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Where are we so far?

1. Introduction: vignette("gcplyr")

2. Importing and transforming data: vignette("import_transform")

3. Incorporating design information: vignette("incorporate_designs")

4. Pre-processing and plotting your data: vignette("preprocess_plot")

5. Processing your data: vignette("process")

6. Analyzing your data: vignette("analyze")

7. Dealing with noise: vignette("noise")

8. Statistics, merging other data, and other resources: vignette("conclusion")
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So far, we’ve imported and transformed our measures, combined them with our design information, pre-
processed, processed, and plotted our data. Now we’re going to analyze our data by summarizing our
growth curves into a number of metrics.

If you haven’t already, load the necessary packages.

library(gcplyr)

library(dplyr)

library(ggplot2)

#This code was previously explained

#Here we're re-running it so it's available for us to work with

example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless,

id_cols = "Time")

example_design <- make_design(

pattern_split = ",", nrows = 8, ncols = 12,

"Bacteria_strain" = make_designpattern(

values = paste("Strain", 1:48),

rows = 1:8, cols = 1:6, pattern = 1:48, byrow = TRUE),

"Bacteria_strain" = make_designpattern(

values = paste("Strain", 1:48),

rows = 1:8, cols = 7:12, pattern = 1:48, byrow = TRUE),

"Phage" = make_designpattern(

values = c("No Phage"), rows = 1:8, cols = 1:6, pattern = "1"),

"Phage" = make_designpattern(

values = c("Phage Added"), rows = 1:8, cols = 7:12, pattern = "1"))

ex_dat_mrg <- merge_dfs(example_tidydata, example_design)

#> Joining, by = "Well"

ex_dat_mrg$Well <-

factor(ex_dat_mrg$Well,

levels = paste(rep(LETTERS[1:8], each = 12), 1:12, sep = ""))

ex_dat_mrg <- group_by(ex_dat_mrg, Well, Bacteria_strain, Phage)

ex_dat_mrg <-

mutate(ex_dat_mrg,

deriv = calc_deriv(x = Time, y = Measurements, x_scale = 3600),

deriv_percap5 = calc_deriv(x = Time, y = Measurements,

percapita = TRUE, blank = 0,

window_width_n = 5, trans_y = "log",

x_scale = 3600))

sample_wells <- c("A1", "F1", "F10", "E11")

Analyzing data with summarize

Ultimately, analyzing growth curves requires summarizing the entire time series of data by some metric or
metrics. For instance, we may calculate metrics like:

• the maximum density
• the total area under the curve
• the lag time (approximated as the time from the start until maximum per-capita growth rate is

achieved)
• the maximum per-capita growth rate
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• the density when a diauxic shift occurs
• the time until diauxic shift occurs
• the peak per-capita growth rate after a diauxic shift
• the peak density before a decline from phage predation
• the time when bacteria drop below some density because of phage predation

gcplyr contains a number of functions that make it easier to carry out these calculations. Additionally,
gcplyr functions are flexible enough that you can use them in designing your own metric calculations. The
following sections highlight general-use gcplyr functions and provide examples to calculate the common
metrics above.

But first, we need to familiarize ourselves with one more dplyr function: summarize. Why? Because the
upcoming gcplyr analysis functions must be used within dplyr::summarize. If you’re already familiar

with dplyr’s summarize, feel free to skip the primer in the next section. If you’re not familiar yet,
don’t worry! Continue to the next section, where I provide a primer that will teach you all you need to know
on using summarize with gcplyr functions.

Another brief primer on dplyr: summarize

Here we’re going to focus on the summarize function from dplyr, which must be used with the group_by

function we covered in our first primer: A brief primer on dplyr. summarize carries out user-specified
calculations on each group in a grouped data.frame independently, producing a new data.frame where
each group is now just a single row.

For growth curves, this means we will:

1. group_by our data so that every well is a group
2. summarize each well with calculations like maximum density or area under the curve

Since summarize will drop columns that the data aren’t grouped by and that aren’t summarized, we will
typically want to list all of our design columns for group_by, along with the plate name and well. Again,
make sure you’re not grouping by Time, Absorbance, or anything else that varies within a well, since if you
do dplyr will group timepoints within a well separately.

In the next section, I provide a simple example of how the max function is used with group_by and summarize

to calculate lag time and the maximum per-capita growth rate. If you want to learn more, dplyr has extensive
documentation and examples of its own online. Feel free to explore them as desired, but this primer and the
coming example should be sufficient to use the remaining gcplyr functions.

Summarizing with simple base functions: maximum density and

growth rate

One of the most common steps is calculating global maxima (or minima) of data. For instance, with bacterial
growth, maximum density or growth rate are some of the most commonly measured traits. Here, we’ll show
how to find them using the built-in max function.

First, we need to group our data. As before, group_by simply requires the data.frame to be grouped, and
the names of the columns we want to group by.
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#First, drop unneeded columns (optional)

ex_dat_mrg <- dplyr::select(ex_dat_mrg,

Time, Well, Measurements, Bacteria_strain, Phage,

deriv, deriv_percap5)

#Then, carry out grouping

ex_dat_mrg <- group_by(ex_dat_mrg, Bacteria_strain, Phage, Well)

Then, we run summarize. Just like for mutate, we specify:

1. the name of the variable we want results saved to
2. the function that calculates the summarized results

In this case, the function should return just a single value for each group. For instance, in the code below
we’ve calculated the maximum of the Measurements column, and saved it in a column named max_dens

(note that we need to specify na.rm = TRUE to tell max to ignore all NA values). We’ve saved the output
from summarize to a new data.frame: ex_dat_mrg_sum, short for example_data_merged_summarized.

ex_dat_mrg_sum <- summarize(ex_dat_mrg,

max_dens = max(Measurements, na.rm = TRUE))

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

head(ex_dat_mrg_sum)

#> # A tibble: 6 x 4

#> # Groups: Bacteria_strain, Phage [6]

#> Bacteria_strain Phage Well max_dens

#> <chr> <chr> <fct> <dbl>

#> 1 Strain 1 No Phage A1 1.18

#> 2 Strain 1 Phage Added A7 0.499

#> 3 Strain 10 No Phage B4 1.21

#> 4 Strain 10 Phage Added B10 0.962

#> 5 Strain 11 No Phage B5 1.21

#> 6 Strain 11 Phage Added B11 1.03

If you want additional characteristics, you simply add them to the summarize. For instance, if we want the
time when the maximum density occurs, you just add that as a second argument. In this case, we use the
which.max function, which returns the index of the maximum value, to get the index of the Time when the
maximum occurs, and save it to a column titled max_time:

ex_dat_mrg_sum <- summarize(ex_dat_mrg,

max_dens = max(Measurements, na.rm = TRUE),

max_time = Time[which.max(Measurements)])

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

head(ex_dat_mrg_sum)

#> # A tibble: 6 x 5

#> # Groups: Bacteria_strain, Phage [6]

#> Bacteria_strain Phage Well max_dens max_time

#> <chr> <chr> <fct> <dbl> <dbl>

#> 1 Strain 1 No Phage A1 1.18 86400

#> 2 Strain 1 Phage Added A7 0.499 31500

#> 3 Strain 10 No Phage B4 1.21 85500

#> 4 Strain 10 Phage Added B10 0.962 30600
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#> 5 Strain 11 No Phage B5 1.21 70200

#> 6 Strain 11 Phage Added B11 1.03 86400

And we can quite easily plot such summarized values as a horizontal line or vertical line on top of our original
growth curves data with the geom_hline or geom_vline functions:

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = Measurements)) +

geom_line() +

facet_wrap(~Well) +

geom_hline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(yintercept = max_dens), lty = 2) +

geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(xintercept = max_time), lty = 2)
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Alternatively, we could plot these summary points as a point:

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = Measurements)) +

geom_line() +

facet_wrap(~Well) +

geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(x = max_time, y = max_dens),

size = 2, color = "red")
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We can also use the same process to find the maximum of the per-capita growth rates that we previously
calculated:

ex_dat_mrg_sum <- summarize(ex_dat_mrg,

max_percap = max(deriv_percap5, na.rm = TRUE),

max_percap_time = Time[which.max(deriv_percap5)])

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = deriv_percap5)) +

geom_line() +

facet_wrap(~Well) +

geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(x = max_percap_time, y = max_percap),

size = 2, color = "red")

#> Warning: Removed 4 rows containing missing values (`geom_line()`).
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Summarizing with simple gcplyr functions: area under the curve

One common metric of growth curves is the total area under the curve. gcplyr has an auc function to easily
calculate this area. Just like min and max, it needs to be used inside summarize on a data.frame that has
been grouped.

To use auc, simply specify the x and y data whose area-under-the-curve you want to calculate. Here, we
calculate the area-under-the-curve of the Measurements column and save it to a column titled auc.

ex_dat_mrg_sum <-

summarize(ex_dat_mrg,

auc = auc(x = Time, y = Measurements))

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

head(ex_dat_mrg_sum)

#> # A tibble: 6 x 4

#> # Groups: Bacteria_strain, Phage [6]

#> Bacteria_strain Phage Well auc

#> <chr> <chr> <fct> <dbl>

#> 1 Strain 1 No Phage A1 57291.

#> 2 Strain 1 Phage Added A7 3856.

#> 3 Strain 10 No Phage B4 73505.

#> 4 Strain 10 Phage Added B10 22156.

#> 5 Strain 11 No Phage B5 75289.

#> 6 Strain 11 Phage Added B11 27966.
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Finding local extrema: peak density, maximum growth rate, lag

time, and diauxic shifts

We’ve previously shown how you can use max and min to find the global maxima and minima in data.
However, what about local maxima or minima? That is, peaks and valleys that are obvious to the eye but
aren’t the highest or smallest values in the entire time series. In this section, we’ll show how you can use the
gcplyr functions first_peak and find_local_extrema to find points that are local maxima or minima in
your data.

Finding the first peak: peak density, maximum growth rate, and lag time

One particular special case we’re often interested in is the first peak in some set of data. For instance, when
bacteria are grown with phages, the density they reach before they start declining due to phage predation
is a measure of their susceptibility to the phage. Alternatively, in the previous section we found the global
maximum per-capita growth rate, but what if some of these maxima happened after near-extinction and
recovery and we wanted to only find the peak growth rate before near-extinction?

Peak density

Let’s start with the former example: finding the peak of density.

To identify the first peak, we can use the gcplyr function first_peak. first_peak simply requires the y

data you want to identify the peak in. In this case, that’s Measurements. We also need to specify whether
we want the function to return the index of the first peak, the x value of the peak, or the y value of the
peak. We’ll get the x and y values, saving them in columns first_peak_x and first_peak_y, respectively.
As usual, first_peak needs to be used inside of a summarize command on data that has already been
grouped.

ex_dat_mrg_sum <-

summarize(ex_dat_mrg,

first_peak_x = first_peak(x = Time, y = Measurements, return = "x"),

first_peak_y = first_peak(x = Time, y = Measurements, return = "y"))

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

head(ex_dat_mrg_sum)

#> # A tibble: 6 x 5

#> # Groups: Bacteria_strain, Phage [6]

#> Bacteria_strain Phage Well first_peak_x first_peak_y

#> <chr> <chr> <fct> <dbl> <dbl>

#> 1 Strain 1 No Phage A1 86400 1.18

#> 2 Strain 1 Phage Added A7 31500 0.499

#> 3 Strain 10 No Phage B4 71100 1.21

#> 4 Strain 10 Phage Added B10 30600 0.962

#> 5 Strain 11 No Phage B5 70200 1.21

#> 6 Strain 11 Phage Added B11 18900 0.439

Let’s plot these points on the wells to confirm they are what we expect:

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = Measurements)) +

geom_line() +
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facet_wrap(~Well, nrow = 8, ncol = 12) +

geom_point(data = ex_dat_mrg_sum,

aes(x = first_peak_x, y = first_peak_y),

color = "red", size = 1.5)
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That worked great! In some cases, you might find that first_peak is not sensitive enough, or is too
sensitive, for your data. In those cases, you can adjust the tuning parameters to make first_peak more
or less sensitive to small peaks and valleys. For first_peak, the tuning parameters are window_width,
window_width_n, and window_height:

• window_width determines the width of the window used to search for peaks and valleys, in units of x

• window_width_n determines the width of the window, in units of number of data points
• window_height determines the shortest peak or shallowest valley the window will cross, in units of y

Maximum growth rate and lag time

Now let’s look at the other example: using first_peak to find the first peak in per-capita growth rate.
Finding this point tells us both what the maximum growth rate is, and how long it took the cells to reach
that rate (a measure of lag time).

ex_dat_mrg_sum <-

summarize(ex_dat_mrg,

max_growth_rate = first_peak(x = Time, y = deriv_percap5,

return = "y"),

lag_time = first_peak(x = Time, y = deriv_percap5,
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return = "x"))

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

head(ex_dat_mrg_sum)

#> # A tibble: 6 x 5

#> # Groups: Bacteria_strain, Phage [6]

#> Bacteria_strain Phage Well max_growth_rate lag_time

#> <chr> <chr> <fct> <dbl> <dbl>

#> 1 Strain 1 No Phage A1 1.03 15300

#> 2 Strain 1 Phage Added A7 1.03 15300

#> 3 Strain 10 No Phage B4 1.59 12600

#> 4 Strain 10 Phage Added B10 1.59 12600

#> 5 Strain 11 No Phage B5 1.65 12600

#> 6 Strain 11 Phage Added B11 1.65 12600

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = deriv_percap5)) +

geom_line() +

facet_wrap(~Well, scales = "free") +

geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(x = lag_time, y = max_growth_rate),

color = "red", size = 2)

#> Warning: Removed 4 rows containing missing values (`geom_line()`).
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But what if you want to find an extrema that’s not the first peak? In the next section, we’ll learn how to
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use find_local_extrema to identify all kinds of local extrema.

Finding any kind of local extrema: diauxic shifts

We’ve seen how first_peak can be used to identify the first peak in data. But what about other kinds of
local extrema? The first minimum? The second peak?

In order to identify these kinds of extrema, we can use the more-general function find_local_extrema.
In fact, first_peak is really just a special case of find_local_extrema. Just like first_peak,
find_local_extrema only requires a vector of y data in which to find the local extrema, and can return
the index, x value, or y value of the extrema it finds.

Unlike first_peak, find_local_extrema returns a vector containing all of the local extrema found un-
der the given settings. Users can alter which kinds of local extrema are reported using the arguments
return_maxima, return_minima, and return_endpoints. However, find_local_extrema will always re-
turn a vector of all the extrema found, so users must use brackets to select which one they want summarize

to save.

Let’s dig into an example: identifying diauxic shifts. To refresh your memory on what we saw in the
derivatives article, here’s a plot of the derivative of some of the wells over time.

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = deriv)) +

geom_line() +

facet_wrap(~Well, scales = "free")

#> Warning: Removed 1 row containing missing values (`geom_line()`).
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In fact, if we look at some more of the wells with no phage added, we’ll see a similar pattern repeatedly.

sample_wells <- c("A1", "A4", "E2", "F1")

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = deriv)) +

geom_line() +

facet_wrap(~Well, scales = "free")

#> Warning: Removed 1 row containing missing values (`geom_line()`).
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This second, slower, burst of growth after the first wave of growth is common in bacterial growth curves and
is called diauxic growth.

How could we identify the time when the bacteria switch from their first burst of growth to their second?
We can find the second minima in the deriv values (where the first minima is going to be at the start of
the growth curve). To do so, we specify to find_local_extrema that we want return = "x" and we don’t
want maxima returned:

ex_dat_mrg_sum <-

summarize(ex_dat_mrg,

diauxie_time = find_local_extrema(x = Time, y = deriv, return = "x",

return_maxima = FALSE, return_minima = TRUE,

window_width_n = 39)[2])

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

#Plot data with vertical line at detected diauxie
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ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = deriv)) +

geom_line() +

facet_wrap(~Well, scales = "free") +

geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(xintercept = diauxie_time), lty = 2)

#> Warning: Removed 1 row containing missing values (`geom_line()`).

E2 F1

A1 A4

0 25000 50000 75000 0 25000 50000 75000

0 25000 50000 75000 0 25000 50000 75000

0.0

0.1

0.2

0.3

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

Time

de
riv

Now that we’ve found the point where the bacteria switch, let’s identify the density where the diauxic shift
occurs. First, we’ll save the index where the diauxic shift occurs to a column titled diaxuie_idx. Then, we
can get the Measurements value at that index. (Note that it wouldn’t work to just specify return = "y",
because the y values in this case are the deriv values).

ex_dat_mrg_sum <-

summarize(

ex_dat_mrg,

diauxie_time = find_local_extrema(x = Time, y = deriv, return = "x",

return_maxima = FALSE, return_minima = TRUE,

window_width_n = 39)[2],

diauxie_idx = find_local_extrema(x = Time, y = deriv, return = "index",

return_maxima = FALSE, return_minima = TRUE,

window_width_n = 39)[2],

diauxie_dens = Measurements[diauxie_idx])

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.
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#Plot data with a point at the moment of diauxic shift

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = Measurements)) +

geom_line() +

facet_wrap(~Well, scales = "free") +

geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(x = diauxie_time, y = diauxie_dens),

size = 2, color = "red")
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Something that was hard to see on the density plot has now been easily quantified and can be visualized
exactly where the shift occurs.

Combining subsets and local extrema: diauxic growth rate

In the previous section we identified when the bacteria shifted into their second burst of growth. Can
we find out what the peak per-capita growth rate was during that second burst? Yes, we just have to
put together some of the things we’ve learned already. In particular, we’re going to combine our use of
find_local_extrema, max, and subsets to find the max(deriv_percap_hr) during the times after the diauxic
shift:

ex_dat_mrg_sum <-

summarize(

ex_dat_mrg,

diauxie_time = find_local_extrema(x = Time, y = deriv, return = "x",

return_maxima = FALSE, return_minima = TRUE,
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window_width_n = 39)[2],

diauxie_percap = max(deriv_percap5[Time >= diauxie_time], na.rm = TRUE),

diauxie_percap_time =

Time[Time >= diauxie_time][

which.max(deriv_percap5[Time >= diauxie_time])]

)

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

#Plot data with a point at the moment of peak diauxic growth rate

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = deriv_percap5)) +

geom_line() +

facet_wrap(~Well, scales = "free") +

geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(x = diauxie_percap_time, y = diauxie_percap),

size = 2, color = "red")

#> Warning: Removed 4 rows containing missing values (`geom_line()`).
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Finding threshold-crossings: extinction time and time to density

We’ve previously shown how you can find local and global extrema in data, but what if you just want to
find when the data passes some threshold value? In this section, we’ll show how you can use the gcplyr
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functions first_below and find_threshold_crosses to find the points when your data crosses user-defined
thresholds.

Finding the first point below a threshold: extinction time

One common case of threshold-crossing we might be interested in is the first point that our data falls below
some threshold density. For instance, when bacteria are grown with phages, the amount of time it takes
before the bacterial population falls below some threshold can be a proxy metric for how sensitive the bacteria
are to that phage.

Let’s take a look at the absorbance values in some example wells with both bacteria and phages:

sample_wells <- c("A7", "B10", "F10", "H8")

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = Measurements)) +

geom_line() +

facet_wrap(~Well)
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Ok great. Now let’s suppose that I think that an absorbance of 0.15 is a good threshold for extinction in
my experiment. How could we use first_below to calculate the time when that first occurs across all our
different wells? Well, primarily, first_below simply needs our x and y values, the threshold we want to
use, as well as whether we want it to return the index of the first point below the threshold, or the x value
of that point (since we care about the time it happened here, we’ll do the latter). Additionally, we’ll specify
that we don’t care if the startpoint is below the threshold: we only care when the data goes from above to
below it.
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ex_dat_mrg_sum <-

summarize(

ex_dat_mrg,

extin_time = first_below(x = Time, y = Measurements, threshold = 0.15,

return = "x", return_endpoints = FALSE))

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

head(ex_dat_mrg_sum)

#> # A tibble: 6 x 4

#> # Groups: Bacteria_strain, Phage [6]

#> Bacteria_strain Phage Well extin_time

#> <chr> <chr> <fct> <dbl>

#> 1 Strain 1 No Phage A1 NA

#> 2 Strain 1 Phage Added A7 33063.

#> 3 Strain 10 No Phage B4 NA

#> 4 Strain 10 Phage Added B10 34946.

#> 5 Strain 11 No Phage B5 NA

#> 6 Strain 11 Phage Added B11 20319.

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = Measurements)) +

geom_line() +

facet_wrap(~Well) +

geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(xintercept = extin_time), lty = 2)
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All the phage-added wells have a time when the bacteria drop below that threshold, and the plot clearly
shows that it’s right where we’d expect it.

Finding any kind of threshold-crossing: time to density

We’ve seen how first_below can be used to identify the first point some data crosses below a threshold.
But what about other kinds of threshold-crossing events? The first point it passes above a threshold? The
first point it’s ever below a threshold, including at the start?

In order to identify these kinds of extrema, we can use the more-general function find_threshold_crosses.
In fact, first_below is really just a special case of find_threshold_crosses. Just like first_below,
find_threshold_crosses only requires a threshold and a vector of y data in which to find the threshold
crosses, and can return the index or x value of the crossing events it finds.

However, unlike first_below, find_threshold_crosses returns a vector containing all of the thresh-
old crossings found under the given settings. Users can alter which kinds of threshold crossings are
reported using the arguments return_rising, return_falling, and return_endpoints. However,
find_threshold_crosses will always return a vector of all the extrema found, so users must use brackets
to select which one they want summarize to save.

Let’s dig into an example: identifying the first time the bacteria reach some density, including if they start
at that density

sample_wells <- c("A1", "F1", "F10", "E11")

ex_dat_mrg_sum <-

summarize(

ex_dat_mrg,

time_to_01 = find_threshold_crosses(x = Time, y = Measurements,

threshold = 0.1, return = "x",

return_endpoints = TRUE,

return_falling = FALSE)[1],

time_to_05 = find_threshold_crosses(x = Time, y = Measurements,

threshold = 0.5, return = "x",

return_endpoints = TRUE,

return_falling = FALSE)[1])

#> `summarise()` has grouped output by 'Bacteria_strain', 'Phage'. You can override using the

#> `.groups` argument.

head(ex_dat_mrg_sum)

#> # A tibble: 6 x 5

#> # Groups: Bacteria_strain, Phage [6]

#> Bacteria_strain Phage Well time_to_01 time_to_05

#> <chr> <chr> <fct> <dbl> <dbl>

#> 1 Strain 1 No Phage A1 21913. 31194.

#> 2 Strain 1 Phage Added A7 21913. NA

#> 3 Strain 10 No Phage B4 15300 20624.

#> 4 Strain 10 Phage Added B10 15300 20624.

#> 5 Strain 11 No Phage B5 14543. 19490

#> 6 Strain 11 Phage Added B11 14543. 59955

ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),

aes(x = Time, y = Measurements)) +

geom_line() +

facet_wrap(~Well) +

geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(xintercept = time_to_01), lty = 2) +
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geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),

aes(xintercept = time_to_05), lty = 2)

#> Warning: Removed 1 rows containing missing values (`geom_vline()`).
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As we can see, find_threshold_crosses has returned the times when the bacteria reached those densities.
We can see that some bacteria (e.g. those in Well F10) never reached 0.5, so they have an NA value for
time_to_05. By comparing the times it took each strain to reach an absorbance of 0.1, we could learn
something about how soon the bacteria started growing and how quickly they grew.

What’s next?

Now that you’ve analyzed your data, you can read about approaches to deal with noise in your growth curve
data, or you can read some concluding notes on best practices for running statistics, merging growth curve
analyses with other data, and additional resources for analyzing growth curves.

1. Introduction: vignette("gcplyr")

2. Importing and transforming data: vignette("import_transform")

3. Incorporating design information: vignette("incorporate_designs")

4. Pre-processing and plotting your data: vignette("preprocess_plot")

5. Processing your data: vignette("process")

6. Analyzing your data: vignette("analyze")

7. Dealing with noise: vignette("noise")

8. Statistics, merging other data, and other resources: vignette("conclusion")

19


	Where are we so far?
	Analyzing data with summarize
	Another brief primer on dplyr: summarize
	Summarizing with simple base functions: maximum density and growth rate
	Summarizing with simple gcplyr functions: area under the curve
	Finding local extrema: peak density, maximum growth rate, lag time, and diauxic shifts
	Finding the first peak: peak density, maximum growth rate, and lag time
	Peak density
	Maximum growth rate and lag time

	Finding any kind of local extrema: diauxic shifts
	Combining subsets and local extrema: diauxic growth rate

	Finding threshold-crossings: extinction time and time to density
	Finding the first point below a threshold: extinction time
	Finding any kind of threshold-crossing: time to density

	What's next?

