
fhircrackr: Handling HL7® FHIR® Resources in R

2020-10-15

Introduction
fhircrackr is a package designed to help analyzing HL7 FHIR1 resources.

FHIR stands for Fast Healthcare Interoperability Resources and is a standard describing data formats
and elements (known as “resources”) as well as an application programming interface (API) for exchanging
electronic health records. The standard was created by the Health Level Seven International (HL7) health-care
standards organization. For more information on the FHIR standard, visit https://www.hl7.org/fhir/.

While FHIR is a very useful standard to describe and exchange medical data in an interoperable way, it is
not at all useful for statistical analyses of data. This is due to the fact that FHIR data is stored in many
nested and interlinked resources instead of matrix-like structures.

Thus, to be able to do statistical analyses a tool is needed that allows converting these nested resources into
data frames. This process of tabulating FHIR resources is not trivial, as the unpredictable degree of nesting
and connectedness of the resources makes generic solutions to this problem not feasible.

We therefore implemented a package that makes it possible to download FHIR resources from a server into R
and to tabulate these resources into (multiple) data frames.

The package is still under development. The CRAN version of the package contains all functions that are
already stable, for more recent (but potentially unstable) developments, the development version of the
package can be downloaded from GitHub using devtools::install_github("POLAR-fhiR/fhircrackr").

This vignette covers the following topics:

• Prerequisites

• Downloading and flattening resources from a FHIR server

• Processing data frames with multiple entries

• Saving and loading downloaded bundles

• Saving and reading designs

• Performance

• Downloading capability statements

• Further options

Prerequisites
The complexity of the problem requires a couple of prerequisites both regarding knowledge and access to
data. We will shortly list the preconditions for using the fhircrackr package here:

1. First of all, you need the endpoint of the FHIR server you want to access. If you don’t have your own
FHIR server, you can use one of the available public servers, such as https://hapi.fhir.org/baseR4
or http://fhir.hl7.de:8080/baseDstu3. The endpoint of a FHIR server is often referred to as [base]
or [baseR4] for the HL7 R4 standard for instance.

1FHIR is the registered trademark of HL7 and is used with the permission of HL7. Use of the FHIR trademark does not
constitute endorsement of this product by HL7

1

https://www.hl7.org/fhir/

2. To download resources from the server, you should be familiar with FHIR search requests. FHIR search al-
lows you to download sets of resources that match very specific requirements. As the focus of this package
is dealing with FHIR resources in R rather than the intricacies of FHIR search, we will mostly use simple
examples of FHIR search requests. Most of them will have the form [base]/[type]?parameter(s),
where [type] refers to the type of resource you are looking for and parameter(s) characterize specific
properties those resources should have. https://hapi.fhir.org/baseR4/Patient?gender=female
for example downloads all Patient resources from the FHIR server at https://hapi.fhir.org/baseR4/
that represent female patients.

3. In the first step, fhircrackr downloads the resources in xml format into R. To specify which elements
from the FHIR resources you want in your data frame, you should have at least some familiarity with
XPath expressions. A good tutorial on XPath expressions can be found here.

In the following we’ll go through a typical workflow with fhircrackr step by step.

Download and flatten FHIR Resources from a server
1. Download Patient Resources

We will start with a very simple example and use fhir_search() to download Patient resources from a
public HAPI server after we’ve loaded the package with library(fhircrackr):
library(fhircrackr)
patient_bundles <- fhir_search(request="http://fhir.hl7.de:8080/baseDstu3/Patient?",

max_bundles=2, verbose = 0)

The minimum information fhir_search() requires is a string containing the full FHIR search request in
the argument request. In general, a FHIR search request returns a bundle of the resources you requested.
If there are a lot of resources matching your request, the search result isn’t returned in one big bundle but
distributed over several of them. If the argument max_bundles is set to its default Inf, fhir_search() will
return all available bundles, meaning all resources matching your request. If you set it to 2 as in the example
above, the download will stop after the first two bundles. Note that in this case, the result may not contain
all the resources from the server matching your request.

If you want to connect to a FHIR server that uses basic authentication, you can supply the arguments
username and password.

Because endpoints can sometimes be hard to reach, fhir_search() will start five attempts to connect to
the endpoint before it gives up. With the arguments max_attempts and delay_between_attempts you can
control this number as well the time interval between attempts.

As you can see in the next block of code, fhir_search() returns a list of xml objects where each list element
represents one bundle of resources, so a list of two xml objects in our case:
length(patient_bundles)
#> [1] 2
str(patient_bundles[[1]])
#> List of 2
#> $ node:<externalptr>
#> $ doc :<externalptr>
#> - attr(*, "class")= chr [1:2] "xml_document" "xml_node"

If for some reason you cannot connect to a FHIR server at the moment but want to explore the following func-
tions anyway, the package provides two example lists of bundles containing Patient and MedicationStatement
resources. See ?patient_bundles and ?medication_bundles for how to use them.

2

https://www.hl7.org/fhir/search.html
https://www.w3schools.com/xml/xpath_intro.asp

2. Flatten FHIR Resources

Now we know that inside these xml objects there is the patient data somewhere. To get it out, we will use
fhir_crack(). The most important argument fhir_crack() takes is bundles, the list of bundles that is
returned by fhir_search(). The second important argument is design, an object that tells the function
which data to extract from the bundle. fhir_crack() returns a list of data.frames (the default) or a list of
data.tables (if argument data.tables=TRUE).

In general, design has to be a named list containing one element per data frame that will be created. We
call these elements data.frame descriptions. The names of the data.frame descriptions in design are also
going to be the names of the resulting data frames. It usually makes sense to create one data frame per type
of resource. Because we have just downloaded resources of the type Patient, the design here would be a list
of length 1, containing just one data.frame description. In the following we will first describe the different
elements of a data.frame description and will then provide several examples.

The data.frame description itself is again a list, with 3 elements:

1. resource
A string containing an XPath expression to the resource you want to extract, e.g. "//Patient". If your
bundles are the result of a regular FHIR search request, the correct XPath expression will always be
"//<resource name>".

2. cols
Can be NULL, a string or a list describing the columns your data frame is going to have.

• If cols is NULL, all attributes available in the resources will be extracted and put in one column each,
the column names will be chosen automatically and reflect the position of the attribute in the resource.

• If cols is a string with an XPath expression indicating a certain level in the bundle, all attributes on
this specific level will be extracted. "./*" e.g. will extract all attributes that are located (exactly) one
level below the root level given by "//Patient".

• If cols is a named list of XPath expressions, each element is taken to be the description for one column.
family_name = "name/family" for example creates a column named family_name which contains the
values for the attribute indicated by the XPath expression "name/family".

3. style
Can be NULL or a list of length 3 with the following named elements:

• sep: A string defining the seperator used when multiple entries to the same attribute are pasted together,
e.g. "|".

• brackets: Either NULL or a character vector of length 2. If NULL, multiple entries will be pasted together
without indices. If character, the two strings provided here are used as brackets for automatically
generated indices to sort out multiple entries (see paragraph Multiple Entries). brackets = c("[",
"]") e.g. will lead to indices like [1.1].

• rm_empty_cols: Logical. If TRUE, columns containing only NA values will be removed, if FALSE, these
columns will be kept.

All three elements of style can also be controlled directly by the fhir_crack() arguments sep, brackets
and remove_empty_columns. If the function arguments are NULL (their default), the values provided in style
are used, if they are not NULL, they will overwrite any values in style. If both the function arguments and
the style component of the data.frame description are NULL, default values(sep=" ", brackets = NULL,
rm_empty_cols=TRUE) will be assumed.

We will now work through examples using designs of different complexity.

Extract all available attributes Lets start with an example where we only provide the (mandatory)
resource component of the data.frame description that is called Patients in our example. In this case,
fhir_crack() will extract all available attributes and use default values for the style component:

3

#define design
design1 <- list(

Patients = list(

resource = "//Patient"
)

)

#Convert resources
list_of_tables <- fhir_crack(bundles = patient_bundles, design = design1, verbose = 0)

#have look at part of the results
list_of_tables$Patients[1:5,1:5]
#> id meta.versionId meta.lastUpdated text.status text.div.div
#> 1 1282 1 2019-03-05T11:33:15.214+01:00 generated hapiHeaderText
#> 2 267 2 2018-05-13T10:17:40.800+02:00 generated hapiHeaderText
#> 3 722 1 2018-09-02T17:24:17.083+02:00 generated hapiHeaderText
#> 4 731 1 2018-09-02T17:28:16.838+02:00 generated hapiHeaderText
#> 5 736 1 2018-09-02T17:34:50.955+02:00 generated hapiHeaderText

As you can see, this can easily become a rather wide and sparse data frame. This is due to the fact that
every attribute appearing in at least one of the resources will be turned into a variable (i.e. column), even if
none of the other resources contain this attribute. For those resources, the value on that attribute will be set
to NA. Depending on the variability of the resources, the resulting data frame can contain a lot of NA values.
If a resource has multiple entries for an attribute, these entries will pasted together using the string provided
in sep as a separator. The column names in this option are automatically generated by pasting together the
path to the respective attribute, e.g. name.given.value.

Extract all attributes at certain levels We can extract all attributes that are found on a certain level
of the resource if we specify this level in an XPath expression and provide it in the cols argument of the
data.frame description:
#define design
design2 <- list(

Patients = list(

resource = "//Patient",

cols = "./*"
)

)

#Convert resources
list_of_tables <- fhir_crack(bundles = patient_bundles, design = design2, verbose = 0)

#have look at the results
head(list_of_tables$Patients)
#> id birthDate gender
#> 1 1282 <NA> <NA>
#> 2 267 1960-10-04 <NA>
#> 3 722 1982-01-01 male
#> 4 731 1982-01-01 male

4

#> 5 736 1982-01-01 male
#> 6 737 1982-01-01 male

"./*" tells fhir_crack() to extract all attributes that are located (exactly) one level below the root level.
The column names are still automatically generated.

Extract specific attributes If we know exactly which attributes we want to extract, we can specify them
in a named list and provide it in the cols component of the data.frame description:
#define design
design3 <- list(

Patients = list(

resource = "//Patient",

cols = list(
PID = "id",
use_name = "name/use",
given_name = "name/given",
family_name = "name/family",
gender = "gender",
birthday = "birthDate"

)
)

)
#Convert resources
list_of_tables <- fhir_crack(bundles = patient_bundles, design = design3, verbose = 0)

#have look at the results
head(list_of_tables$Patients)
#> PID use_name given_name family_name gender birthday
#> 1 1282 official Sam Fhirman <NA> <NA>
#> 2 267 <NA> Testfall Nr. 1 <NA> 1960-10-04
#> 3 722 <NA> Rick Sanchez male 1982-01-01
#> 4 731 <NA> Rick Sanchez male 1982-01-01
#> 5 736 <NA> Rick Sanchez male 1982-01-01
#> 6 737 <NA> Rick Sanchez male 1982-01-01

This option will usually return the most tidy and clear data frames, because you have full control over the
extracted columns including their name in the resulting data frame. You should always extract the resource
id, because this is used to link to other resources you might also extract.

If you are not sure which attributes are available or where they are located in the resource, it can be helpful
to start by extracting all available attributes. If you are more comfortable with xml, you can also use
xml2::xml_structure on one of the bundles from your bundle list, this will print the complete xml structure
into your console. Then you can get an overview over the available attributes and their location and continue
by doing a second, more targeted extraction to get your final data frame.

Set style component Even though our example won’t show any difference if we change it, here is what a
design with a complete data.frame description would look like:
design4 <- list(

Patients = list(

5

resource = "//Patient",

cols = list(
PID = "id",
use_name = "name/use",
given_name = "name/given",
family_name = "name/family",
gender = "gender",
birthday = "birthDate"

),

style = list(
sep = "|",
brackets = c("[","]"),
rm_empty_cols = FALSE

)
)

)

The style component will become more important in the example for multiple entries later on.

Internally, fhir_crack() will always complete the design you provided so that it contains resource, cols
and style with its elements sep, brackets and rm_empty_cols, even if you left out cols and style
completely. You can retrieve the completed design of you last call to fhir_crack() with the function
fhir_canonical_design():
fhir_canonical_design()
#> $Patients
#> $Patients$resource
#> [1] "//Patient"
#>
#> $Patients$cols
#> $Patients$cols$PID
#> [1] "id/@value"
#>
#> $Patients$cols$use_name
#> [1] "name/use/@value"
#>
#> $Patients$cols$given_name
#> [1] "name/given/@value"
#>
#> $Patients$cols$family_name
#> [1] "name/family/@value"
#>
#> $Patients$cols$gender
#> [1] "gender/@value"
#>
#> $Patients$cols$birthday
#> [1] "birthDate/@value"
#>
#>
#> $Patients$style
#> $Patients$style$sep
#> [1] " "
#>

6

#> $Patients$style$brackets
#> NULL
#>
#> $Patients$style$rm_empty_cols
#> [1] TRUE

Extract more than one resource type Of course the previous example is using just one resource type.
If you are interested in several types of resources, design will contain several data.frame descriptions and the
result will be a list of several data frames.

Consider the following example where we want to download MedicationStatements referring to a certain
medication we specify with its SNOMED CT code and also the Patient resources these MedicationStatements
are linked to.

When the FHIR search request gets longer, it can be helpful to build up the request piece by piece like this:
search_request <- paste0(

"https://hapi.fhir.org/baseR4/", #server endpoint
"MedicationStatement?", #look for MedicationsStatements
"code=http://snomed.info/ct|429374003", #only choose resources with this snomed code
"&_include=MedicationStatement:subject") #include the corresponding Patient resources

Then we can download the resources:
medication_bundles <- fhir_search(request = search_request, max_bundles = 3)

Now our design needs two data.frame descriptions (called MedicationStatement and Patients in our
example), one for the MedicationStatement resources and one for the Patient resources:
design <- list(

MedicationStatement = list(

resource = "//MedicationStatement",

cols = list(
MS.ID = "id",
STATUS.TEXT = "text/status",
STATUS = "status",
MEDICATION.SYSTEM = "medicationCodeableConcept/coding/system",
MEDICATION.CODE = "medicationCodeableConcept/coding/code",
MEDICATION.DISPLAY = "medicationCodeableConcept/coding/display",
DOSAGE = "dosage/text",
PATIENT = "subject/reference",
LAST.UPDATE = "meta/lastUpdated"

),

style = list(
sep = "|",
brackets = NULL,
rm_empty_cols = FALSE

)
),

Patients = list(

7

resource = "//Patient",
cols = "./*"

)
)

In this example, we have spelled out the data.frame description MedicationStatement completely, while we
have used a short form for Patients. We can now use this design for fhir_crack():
list_of_tables <- fhir_crack(bundles = medication_bundles, design = design, verbose = 0)

head(list_of_tables$MedicationStatement)
#> MS.ID STATUS.TEXT STATUS MEDICATION.SYSTEM MEDICATION.CODE
#> 1 30233 generated active http://snomed.info/ct 429374003
#> 2 42012 generated active http://snomed.info/ct 429374003
#> 3 42091 generated active http://snomed.info/ct 429374003
#> 4 45646 generated active http://snomed.info/ct 429374003
#> 5 45724 generated active http://snomed.info/ct 429374003
#> 6 45802 generated active http://snomed.info/ct 429374003
#> MEDICATION.DISPLAY DOSAGE PATIENT
#> 1 simvastatin 40mg 1 tab once daily Patient/30163
#> 2 simvastatin 40mg 1 tab once daily Patient/41945
#> 3 simvastatin 40mg 1 tab once daily Patient/42024
#> 4 simvastatin 40mg 1 tab once daily Patient/45579
#> 5 simvastatin 40mg 1 tab once daily Patient/45657
#> 6 simvastatin 40mg 1 tab once daily Patient/45735
#> LAST.UPDATE
#> 1 2019-09-26T14:34:44.543+00:00
#> 2 2019-10-09T20:12:49.778+00:00
#> 3 2019-10-09T22:44:05.728+00:00
#> 4 2019-10-11T16:17:42.365+00:00
#> 5 2019-10-11T16:30:24.411+00:00
#> 6 2019-10-11T16:32:05.206+00:00

head(list_of_tables$Patients)
#> id gender birthDate
#> 1 60096 male 2019-11-13
#> 2 49443 female 1970-10-19
#> 3 46213 female 2019-10-11
#> 4 45735 male 1970-10-11
#> 5 42024 female 1979-10-09
#> 6 58504 male 2019-11-08

As you can see, the result now contains two data frames, one for Patient resources and one for Medication-
Statement resources.

3. Multiple entries

A particularly complicated problem in flattening FHIR resources is caused by the fact that there can be
multiple entries to an attribute. The profile according to which your FHIR resources have been built defines
how often a particular attribute can appear in a resource. This is called the cardinality of the attribute. For
example the Patient resource defined here can have zero or one birthdates but arbitrarily many addresses. In
general, fhir_crack() will paste multiple entries for the same attribute together in the data frame, using
the separator provided by the sep argument. In most cases this will work just fine, but there are some special
cases that require a little more attention.

8

https://www.hl7.org/fhir/patient.html#resource

Let’s have a look at the following example, where we have a bundle containing just three Patient resources:
bundle <- xml2::read_xml(

"<Bundle>

<Patient>
<id value='id1'/>
<address>

<use value='home'/>
<city value='Amsterdam'/>
<type value='physical'/>
<country value='Netherlands'/>

</address>
<birthDate value='1992-02-06'/>

</Patient>

<Patient>
<id value='id2'/>
<address>

<use value='home'/>
<city value='Rome'/>
<type value='physical'/>
<country value='Italy'/>

</address>
<address>

<use value='work'/>
<city value='Stockholm'/>
<type value='postal'/>
<country value='Sweden'/>

</address>
<birthDate value='1980-05-23'/>

</Patient>

<Patient>
<id value='id3.1'/>
<id value='id3.2'/>
<address>

<use value='home'/>
<city value='Berlin'/>

</address>
<address>

<type value='postal'/>
<country value='France'/>

</address>
<address>

<use value='work'/>
<city value='London'/>
<type value='postal'/>
<country value='England'/>

</address>
<birthDate value='1974-12-25'/>

</Patient>

</Bundle>"

9

)

bundle_list <- list(bundle)

This bundle contains three Patient resources. The first resource has just one entry for the address attribute.
The second Patient resource has two entries containing the same elements for the address attribute. The
third Patient resource has a rather messy address attribute, with three entries containing different elements
and also two entries for the id attribute.

Let’s see what happens if we extract all attributes:
design1 <- list(

Patients = list(
resource = "//Patient",
cols = NULL,
style = list(

sep = " | ",
brackets = NULL,
rm_empty_cols = TRUE

)
)

)

df1 <- fhir_crack(bundles = bundle_list, design = design1, verbose = 0)
df1$Patients
#> id address.use address.city address.type address.country
#> 1 id1 home Amsterdam physical Netherlands
#> 2 id2 home | work Rome | Stockholm physical | postal Italy | Sweden
#> 3 id3.1 | id3.2 home | work Berlin | London postal | postal France | England
#> birthDate
#> 1 1992-02-06
#> 2 1980-05-23
#> 3 1974-12-25

As you can see, multiple entries for the same attribute (address and id) are pasted together. This works
fine for Patient 2, but for Patient 3 you can see a problem with the number of entries that are displayed.
The original Patient resource had three (incomplete) address entries, but because the first two of them use
complementary elements (use and city vs. type and country), the resulting pasted entries look like there
had just been two entries for the address attribute.

You can counter this problem by setting brackets:
design2 <- list(

Patients = list(
resource = "//Patient",
cols = NULL,
style = list(

sep = " | ",
brackets = c("[", "]"),
rm_empty_cols = TRUE

)
)

)

df2 <- fhir_crack(bundles = bundle_list, design = design2, verbose = 0)
df2$Patients

10

#> id address.use address.city
#> 1 [1]id1 [1.1]home [1.1]Amsterdam
#> 2 [1]id2 [1.1]home | [2.1]work [1.1]Rome | [2.1]Stockholm
#> 3 [1]id3.1 | [2]id3.2 [1.1]home | [3.1]work [1.1]Berlin | [3.1]London
#> address.type address.country birthDate
#> 1 [1.1]physical [1.1]Netherlands [1]1992-02-06
#> 2 [1.1]physical | [2.1]postal [1.1]Italy | [2.1]Sweden [1]1980-05-23
#> 3 [2.1]postal | [3.1]postal [2.1]France | [3.1]England [1]1974-12-25

Now the indices display the entry the value belongs to. That way you can see that Patient resource 3 had
three entries for the attribute address and you can also see which attributes belong to which entry.

It is possible to set the style separately for every data.frame description you have. If you want to have
the same style specifications for all the data frames, you can supply them in as function arguments to
fhir_crack(). The values provided there will be automatically filled in in the design, as you can see, when
you check with fhir_canonical_design():
design3 <- list(

Patients = list(
resource = "//Patient"

)
)

df3 <- fhir_crack(bundles = bundle_list,
design = design3,
sep = " | ",
brackets = c("[", "]"))

#>
#> Patients
#> 1...
#> FHIR-Resources cracked.

df3$Patients
#> id address.use address.city
#> 1 [1]id1 [1.1]home [1.1]Amsterdam
#> 2 [1]id2 [1.1]home | [2.1]work [1.1]Rome | [2.1]Stockholm
#> 3 [1]id3.1 | [2]id3.2 [1.1]home | [3.1]work [1.1]Berlin | [3.1]London
#> address.type address.country birthDate
#> 1 [1.1]physical [1.1]Netherlands [1]1992-02-06
#> 2 [1.1]physical | [2.1]postal [1.1]Italy | [2.1]Sweden [1]1980-05-23
#> 3 [2.1]postal | [3.1]postal [2.1]France | [3.1]England [1]1974-12-25

fhir_canonical_design()
#> $Patients
#> $Patients$resource
#> [1] "//Patient"
#>
#> $Patients$cols
#> NULL
#>
#> $Patients$style
#> $Patients$style$sep
#> [1] " | "

11

#>
#> $Patients$style$brackets
#> [1] "[" "]"
#>
#> $Patients$style$rm_empty_cols
#> [1] TRUE

Of course the above example is a very specific case that only occurs if your resources have multiple entries
with complementary elements. In the vast majority of cases multiple entries in one resource will have the
same structure, thus making numbering of those entries superfluous.

Process Data Frames with multiple Entries
1. Melt data frames with multiple entries

If the data frame produced by fhir_crack() contains multiple entries, you’ll probably want to divide these
entries into distinct observations at some point. This is where fhir_melt() comes into play. fhir_melt()
takes an indexed data frame with multiple entries in one or several columns and spreads (aka melts) these
entries over several rows:
fhir_melt(df2$Patients, columns = "address.city", brackets = c("[","]"),

sep=" | ", all_columns = FALSE)
#> address.city id_name
#> 1 [1]Amsterdam 1
#> 2 [1]Rome 2
#> 3 [1]Stockholm 2
#> 4 [1]Berlin 3
#> 5 [1]London 3

The new variable resource_identifier maps which rows in the created data frame belong to which row
(usually equivalent to one resource) in the original data frame. brackets and sep should be given the same
character vectors that have been used to build the indices in fhir_melt(). columns is a character vector
with the names of the variables you want to melt. You can provide more than one column here but it makes
sense to only have variables from the same repeating attribute together in one call to fhir_melt():
cols <- c("address.city", "address.use", "address.type",

"address.country")

fhir_melt(df2$Patients, columns = cols, brackets = c("[","]"),
sep=" | ", all_columns = FALSE)

#> address.city address.use address.type address.country id_name
#> 1: [1]Amsterdam [1]home [1]physical [1]Netherlands 1
#> 2: [1]Rome [1]home [1]physical [1]Italy 2
#> 3: [1]Stockholm [1]work [1]postal [1]Sweden 2
#> 4: [1]Berlin [1]home <NA> <NA> 3
#> 5: [1]London [1]work [1]postal [1]England 3
#> 6: <NA> <NA> [1]postal [1]France 3

If the names of the variables in your data frame have been generated automatically with fhir_crack() you
can find all variable names belonging to the same attribute with fhir_common_columns():
cols <- fhir_common_columns(df2$Patients, column_names_prefix = "address")
cols
#> [1] "address.use" "address.city" "address.type" "address.country"

With the argument all_columns you can control whether the resulting data frame contains only the molten
columns or all columns of the original data frame:

12

fhir_melt(df2$Patients, columns = cols, brackets = c("[","]"),
sep=" | ", all_columns = TRUE)

#> id address.use address.city address.type address.country
#> 1: [1]id1 [1]home [1]Amsterdam [1]physical [1]Netherlands
#> 2: [1]id2 [1]home [1]Rome [1]physical [1]Italy
#> 3: [1]id2 [1]work [1]Stockholm [1]postal [1]Sweden
#> 4: [1]id3.1 | [2]id3.2 [1]home [1]Berlin <NA> <NA>
#> 5: [1]id3.1 | [2]id3.2 [1]work [1]London [1]postal [1]England
#> 6: [1]id3.1 | [2]id3.2 <NA> <NA> [1]postal [1]France
#> birthDate id_name
#> 1: [1]1992-02-06 1
#> 2: [1]1980-05-23 2
#> 3: [1]1980-05-23 2
#> 4: [1]1974-12-25 3
#> 5: [1]1974-12-25 3
#> 6: [1]1974-12-25 3

Values on the other variables will just repeat in the newly created rows.

If you try to melt several variables that don’t belong to the same attribute in one call to fhir_melt(), this
will cause problems, because the different attributes won’t be combined correctly:
cols <- c(cols, "id")
fhir_melt(df2$Patients, columns = cols, brackets = c("[","]"),

sep=" | ", all_columns = TRUE)
#> id address.use address.city address.type address.country birthDate
#> 1: []id1 [1]home [1]Amsterdam [1]physical [1]Netherlands [1]1992-02-06
#> 2: []id2 [1]home [1]Rome [1]physical [1]Italy [1]1980-05-23
#> 3: <NA> [1]work [1]Stockholm [1]postal [1]Sweden [1]1980-05-23
#> 4: []id3.1 [1]home [1]Berlin <NA> <NA> [1]1974-12-25
#> 5: <NA> [1]work [1]London [1]postal [1]England [1]1974-12-25
#> 6: []id3.2 <NA> <NA> [1]postal [1]France [1]1974-12-25
#> id_name
#> 1: 1
#> 2: 2
#> 3: 2
#> 4: 3
#> 5: 3
#> 6: 3

Instead, melt the attributes one after another:
cols <- fhir_common_columns(df2$Patients, "address")

molten_1 <- fhir_melt(df2$Patients, columns = cols, brackets = c("[","]"),
sep=" | ", all_columns = TRUE)

molten_1
#> id address.use address.city address.type address.country
#> 1: [1]id1 [1]home [1]Amsterdam [1]physical [1]Netherlands
#> 2: [1]id2 [1]home [1]Rome [1]physical [1]Italy
#> 3: [1]id2 [1]work [1]Stockholm [1]postal [1]Sweden
#> 4: [1]id3.1 | [2]id3.2 [1]home [1]Berlin <NA> <NA>
#> 5: [1]id3.1 | [2]id3.2 [1]work [1]London [1]postal [1]England
#> 6: [1]id3.1 | [2]id3.2 <NA> <NA> [1]postal [1]France
#> birthDate id_name

13

#> 1: [1]1992-02-06 1
#> 2: [1]1980-05-23 2
#> 3: [1]1980-05-23 2
#> 4: [1]1974-12-25 3
#> 5: [1]1974-12-25 3
#> 6: [1]1974-12-25 3

molten_2 <- fhir_melt(molten_1, columns = "id", brackets = c("[","]"),
sep=" | ", all_columns = TRUE)

molten_2
#> id address.use address.city address.type address.country birthDate
#> 1: []id1 [1]home [1]Amsterdam [1]physical [1]Netherlands [1]1992-02-06
#> 2: []id2 [1]home [1]Rome [1]physical [1]Italy [1]1980-05-23
#> 3: []id2 [1]work [1]Stockholm [1]postal [1]Sweden [1]1980-05-23
#> 4: []id3.1 [1]home [1]Berlin <NA> <NA> [1]1974-12-25
#> 5: []id3.2 [1]home [1]Berlin <NA> <NA> [1]1974-12-25
#> 6: []id3.1 [1]work [1]London [1]postal [1]England [1]1974-12-25
#> 7: []id3.2 [1]work [1]London [1]postal [1]England [1]1974-12-25
#> 8: []id3.1 <NA> <NA> [1]postal [1]France [1]1974-12-25
#> 9: []id3.2 <NA> <NA> [1]postal [1]France [1]1974-12-25
#> id_name
#> 1: 1
#> 2: 2
#> 3: 3
#> 4: 4
#> 5: 4
#> 6: 5
#> 7: 5
#> 8: 6
#> 9: 6

This will give you the appropriate cross product of all multiple entries.

2. Remove indices

Once you have sorted out the multiple entries, you might want to get rid of the indices in your data.frame.
This can be achieved using fhir_rm_indices():
fhir_rm_indices(molten_2, brackets=c("[","]"))
#> id address.use address.city address.type address.country birthDate
#> 1: id1 home Amsterdam physical Netherlands 1992-02-06
#> 2: id2 home Rome physical Italy 1980-05-23
#> 3: id2 work Stockholm postal Sweden 1980-05-23
#> 4: id3.1 home Berlin <NA> <NA> 1974-12-25
#> 5: id3.2 home Berlin <NA> <NA> 1974-12-25
#> 6: id3.1 work London postal England 1974-12-25
#> 7: id3.2 work London postal England 1974-12-25
#> 8: id3.1 <NA> <NA> postal France 1974-12-25
#> 9: id3.2 <NA> <NA> postal France 1974-12-25
#> id_name
#> 1: 1
#> 2: 2
#> 3: 3
#> 4: 4
#> 5: 4

14

#> 6: 5
#> 7: 5
#> 8: 6
#> 9: 6

Again, brackets and sep should be given the same character vector that was used for fhir_crack() and
fhir_melt()respectively.

Save and load downloaded bundles
Since fhir_crack() discards of all the data not specified in design, it makes sense to store the original
search result for reproducibility and in case you realize later on that you need elements from the resources
that you haven’t extracted at first.

There are two ways of saving the FHIR bundles you downloaded: Either you save them as R objects, or you
write them to an xml file.

1. Save and load bundles as R objects

If you want to save the list of downloaded bundles as an .rda or .RData file, you can’t just use R’s save()
or save_image() on it, because this will break the external pointers in the xml objects representing your
bundles. Instead, you have to serialize the bundles before saving and unserialize them after loading. For
single xml objects the package xml2 provides serialization functions. For convenience, however, fhircrackr
provides the functions fhir_serialize() and fhir_unserialize() that can be used directly on the list of
bundles returned by fhir_search():
#serialize bundles
serialized_bundles <- fhir_serialize(patient_bundles)

#have a look at them
head(serialized_bundles[[1]])
#> [1] 58 0a 00 00 00 03

#create temporary directory for saving
temp_dir <- tempdir()

#save
save(serialized_bundles, file=paste0(temp_dir, "\\bundles.rda"))

If you load this bundle again, you have to unserialize it before you can work with it:
#load bundles
load(paste0(temp_dir, "\\bundles.rda"))

#unserialize
bundles <- fhir_unserialize(serialized_bundles)

#have a look
head(bundles[[1]])
#> $node
#> <pointer: 0x0000000006571dd0>
#>
#> $doc
#> <pointer: 0x00000000092b2910>

After unserialization, the pointers are restored and you can continue to work with the bundles. Note that
the example bundles medication_bundles and patient_bundles that are provided with the fhircrackr

15

package are also provided in their serialized form and have to be unserialized as described on their help page.

2. Save and load bundles as xml files

If you want to store the bundles in xml files instead of R objects, you can use the functions fhir_save() and
fhir_load(). fhir_save() takes a list of bundles in form of xml objects (as returned by fhir_search())
and writes them into the directory specified in the argument directory. Each bundle is saved as a separate
xml-file. If the folder defined in directory doesn’t exist, it is created in the current working directory.
#save bundles as xml files
fhir_save(patient_bundles, directory=temp_dir)

To read bundles saved with fhir_save() back into R, you can use fhir_load():
bundles <- fhir_load(temp_dir)

fhir_load() takes the name of the directory (or path to it) as its only argument. All xml-files in this directory
will be read into R and returned as a list of bundles in xml format just as returned by fhir_search().

Save and read designs
If you want to save a design for later or to share with others, you can do so using the fhir_save_design().
This function takes a design and saves it as an xml file:
fhir_save_design(design1, file = paste0(temp_dir,"\\design.xml"))

To read the design back into R, you can use fhir_load_design():
fhir_load_design(paste0(temp_dir,"\\design.xml"))
#> $Patients
#> $Patients$resource
#> [1] "//Patient"
#>
#> $Patients$cols
#> NULL
#>
#> $Patients$style
#> $Patients$style$sep
#> [1] " | "
#>
#> $Patients$style$brackets
#> NULL
#>
#> $Patients$style$rm_empty_cols
#> [1] TRUE

Performance
If you want to download a lot of resources from a server, you might run into several problems.

First of all, downloading a lot of resources will require a lot of time, depending on the performance of
your FHIR server. Because fhir_search() essentially runs a loop pulling bundle after bundle, downloads
can usually be accelerated if the bundle size is increased, because that way we can lower the number of
requests to the server. You can achieve this by adding _count= parameter to your FHIR search request.
http://hapi.fhir.org/baseR4/Patient?_count=500 for example will pull patient resources in bundles of
500 resources from the server.

16

A problem that is also related to the number of requests to the server is that sometimes servers might crash,
when too many requests are sent to them in a row. In that case fhir_search() will throw an error. If you set
the argument log_errors accordingly, you can however retrieve the server errors that caused fhir_search()
to crash.

The third problem is that large amounts of resources can at some point exceed the working memory you have
available. There are two solutions to the problem of crashing servers and working memory:

1. Use the save_to_disc argument of fhir_search()

If you set save_to_disc=TRUE in your call to fhir_search(), the bundles will not be combined in a bundle
list that is returned when the downloading is done, but will instead be saved as xml-files to the directory
specified in the argument directory one by one. This way, the R session will only have to keep one bundle
at a time in the working memory and if the server crashes halfway trough, all bundles up to the crash are
safely saved in your directory:
fhir_search("http://hapi.fhir.org/baseR4/Patient", max_bundles = 10,

save_to_disc=TRUE, directory = paste0(temp_dir, "/downloadedBundles"))

2. Use fhir_next_bundle_url()

Alternatively, you can also use fhir_next_bundle_url(). This function returns the url to the next bundle
from you most recent call to fhir_search():
fhir_next_bundle_url()
#> [1] "http://hapi.fhir.org/baseR4?_getpages=0be4d713-a4db-4c27-b384-b772deabcbc4&_getpagesoffset=200&_count=20&_pretty=true&_bundletype=searchset"

To get a better overview, we can split this very long link along the &:
strsplit(fhir_next_bundle_url(), "&")
#> [[1]]
#> [1] "http://hapi.fhir.org/baseR4?_getpages=0be4d713-a4db-4c27-b384-b772deabcbc4"
#> [2] "_getpagesoffset=200"
#> [3] "_count=20"
#> [4] "_pretty=true"
#> [5] "_bundletype=searchset"

You can see two interesting numbers: _count=20 tells you that the queried hapi server has a default bundle
size of 20. getpagesoffset=200 tells you that the bundle referred to in this link starts after resource no.
200, which makes sense since the fhir_search() request above downloaded 10 bundles with 20 resources
each, i.e. 200 resources. If you use this link in a new call to fhir_search, the download will start from this
bundle (i.e. the 11th bundle with resources 201-220) and will go on to the following bundles from there.

When there is no next bundle (because all available resources have been downloaded), fhir_next_bundle_url()
returns NULL.

If a download with fhir_search() is interrupted due to a server error somewhere in between, you can use
fhir_next_bundle_url() to see where the download was interrupted.

You can also use this function to avoid memory issues. Th following block of code utilizes
fhir_next_bundle_url() to download all available Observation resources in small batches of 10
bundles that are immediately cracked and saved before the next batch of bundles is downloaded. Note that
this example can be very time consuming if there are a lot of resources on the server, to limit the number of
iterations uncomment the lines of code that have been commented out here:
#Starting fhir search request
url <- "http://hapi.fhir.org/baseR4/Observation?_count=500"

#count <- 0

17

while(!is.null(url)){

#load 10 bundles
bundles <- fhir_search(url, max_bundles = 10)

#crack bundles
dfs <- fhir_crack(bundles, list(Obs=list(resource = "//Observation")))

#save cracked bundle to RData-file (can be exchanged by other data type)
save(tables, file = paste0(tempdir,"/table_", count, ".RData"))

#retrieve starting point for next 10 bundles
url <- fhir_next_bundle_url()

#count <- count + 1
#if(count >= 20) {break}

}

Download Capability Statement
The capability statement documents a set of capabilities (behaviors) of a FHIR Server for a particular version
of FHIR. You can download this statement using the function fhir_capability_statement():
cap <- fhir_capability_statement("http://hapi.fhir.org/baseR4/", verbose = 0)

fhir_capability_statement() takes a FHIR server endpoint and returns a list of data frames containing
all information from the capability statement of this server.

Further Options
Extract data below resource level

While we recommend extracting exactly one data frame per resource, it is technically possible to choose a
different level per data frame:
design <- list(

MedCodes=list(resource = "//medicationCodeableConcept/coding")
)

df <- fhir_crack(medication_bundles, design, verbose=0)

head(df$MedCodes)
#> system code display
#> 1 http://snomed.info/ct 429374003 simvastatin 40mg
#> 2 http://snomed.info/ct 429374003 simvastatin 40mg
#> 3 http://snomed.info/ct 429374003 simvastatin 40mg
#> 4 http://snomed.info/ct 429374003 simvastatin 40mg
#> 5 http://snomed.info/ct 429374003 simvastatin 40mg
#> 6 http://snomed.info/ct 429374003 simvastatin 40mg

The above example shows that instead of the MedicationStatement resource, we can choose the Medication-
CodeableConcept as the root level for our extraction. This can be useful to get a quick and relatively clean
overview over the types of codes used on this level of the resource. It is however important to note that this
mode of extraction makes it impossible to recognize if each row belongs to one resource or if several of these
rows came from the same resource. This of course also means that you cannot link this information to data

18

https://www.hl7.org/fhir/capabilitystatement.html

from other resources because this extraction mode discards of that information.

Acknowledgements
This work was carried out by the SMITH consortium and the cross-consortium use case POLAR_MI; both
are part of the German Initiative for Medical Informatics and funded by the German Federal Ministry of
Education and Research (BMBF), grant no. 01ZZ1803A , 01ZZ1803C and 01ZZ1910A.

19

	Introduction
	Prerequisites
	Download and flatten FHIR Resources from a server
	1. Download Patient Resources
	2. Flatten FHIR Resources
	3. Multiple entries

	Process Data Frames with multiple Entries
	1. Melt data frames with multiple entries
	2. Remove indices

	Save and load downloaded bundles
	1. Save and load bundles as R objects
	2. Save and load bundles as xml files

	Save and read designs
	Performance
	1. Use the save_to_disc argument of fhir_search()
	2. Use fhir_next_bundle_url()

	Download Capability Statement
	Further Options
	Extract data below resource level

	Acknowledgements

