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Abstract

The software support for fitting so-called “frailty” (random effect) models for time-to-
event data has grown considerably in the previous years. Such models are attractive to use
when modeling recurrent event data or clustered failures. The usual problem specific to
mixed models, which is integrating over the random effects, is further complicated by the
presence of a non-parametric “baseline” intensity function. So far, the support for such
semi-parametric models was limited, both in terms of the choice for the random effect
distribution and in terms of the type of data that the model can be fitted on. We propose
a new R package that estimates shared frailty models using the full likelihood, based
on the Expectation-Maximization algorithm. The software supports a large number of
distributions for the random effect from the Power Variance Family (PVF). Left truncated
clustered failures and recurrent events in Andersen-Gill or gaptime formulation are also
supported, and conditional and marginal estimates of the survival and cumulative hazard
are provided.

Keywords: shared frailty, EM algorithm, recurrent events, clustered failures, left truncation,
survival analysis, R.

1. Introduction

Time-to-event data is very common in medical applications. Often, these data are marked
by incomplete observations. For example, the phenomena of right censoring occurs when the
actual event time is not observed, but all is known is that the event did not take place by the
end of follow-up. Sometimes, individuals enter the data set only if they have not experienced
the event until a certain time point. This is known as left truncation, which, if not accounted
for correctly, leads to bias. Regression models for such data have been developed in the field of
survival analysis. The most popular is the Cox proportional hazards model (Cox 1972), which
is semi-parametric in nature: the effect of the covariates is assumed to be time-constant and
fully parametric, while the time-dependency arises from the non-parmetric baseline hazard.
Cox regression has been the standard in survival analysis for a few reasons: the non-parametric
baseline is the best one can do if this function is not known in advance, and the estimation
is not computationally intensive. For a long time, this has been implemented in all major
statistical software, such as R (R Core Team 2016) (from S-PLUS times), Stata, SAS, SPSS.

When individuals belong to clusters, or may experience recurrent events, the observations are
correlated, and in this case the Cox model is not appropriate. Random effect “shared frailty”
models have been developed for dealing with such situations. Originating from the field
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of demographics (Vaupel, Manton, and Stallard 1979), these models traditionally assume
that the proportional hazards model holds conditional on the frailty. The most popular
distribution for the random effect is the gamma distribution, chosen mostly for computational
convenience. In Hougaard (2000) a variety of distributions that have desirable properties have
been proposed. These include the gamma, positive stable (PS), inverse gaussian (IG) and the
Power Variance Family (PVF), which includes compound Poisson distributions with mass at
0.

Several surprising results have been demonstrated with frailty models. For example, if pro-
portional hazards are assumed conditional on the frailty, then this assumption does not hold
on the marginal level, for most distributions except the PS. In this case, the model fits pro-
portional hazards on both conditional and marginal levels, with the marginal effect always
being an attenuated version of the conditional. This implies that only the semi-parametric PS
frailty model can be compared to a marginal Cox model. In fact, the choice of the distribution
for the frailty implies a different marginal model, with some emphasizing early depence of the
observations (IG) and others the late dependence (gamma). Therefore, it is of great interest
to be able to compare a number of different distributions of the random effect.

For Cox model, the computational advantage comes from the fact that the semi-parametric
(infinitely dimensional) baseline hazard is not directly estimated, and this is due to the propor-
tional hazards assumption. This simplicity does not carry over to shared frailty models. In this
paper we present frailtyEM , a R package which uses the general Expectation-Maximization
(EM) algorithm for fitting shared frailty models. This implementation comes to complete
the landscape of libraries that may be used for such models. At the time of writing this
manuscript, in R, semi-parametric shared frailty models can also be fitted in other ways. The
first is via a penalized likelihood method with the survival (Therneau and Grambsch 2000;
Therneau 2015b) and coxme (Therneau 2015a) packages. The second way is via h-likelihood
with the frailtyHL (Do Ha, Noh, and Lee 2012) package, and the the third way is via a pseudo
full likelihood approach frailtySurv package (Monaco, Gorfine, and Hsu 2017; Gorfine, Zucker,
and Hsu 2006). Finally, a Monte Carlo EM-type estimation is available in the phmm Donohue
and Xu (2013); Vaida and Xu (2000); Donohue, Overholser, Xu, and Florin (2011). Several
other options are available for parametric modeling: frailtypack (Rondeau, Mazroui, and Gon-
zalez 2012; Rondeau and Gonzalez 2005) may be used where the baseline is fully parametric
or spline-approximated and parfm (Munda, Rotolo, Legrand et al. 2012) for fully parametric
models.

The frailtyEM estimates semi-parametric shared frailty models that may be used for recurrent
events data in Andersen-Gill and gaptime formulation, clustered failures and clustered failures
with left truncation. The supported family of distributions for the random effect includes
gamma, IG, PS and the PVF family. The results of the estimation can be easily visualized.
Point estimates for regression coefficients are provided with confidence intervals which take
into account the estimation of the frailty distribution, and plot methods may be used to
visualize both conditional and marginal survival and cumulative hazard curves wiht 95%
confidence bands, marginal covariate effects, and empirical Bayes estimates of the random
effects. A comparison between frailtyEM and other R packages is provided in Table 1.

The rest of this paper is structured as follows. In section 2 we present a brief overview the
semi-parametric shared frailty model, and the implications of left truncation. In section 3 we
discuss the estimation method used and how this is implemented. In section 4 we illustrate
the usage of the functions from the frailtyEM package on two classical data sets available in
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2. Model

We consider the following scenario: there are I clusters and .J; individuals within clusters.
The outcome from each individual is represented by a realization of a counting process N;;.
We consider that the intensity of N;; takes the form

Aij(t]zi) = ziexp(BTx5(t)) Ao(t) (1)

where z; is an unobserved random effect common to all individuals from cluster i (the “shared
frailty”), x;;(t) a vector of possibly time-dependent covariates, 5 a vector of unknown re-
gression coefficients and Ag(f) > 0 an unspecified baseline intensity function. We consider
the general case where the z; follows a distribution with positive support from the infinitely
divisible family, i.e., they are i.i.d. realizations of a random variable described by the Laplace
transform

Lz(c;0,7) = Elexp(—zc)] = exp(—atp(¢; 7)) (2)
with @ > 0 and v > 0. This formulation includes several distributions, such as the gamma,
PS, IG, PVF. These distributions have been extensively studied in Hougaard (2000). Denote
0 = (o, 7y) as the parameter vector that describes the distribution. The parametrizations used
are described in Appendix Al.

2.1. Likelihood

The maximum likelihood problem is to maximize the marginal likelihood, based only on the
observed data. This is obtained by integrating over the random effects. Now denote the at-
risk indicator of N;; as Yj;(t). With the specification (1), the marginal likelihood is obtained
as the product over clusters of expected marginal contributions, i.e.,

L(0, 5, 20(") = HE9 H/Ooo {Y;j(t)zi exp(ﬁTXij(t)Ao(t)}dNij(t)

xesp(- 3 /0 " Y (1) exp(8 i (£)) Ao (1))

To make the connection with the data representation, we consider that (i, j, k) is the indicator
for the k-th observation from the j-th individual in the i-th cluster, and d;;; is the event
indicator for this observation. We write the value of the covariate vector for this observation
as X;j,. In the most basic case of clustered failures, k& = 1, while in the case of recurrent
events 7 = 1. More observations for one individual may also arise in the case of clustered
failures when the covariates are time-dependent. Nevertheless, the (7,7, k) pair refers to a
certain cluster, individual, and period of time where the covariate vector does not change.

The baseline cumulative hazard for this observation is denoted as Ag ;. Also, let A =
ij exp(B'X;jk) Mo ijk- Then, the marginal likelihood can be written as

L(6, 8, X0()) = H B |11 {H(Zz‘ eXp(ﬁTXz’jk)AO(tk))&jk} exp(—2i;)

J k
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frailtyEM survival coxme frailtySurv frailtyHL frailtypack parfm phmm
distributions
gamma yes yes no yes no yes yes no
log-normal no yes yes yes yes yes yes yes
PS yes no no no no no yes no
IG yes no no yes no no yes no
compound Poisson yes no no no no no no no
PVF yes no no yes no no no no
data
clustered failures yes yes yes yes yes yes yes yes
recurrent events (AG) yes yes yes no ? yes no no
left truncation yes no no no no yes yes no
correlated structure no no yes no no yes no yes
estimation
semi-parametric yes yes yes yes yes no no yes
posterior frailties yes yes no no no ? no no
conditional Ag, Sp yes limited no yes no yes ? no
marginal Ag, Sy yes no no no no no no no

Table 1: Comparsion of R packages for frailty models. Versions: frailtyEM 0.4.8, survival 2.40-1, coxme 2.2-5, frailtyHL 1.1, frailtypack

2.10.5, parfm 2.7.1, phmm 0.7-5
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We consider the Breslow estimator for the baseline hazard, i.e., A\g(t) = Ao¢ for ¢ an event
time, and 0 otherwise. By using (2), the marginal likelihood can be rewritten as

L(6,5.20) =[] H{H@-exmexijk)Ao(tk))éw}<—1>"w(z"”<&> SENE)

i | g k
where L’gg) is the k-th derivative of the Laplace transform.

2.2. Ascertainment

The problem of ascertainment with random effect time-to-event data is usually a difficult one.
Consider that the event of observing the cluster ¢ in the data set is A;. Then, the distribution
of the random effect in cluster 7 is described by the Laplace transform of Z|A;, which follows
from Bayes’ rule as
E[P(Ai|Z) exp(—cZ)]
Lzia.(c) = . 4

Expressing P(A;|Z = z) depends on the type of the study at hand and on the way the data
were collected. In frailtyEM an option is included to deal with the classical scenario of left
truncation, i.e., where

P(Aj|Z; = z;) = P(Tin > tra, Tio > tre- Ty > trin|Zi = 2)

Assume that, given z;, the left truncation times ty,; are independent and the cluster size is
not informative. In this case,

Ji tr,ij
; = %) = ex —Z; 7 exX TXZ" .
P(AZ: = =) 121 p( /O p(3 J<t>>xo<t>dt) (5)

A difficulty here is that the values of the covariate vector and of the baseline intensity must be
known prior to the entry time in the study. The consequences of the semi-parametric model,
where A\g > 0 only at event time points, are that the P(T > t) = 1 for every t before the first
event time point. Also, to assign a value for x before the entry time is speculative. Therefore,
we only consider this case when x; is time constant.

With the previous notation, denote the risk accumulated before each of the entry times of
cluster ¢ as

Ap;= Z exp(B'x;)Aor ij
J

where Aoz i = fOtL’” Ao(t)dt. Then, it results from (4) and (2) that the Laplace transform
can be written as

exf}fl:ﬁqi(;&f Lv);)) = exp(—ap(c; AL, 7)) (6)

Lza,(c;o,7y) =

where 1/;(0; Api,y) =v(c+ Ari;y) — ¥(Ars;y). Thus, the random effect stays in the same
infinitely divisible family of distributions under this ascertainment scheme.
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Note that, in general, the ascertainment scheme does not have a simple description and
P(A;|Z; = z;) may or may not be available in closed form. For example, in family studies,
the families may be selected only when a number of individuals live long enough (Rodriguez-
Girondo, Deelen, Slagboom, and Houwing-Duistermaat 2016). In this case, (5) does not hold.
In the case of registry data on recurrent events, individuals (clusters) may be selected only if
they have at least one event during a certain time window (Balan, Jonker, Johannesma, and
Putter 2016b).

2.3. Goodness of fit

The first question when fitting random effect models is whether there is evidence for hetero-
geneity. To answer this a priori , the score test of Commenges and Andersen (1995) may be
used, and is refered in frailtyEM as the Commenges-Andersen test. In general, score tests are
attractive because they do not require estimating the model. In this spirit, the assumption
of the censoring being non-informative on the frailty (Nielsen, Gill, Andersen, and Sgrensen
1992) may be easily tested as described in Balan, Boonk, Vermeer, and Putter (2016a).

After fitting the model, the likelihood ratio test may be used to assess whether the model with
the frailty is a better fit than a model without frailty. For the gamma and PVF distributions,
this is equivalent to testing the hypothesis that Var(Z) = 0 versus the alternative Var(Z) > 0.
Simulation studies for the gamma frailty suggest that the asymptotic distribution of the
likelhood ratio test statistic follows a x2(0) + x2(1) distribution (Zhi, Grambsch, and Eberly
2005).

Several measures of dispersion such as the estimated variance of the random effect, Kendall’s
tau or the c-index are discussed in Hougaard (2000) and are implemented in frailtyEM.

3. Estimation

We propose a general full-likelihood estimation procedure for the gamma, positive stable and
PVF frailty models, based on a profile likelihood method and making use of the expectation-
maximization (EM) algorithm Dempster, Laird, and Rubin (1977).

For fixed parameters of the frailty distribution 6, we define the profile maximum likelihood

L(6) = max L(83, \o|0).
(6) max (B, X0l0)

For each 6, denote 3(0) and Ao(0) the value of the parameters that maximize L(3, Aolf). A
first observation is that, if 0 maximizes L(6), then (6, 5(6), Ao(0)) maximize L(6, 5, Ao). Thus,
we split the problem of maximizing the likelihood into two: obtaining 5(6), Ag(6) for a fixed

0 (the “inner problem”) and maximizng L(f) over 6 (the “outer problem”).

3.1. The inner problem

For the inner problem the EM algorithm can be used. This has been first proposed for
the gamma frailty model in Nielsen et al. (1992) and Klein (1992), and a generalization is
discussed in Hougaard (2000).

Most ideas from Nielsen et al. (1992) are used here. The crucial observations are that the
E step involves calculating the empirical Bayes estimates z = F[z|data]. The expectation is
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taken with respect to the “posterior” distribution of the random effect. Afterwards, the M
step is essentially a proportional hazards model with logz as offset.

The E step For the E step 5 and A\g are fixed, either at their initial values or at the values
from the previous M step. The conditional distribution of Z; given the data this distribution
has Laplace transform

E [z:% exp(—2z;A;) exp(—zc)} L0 (¢ + Ay)

L(c) = ~ = —. (7)
E [zln’ exp(—ziAi)} L&D (Ay)
The E step reduces to calculating the derivative of (7) in 0, i.e.,
(nit1) (A
Z = _£7£Z)_ (8)
L) (A;)

The marginal (log-)likelihood is also calculated at this point, Lg(3, Ag) to keep track of con-
vergence. It can be seen that (3) involved only the denominator of (7) in addition to a simple
expression of 8 and Ag.

The E step is generally the expensive operation of the EM algorithm. In very few scenarios
can (8) be expressed in a closed form: for the gamma and the inverse gaussian distributions.
In these scenarios, the E step is calculated with the fast_estep() routine. For all other cases,
the E step is calculated via a recursive algorithm with an internal routine estep(), which is
described in Appendix A2. For efficiency and speed, this function was written in C++ and is
interfaced with R via the Repp library (Eddelbuettel and Frangois 2011; Eddelbuettel 2013).

The M step With the same argument as made in Nielsen et al. (1992), the M step is
equivalent to a regular proportional hazards model with log z; added as an offset for all the
cases in z;. This is done via the agreg.fit () function in the survival package. Estimates of
5 are directly obtained from this, while estimates for Ay and the subsequent calculations of
A; (and, eventually INXLJ) require a careful calculation of subjects at risk and the respective
linear predictors at every event and entry time point. The ordering required for determining
these “at risk” sets is cached in emfrail ().

The EM algorithm stops after the marginal log-likelihood has converged.

3.2. Outer problem

The “outer” problem refers to finding 8 which maximizes E(Q) The resulting f is the maximum
likelihood estimator and the maximum likelihood is obtained at E(é\) All the infinite divisible
distributions in this library involve only a one-dimensional §. The maximizer of choice may be
one of those from the optimx package (Nash and Varadhan 2011; Nash 2014), and it defaults
to bobyqga. The results of this maximization are returned in the final object and are accessible

to the user.

3.3. Return object and standard errors

After the maximizer has converged and the outer maximization is done, a number of calls to
the internal em_fit() are performed at 6 and 6 + ¢, this time returning a complete list of
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results including the variance-covariance matrix of (3, \g). These results are used for general
output, and also for calculating an adjusted variance-covariance matrix for the uncertainty in
estimating 6. The idea is described in Appendix A3.

In general, the return object type is emfrail, which is essentially a list that contains the results
of the “outer” maximization as returned by optimx (), the results of the “inner” maximization
at the estimate, and a few other fields which are used for different methods. The object type
is documented in 7emfrail. Some options to obtain only part of the results are available via
the .control argument.

3.4. Output, summary and prediction

By itself, an emfrail object prints the call, a summary of “outer” optimization, the estimates
of the covariates and the pvalue of the Commenges-Andersen test. A more user-readable sum-
mary of an emfrail object is provided by the summary.emfrail () method. This returns an
object of the class emfrail _summary that contains general fit information, covariate estimates
and several distribution-specific measures of fit and dispersion. Since most of these depend on
estimated parameters, the Delta method as implemented in deltamethod from the package
msm (Jackson 2011) is used.

A method for predicting cumulative hazard and survival curves, both conditional and marginal,
exists in predict.emfrail(). Confidence bands are based on the asymptotic normality of
the estimated Ao, and available both for adjusted and un-adjusted for the uncertainty of 6.
The user can specify which quantities to obtain and values of the linear predictor where to
calculate these curves. The function returns a data frame from which several plots can be
easily created.

A few simple plot functions have been created for convenience, although more flexibility may
be achieved with ggplot2 (this is described in the documentation of predict.emfrail). An
overview of the plots is available with ?plot_emfrail. For obtaining a histogram of the
empirical Bayes estimates of the frailties, hist_frail () may be used. For plotting predicted
cumulative hazard or survival curves plot_pred() may be used, and to plot the marginal
and conditional estimated hazard ratios plot_hr () may be used.

An additional function, emfrail_pll() is provided to calculate the marginal log-likelihood
for a vector of values of 6, without actually performing the outer optimizaion. This may
be useful for visualizing the profile log-likelihood or when debugging (e.g.,if the maximum
likelihood estimate of 6 lies on the boundary).

4. Illustration
For a quick start, one can run this:
> library(frailtyEM)

The features of the package are now illustrated with two well-known data sets available in R.

4.1. bladder

The data on recurrences of bladder cancer has been used several times to demonstrate method-
ology for recurrent events and is part of the survival package. The data set in Andersen-Gill
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format is present in bladder2.
> bladder2$rx <- as.factor(bladder2$rx)

The variables of interest here are: start, stop and event determine the outcome, while rx
is a factor variable for treatment, number is the number of initial tumors and size is the size
of the largest initial tumor.

A basic emfrail model can be fitted like this:

> ml <- emfrail(.data = bladder?2,
+ .formula = Surv(start, stop, event)
> ml

rx + number + size + cluster(id))

Call:
emfrail (Surv(start, stop, event) ~ rx + number + size + cluster(id))
theta loglik fevals gevals niter convcode kktl kkt2 xtimes

bobyqa 1.075755 -442.6776 19 NA NA 0 TRUE TRUE 0.223
coef exp(coef) se(coef) adjusted se z P
rx2 -0.582849 0.558306 0.317177 0.317502 -1.837613 0.0661

number 0.224087 1.251180 0.088881 0.089335 2.521193 0.0117
size -0.023309 0.976961 0.107086 0.107213 -0.217662 0.8277

Commenges-Andersen test for heterogeneity: p-val 0.00768

The arguments of emfrail visible above are .data and .formula. The .control and
.distribution are taken as defaults; for the latter, that is the gamma frailty distribution.
The .formula argument contains a Surv object at the left hand side and a +cluster () state-
ment on the right hand side (essentially as +frailty() in coxph). The .distribution and
.control arguments must be objects of the type emfrail_distribution and emfrail_control,
which are created by calls to functions with the same names. For example, the default choice
for the distribution is:

> str(emfrail_distribution())

List of 4
$ dist : chr "gamma"
$ theta ! num 2
$ pvim : num -0.5

$ left_truncation: logi FALSE
- attr(x, "class")= chr "emfrail distribution"

The emfrail_distribution objects have 4 fields: dist describes the distribution of the
frailty (here, a gamma distribution), theta is the frailty parameter and the starting value
for the optimization. The parametrizations are described in Appendix Al. The pvfm field
only plays a role when dist=="pvf", and describes which PVF family distribution should be
used. Finally, left_truncation is a logical variable, on whether to treat an observation as
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left truncated or not. For example, in the case of recurrent events in Andersen-Gill format,
this should be FALSE, because the start column does not refer to ascertainment, and the
frailty must not be taken conditional on not having an event before that time point. The
adjustment that happens if left truncation is present is described in section 2.2.

The emfrail object prints a slightly modified version of the output from the “outer” maxi-
mization, which is the same as one from optimx, with a few additions.

> ml

Call:
emfrail (Surv(start, stop, event) ~ rx + number + size + cluster(id))
theta loglik fevals gevals niter convcode kktl kkt2 xtimes

bobyqa 1.075755 -442.6776 19 NA NA 0 TRUE TRUE 0.223
coef exp(coef) se(coef) adjusted se z P
rx2 -0.5682849 0.558306 0.317177 0.317502 -1.837613 0.0661

number 0.224087 1.251180 0.088881 0.089335 2.521193 0.0117
size -0.023309 0.976961 0.107086 0.107213 -0.217662 0.8277

Commenges-Andersen test for heterogeneity: p-val 0.00768

A more interesting output is obtained by calling summary ():

> sm1 <- summary(m1)
> sml

Summary of emfrail fit
Regression coefficients:

coef exp(coef) se(coef) adjusted se z P
rx2 -0.582849 0.558306 0.317177 0.317502 -1.837613 0.0661
number 0.224087 1.251180 0.088881 0.089335 2.521193 0.0117
size -0.023309 0.976961 0.107086 0.107213 -0.217662 0.8277
Estimated distribution: gamma / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.00768
(marginal) no-frailty Log-likelihood: -453.243

(marginal) Log-likelihood: -442.678

LRT: 1/2 * pchisq(21.1), p-val 2.15e-06

Frailty summary:

theta = 1.076 (0.39) / 95% CI: [0.531, 2.178]
variance = 0.93 (0.33) / 95% CI: [0.459, 1.882]
Kendall's tau: 0.317 (0.08) / 95% CI: [0.187, 0.485]

The first two parts of this output, about regression coefficients and fit summary, exist regard-
less of the frailty distributions. The last part, “frailty summary”, depends on the distribution
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at hand. The frailty variance is estimated as 0.93 in this case. Both the Commenges-Andersen
test for heterogeneity and the one-sided likelihood ratio test deems the random effect highly
significant. This is also suggested by the confidence interval for the frailty variance, which is
far from 0.

The results are almost identical with a gamma frailty fit from coxph. The marginal log-
likelihood in the emfrail object is slightly higher, that is because the estimation of the frailty
distribution is more precise. In addition, emfrail also provides a 95% confidence interval for
the frailty variance.

> m_cph <- coxph(Surv(start, stop, event) ~ rx + number + size + frailty(id),
+ data = bladder2,

+ ties = "breslow")

> m_cph

Call:
coxph(formula = Surv(start, stop, event) ~ rx + number + size +
frailty(id), data = bladder2, ties = "breslow")

coef se(coef) se2 Chisq DF P
rx2 -0.5839 0.3176 0.2174 3.3802 1.0 0.0660
number 0.2249 0.0882 0.0563 6.4973 1.0 0.0108
size -0.0233 0.1083 0.0711 0.0465 1.0 0.8293
frailty(id) 73.8156 42.2 0.0019

Iterations: 6 outer, 28 Newton-Raphson

Variance of random effect= 0.93 I-likelihood
Degrees of freedom for terms= 0.5 0.4 0.4 42.2
Likelihood ratio test=130 on 43.5 df, p=1.58e-10 n= 178

-442.7

The empirical Bayes frailty estimates of z are also identical for the two ways of fitting the
model.

> plot(exp(m_cph$frail),

+ smi1$frail$z,
+ xlab = "frailty estimates (coxph)",
+ ylab = "frailty estimates (emfrail)")

> abline(0,1)

11
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To look at predicted cumulative hazard curves we take two individuals, one from the treatment

arm and one from the placebo arm, both with three recurrent tumor at baseline and with size
3.

> par(mfrow=c(1,2))
> plot_pred(mi,

+ newdata = data.frame(rx = "2'", number = 3, size = 3),
+ ylim = ¢(0,4),

+ main = "treatment")

> plot_pred(mi,

+ newdata = data.frame(rx = "1'", number = 3, size = 3),
+ ylim = c(0,4),

+ main = "placebo")
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The cumulative hazard in this case can be interpreted as the expected number of events at
a certain time. It can be seen that the frailty “drags down” the marginal hazard. This is
a well-known effect observed in frailty models, as described in Aalen, Borgan, and Gjessing
(2008, ch. 7).

A similar model can be fitted with the positive stable distribution:

> m2 <- emfrail(.data = bladder2,

+ .formula = Surv(start, stop, event) ~ rx + number + size + cluster(id),
+ .distribution = emfrail_distribution(dist = "stable"))

> summary (m2)

Summary of emfrail fit
Regression coefficients:

coef exp(coef) se(coef) adjusted se z P
rx2 -0.578448 0.560768 0.309813 0.312524 -1.867089 0.0619
number 0.218502 1.244212 0.070128 0.073333 3.115748 0.0018
size -0.032408 0.968111 0.101512 0.102164 -0.319253 0.7495
Estimated distribution: stable / left truncation: FALSE

Fit summary:
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Commenges-Andersen test for heterogeneity: p-val 0.00768
(marginal) no-frailty Log-likelihood: -453.243

(marginal) Log-likelihood: -448.185

LRT: 1/2 * pchisq(10.1), p-val 0.000735

Frailty summary:

theta = 0.22 (0.11) / 95} CI: [0.085, 0.569]
Kendall's tau: 0.18 (0.07) / 95% CI: [0.078, 0.363]
Attenuation factor: 0.78 / Var[log(Z)] = 0.163

The coefficient estimates are similar with those of m1. The “frailty summary” part is quite
different though. The positive stable distribution has infinite expectation. However, Kendall’s
tau is easily obtained, and in this case it is smaller than in the gamma frailty model. Unlike
the gamma or PVF distributions, the positive stable frailty predicts a marginal model with
proportional hazards. This is discussed at length in Hougaard (2000). This can be easily

visualized with emfrail.

> par(mfrow=c(1,2))
> plot_hr(mi,

+ newdata = data.frame(rx = c("1", "2"), number =
+ main = "gamma')

> plot_hr(m2,

+ newdata = data.frame(rx = c("1", "2"), number =

+ main = "stable")
>

3, size

3, size

3,

3),
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The plot shows that the marginal hazard ratio of the gamma frailty model is not time-constant,
while the one from the positive stable frailty model is. This is discussed in Aalen et al. (2008,
ch. 7). In Hougaard (2000) this is seen as a strength of the stable frailty model.

4.2. kidney

The kidney data set is also available in the survival package. The data, presented originally in
McGilchrist and Aisbett (1991), contains the time to infection, at the point of insertion of the
catherer, for kidney patients using portable dialysis equipment. If the catheters are removed
for other reasons, then the observation is censored. Each of the 38 patients has exactly 2
observations. There are 3 covariates: sex, age and a disease (a factor with 4 levels). This
data are analized in Therneau and Grambsch (2000, ch. 9.5.2). The authors note that, when
disease is included in the model, a gamma frailty model offers no evidence of heterogeneity.
When disease is not included in the model, then there seems to be moderate evidence for
heterogeneity; this is an example where the frailty may be interpreted as a missing covariate.

> data(kidney)

> kidney$sex <- ifelse(kidney$sex == 1, "male", "female")
> m_gam_d <- emfrail(.data = kidney,
+ .formula = Surv(time, status) ~ age + sex + disease + cluster(id))

> summary (m_gam_d)
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Summary of emfrail fit
Regression coefficients:

coef exp(coef) se(coef) adjusted se z P
age 0.0034309 1.0034368 0.0111484 0.0111484 0.3077479 0.7583
sexmale 1.4715944 4.3561751 0.3579169  0.3579220 4.1115532 0.0000
diseaseGN  0.0894202 1.0935401 0.4068262 0.4068271 0.2197996 0.8260
diseaseAN 0.3518318 1.4216694 0.4002232 0.4002232 0.8790889 0.3794
diseasePKD -1.4276348 0.2398756 0.6309795 0.6309844 -2.2625693 0.0237
Estimated distribution: gamma / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.879
(marginal) no-frailty Log-likelihood: -179.394
(marginal) Log-likelihood: -179.394

LRT: 1/2 * pchisq(0), p-val 0.5

Frailty summary:

theta = 10878.12 (73909.27) / 95% CI: [10878.12, Inf]
variance = 0 (0) / 95%, CI: [0, O]

Kendall's tau: 0 (0) / 95% CI: [0, O]

> m_gam <- emfrail(.data = kidney,
+ .formula = Surv(time, status) ~ age + sex + cluster(id))
> summary (m_gam)

Summary of emfrail fit
Regression coefficients:

coef exp(coef) se(coef) adjusted se z p
age 0.0054372 1.0054520 0.0115813 0.0116976 0.4694816 0.6387
sexmale 1.5528409 4.7248739 0.4451768  0.4995213 3.4881440 0.0005
Estimated distribution: gamma / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.0245
(marginal) no-frailty Log-likelihood: -184.657
(marginal) Log-likelihood: -182.053

LRT: 1/2 * pchisq(5.21), p-val 0.0112

Frailty summary:

theta = 2.517 (1.49) / 95% CI: [0.791, 8.012]
variance = 0.397 (0.23) / 95% CI: [0.125, 1.264]
Kendall's tau: 0.166 (0.08) / 95% CI: [0.059, 0.387]

Therneau and Grambsch discuss these models and they conclude that an outlier case is at the
source of this surprising result. This raises the question on what the frailty actually means in
this model. With the frailtyEM package, the stable frailty model may also be fitted. Unlike
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the gamma frailty model, the positive stable does not attemt to “correct” non-proportional
hazards.

> m_stab <- emfrail(.data = kidney,

+ .formula = Surv(time, status) ~ age + sex + cluster(id),
+ .distribution = emfrail_distribution(dist = "stable"))
> summary(m_stab)

Summary of emfrail fit
Regression coefficients:

coef exp(coef) se(coef) adjusted se z p
age 0.0021815 1.0021839 0.0092246  0.0092246 0.2364879 0.8131
sexmale 0.8209953 2.2727608 0.2987197  0.2987197 2.7483806 0.0060
Estimated distribution: stable / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.0245
(marginal) no-frailty Log-likelihood: -184.657
(marginal) Log-likelihood: -184.657

LRT: 1/2 * pchisq(0), p-val 0.5

Frailty summary:

theta = 0 (0) / 95% CI: [0, Inf]
Kendall's tau: 0 (0) / 95% CI: [0, NaN]
Attenuation factor: 1 / Var[log(Z)] = 0O

The Commenges-Andersen test for heterogeneity shows the same evidence as before, as it
does not depend on the frailty distribution. However, the positive stable parameter lies at the
edge of the parameter space (0 is between 0 and 1 for the PS distribution). Therefore, the
LRT is not significant. The major difference with the gamma frailty fit is that the regression
coefficient for sex is much smaller. To untangle this effect, one can check the (marginal)
proportional hazards assumption. This reveals that sex has a significant non-proportional
effect on the hazards:

> zphl <- cox.zph(coxph(Surv(time, status) ~ age + sex + cluster(id), data = kidney))

> zphl

rho chisq P
age 0.0214 0.0231 8.79e-01
sexmale -0.4390 29.2598 6.33e-08
GLOBAL NA 29.3325 4.27e-07

In small samples, the gamma frailty model implicitly fits a marginal non-proportional hazards
model, and in this case it succeeds. The PS distribution fits proportional hazards both
conditional and marginal, and in this case it fails. To untangle this effect, we can perform a
proportional hazards test with the log-estimated frailties as an offset:
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> s_gam <- summary (m_gam)
> off_z <- log(s_gam$frail$z) [match(kidney$id, s_gam$frail$id)]
> zph2 <- cox.zph(coxph(Surv(time, status) ~
+ age + sex + offset(off_z) + cluster(id),
+ data = kidney))
> zph2
rho chisq P
age -0.0145 0.00427 0.948
sexmale -0.2170 1.39043 0.238
GLOBAL NA 1.41146 0.494

In this case, this is evidence that the gamma frailty corrects for proportionality rather than
heterogeneity.

5. Conclusion

We have shown that the EM based approach has certain advantages in the context of frailty
models. First of all, it is semiparametric, which means that it is an extension of the Cox
proportional hazards model. In this way, classical results from semiparametric frailty models
(for example, the data sets in section 4) can be replicated and further insight may still be
obtained. Until now, the Commenges-Andersen test, PS, PVF family, have not all been
implemented in a consistent way in an R package.

Several options not discussed in this paper include the left truncation adjustment. There is
no available data set to illustrate this option, however the peroforming of a larger simulation
study to assess the effects of left truncation in clustered failure data is now possible.

Other possible extensions of this software are posible, since all that is needed is to specify
the Laplace transform and the corresponding derivatives for the E step. An interesting ex-
tension would be to choose discrete distributions for the random effect. The newest features
will be implemented in the development version of the package at https://github.com/
teddybalan/frailtyEM.

In the current landscape for modeling random effects in survival analysis, frailtyEM is a
contribution that focuses on implementing classical methodology in an efficient way. This
comes to aid researches, as well as clinicians, facilitating the analysis of previous and future
studies.

Appendix Al: Results for the Laplace transforms

We consider distributions from the infinitely divisible family (Ash 2014, ch 8.5) with the
Laplace transform

L(c) = exp(—azp(c;))-

The gamma distribution For the gamma distribution, ¥ (c;v) = log(y + ¢) — log(y). We
have

P9(ein) = () - Dl + o)


https://github.com/teddybalan/frailtyEM
https://github.com/teddybalan/frailtyEM

Theodor Adrian Balan, Hein Putter 19

For identifiability, the natural parametrization would be o = . Then, we have for a 8 > 0,
0 = a = 7, which implies mean 1 and variance 1.

The positive stable distribution For the positive stable distribution, ¥ (c;7y) = ¢? with
7€ (0,1).
F(k — /8) (_1)k—lc'y—1.

v (e7) = (=)
0

For identifiability, we take &« = 1. Then, we have fora 6 > 0,y = 1—577. This parametrization
is equivalent to that from Munda et al. (2012). In Hougaard (2000), the parameter oy = .
0

Kendall’s 7 is then 7 = % and the median concordance is k = 222 ' _1

The PVF distributions For the PVF distribution, with fixed parameter m € R, m > —1
and m # 0,

¥(e;y) =sign(m)(1 =" (v +¢)™"™)
where sign denotes the sign. This is the same parametrizaion as in Aalen et al. (2008).
To exhibit the tie-in with that of Hougaard (2000), it would be m = —apg, v = 0y, a =
|0g /m~y~™| . We have

¢(k) (c;7) = sign(m)(—y)™(y + c)—m_k(_l)k—l-lrw

It can be seen that the expectation of this distribution is minus the first derivative of the
Laplace transform calculated in 0, i.e.,

E(Z) = o) (0;7)L(0; v, ) = %m'

The second moment of the distribution can be calculated as the second derivative of the

Laplace transform at 0,
2 ) " o? 2, @
EZ® = oy (0) — a)”(0) = ?m +¥m(m—|—1).
For identifiability, we set the mean to 1. For a 6 > 0, we write v = (m + 1) and o = ™14,
This results in the variance of the frailty equal to 671,

Left truncation

To determine the Laplace transform under left truncation, we determine v from 6.

For the gamma distribution, we have

Y(e;y,A) = log(y + Ar +¢) —log(y + AL)

which implies that the frailty of the survivors is still gamma distributed, but with a change
in the parameter ~.

For the positive stable we have

dlesy, Ap) = (e+AL) — A
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which is not a positive stable distribution any more.

For the pvf distribution, we have
P(c;y, Ar) = sign(m) (Y"(y+AL) ™ = (v+ A" (v + AL+ )™

which is not pvf any more.

Closed forms

The gamma distribution leads to a Laplace transform for which the derivatives can be calcu-
lated in closed form. It can be seen that

Lca,y) =7 (v +o) "
The k-th derivative of this expression is

—y—k F(a + k)

L£®) (c;0,7) = (v + o) )

This can be exploited also in the case of left truncation, since the gamma frailty is preserved,
as shown in the previous section.

The inverse gaussian distribution is obtained when the pvf parameter is m = —%. Under the
current parametrization, we have 5 = 6/2 and o = 6. In this case, the Laplace transform is

L(c;0) = exp {0 (1 - \/m)}

The k-th derivative of this can be written as

)m Ki_1/2 ( 26 (c + §)>
/cm( 20 (c+g)>

where IC is the modified Bessel function of the second kind.

£8)(c;0) = (~1)* (Z+ |

The emfrail() uses the closed form formulas when possible, by default.

Appendix A2: A general E step

As shown in (7), the calculation of the E step for the general case involves taking derivatives
of Laplace transforms of the form

L(c) = exp(g(c))

where for simplicity we denote g(c) = —at)(c;7y). The expression for the k-th derivative of
L(c) can be obtained with a classical calculus result, di Bruno’s formula, i.e.,

) (g) — o (9@,
L) = Z m1!m2!...mn!j:1< 4! ) £(e) (9)

meMy,
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where M, = {(m1, ..., my)| 3°7_; j X m; = n}. For example, for n = 3,
M3 = {(37070)7 (17 1, O)? (07 0, 1)} :
This corresponds to the “partitions of the integer” 3, i.e., all the integers that sum up to 3:

{(1,1,1), (1,2,0),(3,0,0)} .

We implemented a recursive algorithm in C4++ which resides in the emfrail_estep.cpp
which loops through these partitions, calculates the corresponding derivatives of ¢ and the
coefficients.

Appendix A3: Standard errors

Denote the vector of parameters 7 = (8, Ao(-)). The information matrix for (6,n) can be

written as follows:
Tyy 1o ]
I — ) T .
[Im@ Imn

From this, Zg ¢ is approximated numerically as the Hessian of the “outer” maximization. The
part corresponding to 7, 7, is calculated using Louis’ formula, which has been commonly
employed to obtain this quantity from EM algorithms Louis (1982). It only requires the first

and second derivatives of log E(n)
By inverting Zy g and Z,, ,,, two variance-covariance matrices are obtained: Var(0) and Var(n|6 =

~

). The latter matrix is the variance-covariance for n under fixed 6; from this, the standard
errors are calculated, for example, in the survival package. This leads to an under-estimation
of the standard errors, the extent of which, to our knowledge, has not been yet studied.

The calculation of the variance-covariance matrix Z—! in this case has been described in
Hougaard (2000, Appendix B.3) and Putter and Van Houwelingen (2015).
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