we generally suggest in the context of working with quarterly data, α = 0.99, g = 100,
p (Ms | F0) = 1/ (d · k) , s = 1, . . . , d ·k, such that initially, all models are equally likely. We
then update these model probabilities as new information arrives. As previously mentioned,
we include a constant term in all models, see also Groen et al. (2013).

In order to perform DMA using the DMA() function, we write19:

R> Fit <- DMA(GDPDEF ~ Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +

Lag(GDPDEF, 3) + Lag(GDPDEF, 4) +

Lag(ROUTP, 1) + Lag(RCONS, 1) +

Lag(RINVR, 1) + Lag(PIMP, 1) +

Lag(UNEMP, 1) + Lag(NFPR, 1) +

Lag(HSTS, 1) + Lag(M2, 1) +

Lag(OIL, 1) + Lag(RAW, 1) +

Lag(FOOD, 1) + Lag(YL, 1) +

Lag(TS, 1) + Lag(CS, 1) +

Lag(MS, 1), data = USData,

vDelta = seq(0.90, 1.00, 0.01), vKeep = 1,

dBeta = 0.96, dAlpha = 0.99)

We suggest using the non–informative prior, bZellnerPrior = FALSE, which is the default.
This, way the regression coefficients are centered at 0 with a flat prior and adapt quickly in
the averaging process as new information arrives. More details on the model can be made
available by typing Fit

R> Fit

------------------------------------------

- Dynamic Model Ageraging -

------------------------------------------

Model Specification

T = 202

n = 20

d = 11

18Models which do not include the constant term are not considered. Note that, when vKeep = NULL, the
number of models is 2n − 1, however, when vKeep != NULL, the number of models is 2b − 1, where b = n -

length(vKeep).
19Note that this command can be computational expensive for non–OpenMP ready systems.
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Alpha = 0.99

Beta = 0.96

Model combinations = 524288

Model combinations including averaging over delta = 5767168

------------------------------------------

Prior : Multivariate Gaussian with mean vector 0

and covariance matrix equal to: 100 x diag(20)

Variables always included : (Intercept)

------------------------------------------

The grid for delta:

Delta = 0.90, 0.91, 0.92, 0.93, 0.94, 0.95,

0.96, 0.97, 0.98, 0.99, 1.00

------------------------------------------

Elapsed time : 1429.13 secs

As it can be seen, the total estimation time of our DMA when working with more than
5’700’000 model combinations at each time–period is 1429.13 seconds corresponding to around
23.8 minutes on an Intel Core i7-3630QM processor. A complete summary of the estimation
is available as:

R> summary(Fit, iBurnPeriod = 32)

Call:

DMA(formula = Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +

Lag(GDPDEF, 3) + Lag(GDPDEF, 4) +

Lag(ROUTP, 1) + Lag(RCONS, 1) +

Lag(RINVR, 1) + Lag(PIMP, 1) +

Lag(UNEMP, 1) + Lag(NFPR, 1) +

Lag(HSTS, 1) + Lag(M2, 1) +

Lag(OIL, 1) + Lag(RAW, 1) +

Lag(FOOD, 1) + Lag(YL, 1) +

Lag(TS, 1) + Lag(CS, 1) +

Lag(MS, 1) )

Residuals:

Min 1Q Median 3Q Max

-1.3948 -0.3169 -0.0073 0.2309 1.6503

Coefficients:

E[theta_t] SD[theta_t] E[P(theta_t)] SD[P(theta_t)]

(Intercept) 0.08 0.16 1.00 0.00

Lag(GDPDEF, 1) 0.43 0.17 0.84 0.29

Lag(GDPDEF, 2) 0.03 0.02 0.20 0.13

Lag(GDPDEF, 3) 0.10 0.08 0.38 0.25
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Lag(GDPDEF, 4) 0.10 0.05 0.42 0.21

Lag(ROUTP, 1) 0.00 0.01 0.13 0.09

Lag(RCONS, 1) 0.00 0.00 0.12 0.07

Lag(RINVR, 1) 0.01 0.02 0.13 0.07

Lag(PIMP, 1) 0.19 0.08 0.77 0.29

Lag(UNEMP, 1) -0.03 0.09 0.12 0.10

Lag(NFPR, 1) 0.02 0.02 0.20 0.16

Lag(HSTS, 1) 0.02 0.02 0.16 0.08

Lag(M2, 1) 0.01 0.01 0.16 0.08

Lag(OIL, 1) -0.02 0.05 0.22 0.23

Lag(RAW, 1) 0.00 0.01 0.11 0.07

Lag(FOOD, 1) 0.01 0.01 0.17 0.12

Lag(YL, 1) 0.20 0.34 0.25 0.29

Lag(TS, 1) 0.00 0.01 0.11 0.05

Lag(CS, 1) -0.02 0.04 0.14 0.07

Lag(MS, 1) 0.02 0.03 0.15 0.07

Variance contribution (in percentage points):

vobs vcoeff vmod vtvp

65.70 13.21 19.93 1.16

Top 10% included regressors: (Intercept), Lag(GDPDEF, 1)

Forecast Performance:

DMA DMS

MSE 0.226 0.278

MAD 0.355 0.386

Log-predictive Likehood -98.490 -121.752

Note that, we set burn–in to 32 (iBurnPeriod = 32) such that the start of the evaluation
period corresponds to 1969q1, see also Koop and Korobilis (2012). Below, we go into more
details with regards to how to use the output from the estimation procedure.

6.3. Using the output from eDMA

The output can be divided into two main parts: (a): Full–sample, (b): Out–of–sample analy-
sis. With regards to (a), the most interesting quantities are: mincpmt, vsize, mtheta, vdeltahat,
and mvdec, see Section 4.

For instance, the inclusion probabilities of the predictors for the last part of the sample can
be printed by:

R> InclusionProb <- inclusion.prob(Fit, iBurnPeriod = 32)

R> tail(round(InclusionProb[, 1:4], 2))

(Intercept) Lag(GDPDEF, 1) Lag(GDPDEF, 2) Lag(GDPDEF, 3)

2010-01-01 1 0.99 0.48 0.71

2010-04-01 1 0.99 0.49 0.72
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Figure 4: Posterior inclusion probabilities for the most important predictors of DMA. Panels
(a), (b) and (c): First, third and fourth lags of inflation. Panel (d): Import deflator (PIMP).
Panel (e): Inflation expectations (MS). Panel (f): M2 monetary aggregate (M2). Panel (g):
Real spot price of oil (OIL). Panel (h): Level factor of the term structure (YL). We refer the
reader to Groen et al. (2013) for more details regarding the variables. The gray vertical bars
indicate business cycle peaks, i.e., the point at which an economic expansion transitions to a
recession, based on National Bureau of Economic Research (NBER) business cycle dating.

2010-07-01 1 0.99 0.51 0.73

2010-10-01 1 0.99 0.51 0.73

2011-01-01 1 0.99 0.51 0.73

2011-04-01 1 0.99 0.51 0.73

The above matrix shows the inclusion probabilities of: The constant and yt−1, ..., yt−3, from
2010q1 to 2011q2. Notice that, the inclusion probabilities of the constant term, (Intercept),
are always equal to 1 as every model contains this term (since we set vKeep = 1), see (iii) in
page 10 of this paper. The interested reader can examine these estimates more carefully.

In Figure 4, we report the inclusion probabilities for the more important predictors. To be
precise, any predictor where the inclusion probabilities are never above 0.2 is excluded. In
these plots, we also make evident NBER recorded recessions (shaded gray bars). Overall, we
observe a good amount of time–variation these plots. The lags of inflation, except for yt−2 all
seem important. The import deflator (PIMP) also receives high posterior probability through-
out the sample. Inflation expectation (MS) and M2 receive higher probabilities towards the
end of the sample. Real spot price of oil (OIL) receives high inclusion probabilities during
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Figure 5: Filtered estimates of the regression coefficients for the most important predictors
of DMA. Panels (a), (b) and (c): First, third and fourth lags of inflation. Panel (d): Import
deflator (PIMP). Panel (e): Inflation expectations (MS). Panel (f): M2 monetary aggregate
(M2). Panel (g): Real spot price of oil (OIL). Panel (h): Level factor for the terms structure
(YL). We refer the reader to Groen et al. (2013) for more details regarding the variables. The
gray vertical bars indicate business cycle peaks, i.e., the point at which an economic expansion
transitions to a recession, based on National Bureau of Economic Research (NBER) business
cycle dating.

the post Great Moderation era, whereas we observe the opposite trend for YL. In addition to
the inclusion probabilities, we also report filtered estimates of the regression coefficients for
these predictors in Figure 5. These quantities are extracted from Fit simply using

R> mTheta <- coef(Fit, iBurnPeriod = 32)

Besides these variables, the output from DMA can be used to analyze:

The magnitude of time–variation in the regression coefficients, "vdeltahat", which is the
posterior weighted average of δ at each point in time. We report this estimate in panel (a) of
Figure 6. The analogous plot in R can be obtained using:

R> plot(Fit, which = "vdeltahat", iBurnPeriod = 32)

There is a very intuitive relationship between δ and the business cycles. Typically, δ falls at
the onset of recessions, which fares well with the notion that relatively larger shocks hit θt
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Figure 6: Posterior output for DMA. Panel (a): Posterior weighted average estimate of δ.
Panel (b): Number of predictors for the model with the highest posterior probability. Panel
(c): Sum of top 10% inclusion probabilities. Panel (d): Observational variance. Panel (e):
Variance due to errors in the estimation of the coefficients. Panel (f) Variance due to model
uncertainty (Mod, solid) and variance due to uncertainty with respect to the choice of the
degrees of time-variation in the regression coefficients (TVP, red-dotted). The gray vertical
bars indicate business cycle peaks, i.e., the point at which an economic expansion transitions
to a recession, based on National Bureau of Economic Research (NBER) business cycle dating.

in these periods. Thereafter, δ tends to rise again. Conversely, δ remains high and close to
1 during the Great Moderation, which again fares well with the notion of relatively minor
variation in the regression coefficients in expansion periods. We can also use as.data.frame()
to extract the posterior probability of each value of δ and print them using:

R> InclusionProbDelta <- as.data.frame(Fit, which = "mpmt", iBurnPeriod = 32)

R> round(tail(InclusionProbDelta), 2)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

2010-01-01 0 0 0.01 0.01 0.01 0.02 0.05 0.10 0.21 0.31 0.27

2010-04-01 0 0 0.01 0.01 0.01 0.03 0.05 0.10 0.21 0.31 0.26

2010-07-01 0 0 0.00 0.00 0.01 0.02 0.04 0.10 0.22 0.33 0.27

2010-10-01 0 0 0.00 0.00 0.01 0.02 0.05 0.12 0.23 0.32 0.24

2011-01-01 0 0 0.00 0.00 0.01 0.02 0.05 0.12 0.23 0.31 0.24

2011-04-01 0 0 0.00 0.01 0.01 0.02 0.06 0.13 0.25 0.31 0.21
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where the column names are the values of δ.

In panel (b) of Figure 6, we report the number of predictors contained in the model with the
highest posterior probability, p (Mi|Ft), at each point in time. This can be achieved by:

R> plot(Fit, which = "vsize_DMS", iBurnPeriod = 32)

We can also plot the expected number of predictors replacing which = "vsize_DMS" by which

= "vsize". An interesting result from panel (b) is that, although we have 19 predictors, at
each point in time the best model contains only a few predictors. We can also use posterior
model probabilities to obtain an idea of how important is model averaging. In panel (c),
we report the sum of the posterior inclusion probabilities for the 10% of models (which
= "vhighmpTop01_DMS"). If this number is high, then it means that relatively few model
combinations dominate, and thus obtain relatively high posterior probabilities. Conversely,
if this number is low, then no individual (or group of) model combinations receive high
probabilities, which provides evidence in favor of averaging over predictors.

Finally, in panels (d), (e) and (f) of Figure 6, we report the variance decomposition analy-
sis (which = "mvdec"). Evidently, the dominant source of uncertainty is the observational
variance. This is not surprising as random fluctuation are expected to dominate uncertainty.
Furthermore, uncertainty regarding the degree of time–variation in the regression (TVP) is
relatively lower. However, this is understandable as posterior probabilities of δ (see above)
favor δ = 0.98, 0.99 and 1.

Model Description

M0
Plain AR(4) model: The constant term and yt−1, . . . , yt−4 are always included. We
set α = 1, δ = 1 and β = 1.

M1
Time-varying AR(4) model: The constant term and yt−1, ..., yt−4 are always in-
cluded. We set α = 0.99, β = 0.96 and average over δ1, . . . , δd.

M2
DMA using yt−1, . . . , yt−4: The constant term is always included. We set α = 0.99,
β = 0.96 and average over the combinations of yt−1, ..., yt−4 and δ1, . . . , δd.

M3

DMA using yt−1, . . . , yt−4 and the exogenous predictors: The constant term is always
included. We set α = 0.99, β = 0.96 and average over the combinations of predictors
as well as δ1, . . . , δd.

M4

DMS using yt−1, . . . , yt−4 and the exogenous predictors: The constant term is always
included. We set α = 0.99, β = 0.96 and select the model with the highest posterior
probability at each t and use it to forecasts.

M5 BMA: DMA with α = 1, δ = 1 and β = 1.

M6 BMS: DMS with α = 1, δ = 1 and β = 1.

M7
Kitchen Sink: The constant term, yt−1, . . . , yt−4 and all exogenous predictors are
always included. We set α = 0.99, β = 0.96 and average only over δ1, . . . , δd.

Table 2: Model specifications. The first column is the model index. The second column
provides a brief description of each individual model.
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6.4. Out–of–sample forecasts

An important feature of DMA is out–of–sample forecasting, see Koop and Korobilis (2011)
and Koop and Korobilis (2012). In this section, we illustrate how our package can be used to
generate forecasts.

In Table 2, we provide an overview of several alternative models. Notice that, all models can
be estimate using our package. For instance, the plain AR(4) model, (M0), can be estimated
by setting δ = 1.0, α = 1.0, β = 1.0, using the code:

R> Fit_M0 <- DMA(GDPDEF ~ Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +

Lag(GDPDEF, 3) + Lag(GDPDEF, 4),

data = USData, vDelta = 1.00,

dAlpha = 1.00, vKeep = c(1, 2, 3, 4, 5),

dBeta = 1.0)

Where vKeep = c(1, 2, 3, 4, 5) indicate that all the predictors are included20. The same
holds for Bayesian Model Averaging (BMA, M5) and Bayesian Model Selection (BMS, M6)
by setting δ = 1.0, α = 1.0 and β = 1.0. Thus, eDMA also relates to the BMS package of
Zeugner and Feldkircher (2015) and the BMA package of Raftery et al. (2015).

We use the models to obtain one (h = 1) and five (h = 5) quarter ahead forecasts through
direct forecasting, see Marcellino et al. (2006).

Table 3 reports the mean squared error (MSE) and the log–predictive likelihood difference
(PLD) of Mi, i = 1, . . . , 7, over M0 (the benchmark) at h = 1 and h = 5.21

Compared to the benchmark, M1 provides gains both in terms of MSE and PLD relative
to the benchmark, especially at h = 5. By averaging over yt−1, ...yt−4 and accounting for
parameter instability, we obtain even more gains. DMA using lags of inflation as well as 15
additional predictors is the top performer, regardless of h. Similar to Groen et al. (2013)
the exogenous predictors contain enough information besides the lags the improve forecast
accuracy. Conversely, DMS is outperformed by the benchmark at h = 1. This result is
understandable as panel (c) in Figure 6 demonstrates that no individual model or group of
model combinations perform overwhelmingly better than the other specifications. By looking
more carefully at DMS results, we find that at h = 1, DMS produces volatile forecasts at
the start and towards the end of the sample, which explains why it is outperformed by the
benchmark. This is evident from panel (b) of Figure 6, where we observe notable changes in
the number of predictors in the optimal model at the start of the sample, towards and during
the Great Recession of 2008.

As previously mentioned, DMA (DMS) with α = δ = β = 1 correspond to BMA (BMS).
At h = 1, compared to the benchmark model, BMA provides improvements in density and
point forecasts. Similar to DMS, BMS is outperformed by the benchmark at h = 1. At both
horizons, results confirm that accounting for model uncertainty and parameter instability lead
to more out–of–sample gains.

Finally, as an alternative to these models, we can consider the Kitchen Sink model (the model
with all predictors, M7) where we only average over δ. Compared to M0, the kitchen sink

20This is equivalent to vKeep = "KS".
21We recall that multi step ahead forecast is performed via direct forecasting as in Koop and Korobilis (2012).

For instance, the formula used for model M0 when h = 5 is GDPDEF ∼ Lag(GDPDEF, 5) + Lag(GDPDEF, 6)

+ Lag(GDPDEF, 7) + Lag(GDPDEF, 8)
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Model h = 1 h = 5

MSE PLD MSE PLD

M1 0.998 12.444 0.815 48.445
M2 0.964 14.416 0.728 64.008
M3 0.938 20.561 0.704 94.399
M4 1.155 -2.701 0.844 62.227
M5 0.985 7.234 1.138 19.368
M6 1.096 -7.543 1.308 -25.294
M7 1.839 -9.899 0.965 47.832

Table 3: Mean squared error (MSE) and log–predictive likelihood difference (PLD) of
Mi, i = 1, . . . , 7 compared to M0 for h = 1 and h = 5 quarters ahead out–of–sample
forecasts.

model does not provide any improvements at h = 1. At h = 5, we observe improvements in
density forecasts compared to M0. However, the kitchen sink model is always outperformed
by DMA.

6.5. Why does DMA performs well ?

To investigate how quickly our techniques adapt to changes in data, we report the accumulated
log–PLD for several models over the benchmark in panels (a)–(d) of Figure 7. These can be
obtained using the pred.like() method available for DMA objects. For instance, we create
the two vectors vPL_M0 and vPL_M3 containing the log–predictive likelihood of M0 and M3

using:

R> vPL_M0 <- pred.like(Fit_M0, iBurnPeriod = 32)

R> vPL_M3 <- pred.like(Fit, iBurnPeriod = 32)

and compute the accumulated log-PLD of M3 over M0 as:

R> vPLD_M3.M0 <- cumsum(vPL_M3 - vPL_M0)

which is reported in panel (b) of Figure 7.

In panels (a), (b), (c) and (d) of Figure 7 a value of zero corresponds to equal support of
both models, positive values are in support of the model of choice over M0 and negative
values show support ofM0 over the model of choice at time t. In these panels, we decompose
the effects of (i): Allowing for time–variation in the regression coefficients, (ii): Allowing for
model uncertainty but no time–variation in the regression coefficients and (iii): Allowing for
time–variation in the regression coefficients and model uncertainty.

In panel (a), we see that the time–varying AR(4) model outperforms the benchmark through-
out the out–of–sample period. Compared to the plain AR(4) model, it takes about twenty
observations to provide compelling evidence in favor of DMA. Furthermore, we also observe
that DMA performs well in recession as well as expansion periods. Compared to BMA, the im-
provements of DMA are mostly concentrated on the onset of recessions. However, DMA also
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Figure 7: Accumulated PDL and the optimal number of predictors for prior sensitivity anal-
ysis. Panel (a): M1 over M0, Panel (b): M3 over M0, Panel (c): M5 over M0, Panel (d):
M7 overM0. Panels (e)–(h): Number of predictors for the model with the highest posterior
probability using g = 0.1, 20, T/2, T . The gray vertical bars indicate business cycle peaks,
i.e., the point at which an economic expansion transitions to a recession, based on National
Bureau of Economic Research (NBER) business cycle dating.

outperforms BMA during expansion periods. Conversely the kitchen sink model is generally
outperformed by the benchmark throughout the out–of–sample, see panel (d) of Figure 7.

6.6. The choice of g

In the context of DMA, the prior hyperparameter value, g, must be specified by the prac-
titioner. Intuitively, a smaller value of g means more shrinkage around the prior mean of

θ
(i)
0 , i.e., 0. The larger is g, the more we are willing to move away from the model priors in

response to what we observe in the data. In other words, the larger the g, the more we allow
data to speak freely. This way, we ensure that the estimation procedure quickly adapts to
data, even at quarterly frequency, which typically consist of around 300 observations. On the
other hand, for some data–sets, it can take the estimation procedure longer time to adapt if
we set g to relatively lower values. Thus, in such cases, DMA can initially overfit as the aver-
age model size becomes larger than it ought to be. This effect becomes evident by examining
the average number of predictors in DMA and in most cases is also heavily reflected in the
generated forecasts, where DMA is outperformed by the benchmark.
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Prior MSE PLD

g = 0.1 0.967 20.186
g = 20 0.937 20.664
g = T/2 0.938 20.556
g = T 0.941 20.431

Table 4: Mean squared error (MSE) and log–predictive likelihood difference (PLD) of DMA
using the following values of g: 0.1, 20, T/2, T and M0 for h = 1.

We re–estimate DMA with g equal to 0.1, 20, T/2 and T (using bZellnerPrior = FALSE)
and observe to which extent different values of g influences out–of–sample results. Results are
reported in Table 4 and panels (e)–(h) of Figure 7. Overall, we find that results are robust
to different values of g. All g values lead to similar MSE and PLD estimates and the number
of predictors in the model with the highest posterior probabilities are also similar, see panels
(e)–(h) of Figure 7. However, we must mention that this is mainly due to the properties of
our data and the fact that bZellnerPrior = FALSE such that, contrary to bZellnerPrior

= TRUE, the observations do not affect the prior covariance matrix of θ
(i)
t , see Equation 14.

In fact, when we repeat the analysis with bZellnerPrior = TRUE, we find that DMA using
g = 0.1 and g = 20 perform much worse and are outperformed by the benchmark model. On
the other hand, as we increase g to T/2 and T , we obtain similar results to those reported in
Table 4. This result is understandable as given the scale of the prior covariance matrix under
bZellnerPrior = TRUE, prior shrinkage is much greater under g = 0.1 and g = 20.

Ultimately, it is up to the practitioner to choose g. However, our general recommendation is
to fix g = T regardless of bZellnerPrior = TRUE or FALSE and the number of observations
as it allows the data to speak freely about the underlying relations between the regressors and
the dependent variable. However, as previously mentioned, we recommend bZellnerPrior

= FALSE, for small data-sets.22

7. Conclusion

In this paper, we present the eDMA package for R. The purpose of eDMA is to offer an
integrated environment to easily perform DMA using the available DMA() function, which
enables practitioners to perform DMA exploiting multiple processors. Furthermore, R users
will find common methods to represent and extract estimated quantities such as plot(),
as.data.frame(), coef() and residuals().

Overall, eDMA is able to: (i): Incorporate the extensions introduced in Prado and West (2010)

22An anonymous referee also makes a very good point regarding choosing g, which can be summarized as
follows:

(i): Choose b values of g, say g = {0.1, 20, T/2, T}. Then run DMA for each of these values and save the

predictive likelihoods p
(
y
(i)
t | Ft−1

)
, t = 1, ..., T for i = 1, . . . , b

(ii): Compute p
(
y
(i)
t |Ft−1

)
/Σb

i=1p
(
y
(i)
t |Ft−1

)
, t = 1, . . . , T for i = 1, . . . , b.

Thus, we can observe which value of g obtains high posterior probabilities, especially at the start of the
sample. We can then use the associated g value in the estimation procedure.
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and Dangl and Halling (2012), which are relevant for economic and financial applications,
(ii): Compared to other approaches, our package is much faster, (iii): It requires a smaller
amount of RAM even in cases of moderately large applications, and (iv): It allows for parallel
computing.

In Section 5, we also detail the expected time the program takes to perform DMA under
different sample sizes, number of predictors and number of grid points. For typical economic
applications, estimation time is around 30 minutes using a commercial laptop. Large appli-
cations can still benefit from the use of eDMA even when performed on desktop or clusters,
without additional effort from the user.

Computational details

The results in this paper are obtained using R 3.2.3 (R Core Team 2016) with the packages:
eDMA version 1.4-0 (Catania and Nonejad 2017), Rcpp version 0.12.5 (Eddelbuettel and
François 2011; Eddelbuettel et al. 2016a), RcppArmadillo version 0.7.100.3.1 (Eddelbuettel
and Sanderson 2014; Eddelbuettel et al. 2016b), xts version 0.9-7 (Ryan and Ulrich 2015)
and devtools version 1.1.1 (Wickham and Chang 2016). R itself and all packages used are
available from CRAN at http://CRAN.R-project.org/. The package eDMA is available from
CRAN at https://cran.r-project.org/web/packages/eDMA/index.html. Computations
were performed on a Genuine Intel® quad core CPU i7–3630QM 2.40Ghz processor.

http://CRAN.R-project.org/
https://cran.r-project.org/web/packages/eDMA/index.html
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Paye BS (2012). “‘Déjà vol’: Predictive Regressions for Aggregate Stock Market Volatility
Using Macroeconomic Variables.” Journal of Financial Economics, 106(3), 527 – 546. ISSN
0304-405X. doi:10.1016/j.jfineco.2012.06.005. URL http://www.sciencedirect.

com/science/article/pii/S0304405X12001316.

Prado R, West M (2010). Time series: Modeling, Computation, and Inference. CRC Press,
Boca Raton.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. R version 3.2.3, URL https:

//www.R-project.org/.

Raftery A, Hoeting J, Volinsky C, Painter I, Yeung KY (2015). BMA: Bayesian Model
Averaging. R package version 3.18.6, URL https://CRAN.R-project.org/package=BMA.

Raftery AE (1995). “Bayesian model selection in social research.” Sociological methodology,
pp. 111–163.
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A. The mathematics of dynamic linear models

Below, we briefly outline the Kalman recursions for the i-th DLM model in the model average.
We can refer the reader to Prado and West (2010) for more details on the Kalman recursions.

Based on the information up to time t− 1, the prior if the state vector, θ
(i)
t , at time t follows

N
(
a
(i)
t ,R

(i)
t

)
, where:

a
(i)
t = m

(i)
t−1,

R
(i)
t = C

(i)
t−1 + W

(i)
t . (17)

Conditional on V
(i)
t , the one–step–ahead predictive mean and variance of y

(i)
t follows a Normal

distribution with mean, f
(i)
t , and variance, Q

(i)
t , where:
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Once we observe yt, we can compute the forecast error as e
(i)
t = yt − f

(i)
t . The posterior

distribution for θ
(i)
t given the current information set, Ft, is then updated as:

m
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t e
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where A
(i)
t is the adaptive coefficient vector A

(i)
t = R

(i)
t F

(i)
t /Q

(i)
t .

B. True out–of–sample forecast

There might be cases where the practitioner desires to predict T + 1 conditional on obser-
vation till time T in a true out–of–sample fashion (i.e., without having the possibility of
backtesting the forecast since yT+1 cannot be observed). In such circumstances, the user
can substitute the future value of the dependent variable with an NA. This way, the code
treats the last observation as missing and does not perform backtesting or updating of the
coefficients. However, the estimation procedure provides us with the necessary quantities to
perform prediction. The predicted value ŷT+1 = E[yT+1|FT ] as well as the predicted variance
decomposition defined in Equation 12 can then be extracted using the getLastForecast

method available in the eDMA package. The other quantities that can be extracted, for
example via the as.data.frame method, will ignore the presence of the last NA and report
results only for the firs+t T observations.

For example, consider the simulated data, SimData, detailed in Section 4.1

R> data("SimData", package = "eDMA")
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Recall that this is a 500 × 6 dataframe simulated from the model defined in Equations 15
- 16. The first column represents the dependent variable, yt, while the last five columns the
predictors xi,t for i = 2, . . . , 6 and t = 1, . . . , T = 500. Assume that we observe (or that we
have previously forecasted) the values for the predictors at time T + 1, i.e., xi,T+1 ∈ FT for
i = 2, . . . , 6, and these are x2,T+1 = −0.07, x3,T+1 = 1.61, x4,T+1 = −2.07, x5,T+1 = 0.17,
x6,T+1 = −0.80. What we need to do it is simply bind a new row at the SimData dataframe

R> newData <- c(NA, -0.07, 1.61, -2.07, 0.17, -0.80)

R> SimData <- rbind(SimData, newData)

and run DMA

R> Fit <- DMA(y ~ x2 + x3 + x4 + x5 + x6 , data = SimData,

vDelta = seq(0.9, 1.0, 0.01))

In order to extract the predicted value ŷT+1 = E[yT+1|FT ] and the predicted variance decom-
position, we simply run

R> getLastForecast(Fit)

$PointForecast

[1] 11.5293

$VarianceDecomposition

vtotal vobs vcoeff vmod vtvp

4.290887e-01 2.805227e-01 1.478767e-01 6.682507e-04 2.108273e-05
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