Generalized nonlinear models in R: an overview ofghen package

Heather Turner and David Firth
University of Warwick, UK

Forgnmversion 0.8-0, 2006-02-01

Contents

1 Introduction

l2__Generalized Linear Models

2.1 Preamble e 2

3_Nonlinear Termd

3.1 Multiplicative Interaction Terms usingult

2__Other Nonlinear Terms USIINDNNIN | . .« . & o 0 v o e e e e e e e e e e e e e e

BZL MURHOMOG] - « -« o« v v oo e e e e e e e e e e 7

[Controlling the Fitting Procedure]

4.1 Basic control Earametgzrs .. 9
A2 USGS@IT . - - - .« o o oo e e 10
B3 USIGCONSTAM« o oo oo e e e e e e e e

BZ USIGENIINGE« . o o oo oo e e e e e e e 13

6.1.3 Homogeneous effeLts 19

6. Diagonal Reference ModRIs e

. niform Difference odelS e e e 29

[6.4Generalized Additive Main Effects and Multiplicafive Interaction (GAMMI) Moflels

. iplotModel$s e 31
6.6 Stereotype Modlel 34

IA_User-level Functions

B Key Changes since Last Releake

*This work was supported by the Economic and Social Research Council (UK) through a Professorial Fellowship.

1 Introduction

The gnmpackage provides facilities for fittingeneralized nonlinear modelse., regression models in which the link-
transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters.
Linear and generalized linear models, as handled binhendgim functionsin R, are included in the class of generalized
nonlinear models, as the special case in which there is no nonlinear term.

This document gives an extended overview of gimen package, with some examples of applications. The primary
package documentation in the form of standard help pages, as viewed in R by, for exzgnpheor help(gnm) , is
supplemented rather than replaced by the present document.

We begin below with a preliminary note (Sectioh 2) on ways in whichghm package extends R's facilities for
specifying, fitting and working with generalizéshear models. Then (Sectidn 3 onwards) the facilities for nonlinear
terms are introduced, explained and exemplified.

Thegnmpackage is installed in the standard way for CRAN packages, for example byinsialjpackages
Once installed, the package is loaded into an R session by

> library(gnm)

2 Generalized Linear Models
2.1 Preamble

Central to the facilities provided by tlggnmpackage is the model-fitting functigmm, which interprets a model formula
and returns a model object. The user interfacgmh is patterned afteglm (which is included in R’s standarstats
package), and indeeghm can be viewed as a replacement §m for specifying and fitting generalized linear models.
In general there is no reason to prefgmto glm for fitting generalized linear models, except perhaps when the model
involves a large number of incidental parameters which are treatafgerbig eliminatemechanism (see Sectipn §4.4).

While the main purpose of thgnmpackage is to extend the class of models to include nonlinear terms, some of the
new functions and methods can be used also with the farliaandglm model-fitting functions. These are: three new
data-manipulation functioridiag , SymmandTopo, for setting up structured interactions between factors; afaavily
function,wedderburn , for modelling a response variablein 1] with the variance functio () = p?(1 — u)? asin
Wedderburp[(1974); and a new generic functiermPredictors which extracts the contribution of each term to the
predictor from a fitted model object. These functions are briefly introduced here, before we move on to nonlinear models
in Sectior{B.

2.2 Diag and Symm

When dealing witthomologoudactors, that is, categorical variables whose levels are the same, statistical models often
involve structured interaction terms which exploit the inherent symmetry. The fundiags and Symmfacilitate the
specification of such structured interactions.

As a simple example of their use, consider the log-linear modejsadi-independencquasi-symmetrgndsymmetry
for a square contingency table. Agréesti (2002), Section 10.4, gives data on migration between regions of the USA between
1980 and 1985:

count <- ¢(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225,
17819, 270, 63, 176, 286, 10192)

region <- c("NE", "MW", "S", "W")

row <- gl(4, 4, labels = region)

col <- gl(4, 1, length = 16, labels = region)

V VV + V

The comparison of models reported by Agresti can be achieved as follows:

> independence <- glm(count ~ row + col, family = poisson)
> quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson)
> symmetry <- glm(count ~ Symm(row, col), family = poisson)

Loading required package: gtools

> quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson)
> comparisonl <- anova(independence, quasi.indep, quasi.symm)
> print(comparisonl, digits = 7)

Analysis of Deviance Table

Model 1: count ~ row + col

Model 2: count ~ row + col + Diag(row, col)

Model 3: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 9 125923.29
2 5 69.51 4 125853.78
3 3 299 2 66.52

> comparison2 <- anova(symmetry, quasi.symm)
> print(comparison2)

Analysis of Deviance Table

Model 1: count ~ Symm(row, col)

Model 2: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 6 243.550

2 3 2,986 3 240.564

TheDiag andSymnfunctions also generalize the notions of diagonal and symmetric interaction to cover situations
involving more than two homologous factors.

2.3 Topo

More general structured interactions than those provideliby andSymncan be specified using the functidopo.
(The name of this function is short for ‘topological interaction’, which is the nomenclature often used in sociology for
factor interactions with structure derived from subject-matter theory.)

The Topo function operates on any numbdér, (say) of input factors, and requires an argument naspetwhich
must be an array of dimensidy, x ... x L, whereL; is the number of levels for théh factor. Thespecargument
specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new
factor representing the specified interaction.

As an example, consider fitting the ‘log-multiplicative layer effects’ models described in Xie|(1992). The data are 7
by 7 versions of social mobility tables fram Erikson et al. (1982):

> data(erikson)

> erikson <- as.data.frame(erikson)

> Ivl <- levels(erikson$origin)

> levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvi[1:2],
+ collapse = " + "), 2), WI[3], rep(paste(lvi[4:5], collapse = " + "),
+ 2), vI[6:9])

>

erikson <- xtabs(Freq ~ origin + destination + country, data = erikson)

From sociological theory — for which sge Erikson et/al. (1982) or Xie (11992) — the log-linear interaction between origin
and destination is assumed to have a particular structure:

levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6,

OAPRORAW®
QRS EOEGE NN
WO oOR 0o

>
+
+
+
+
+
+

OUAORAW

OwWwwo oA

6
5
2
5
5
1

N ARG N ey

), 7, 7, byrow = TRUE)
The models of table 3 0f Xié¢ (1992) can now be fitted as follows:

> ## Null association between origin and destination
> nullModel <- gnm(Freq ~ country:origin + country:destination,

+ family = poisson, data = erikson)

Running main iterations.

Done

> ## Interaction specified by levelMatrix, common to all countries

> commonTopo <- update(nullModel, ~ . +

+ Topo(origin, destination, spec = levelMatrix))
Running main iterations.

Done

> ## Interaction specified by levelMatrix, different multiplier for each country
> multTopo <- update(nullModel, ~ . + Mult(country, Topo(origin, destination,
+ spec = levelMatrix)))

Running start-up iterations..

Running main iterations.......

Done

> ## Interaction specified by levelMatrix, different effects for each country
> separateTopo <- update(nullModel, ~ . +

+ country:Topo(origin, destination, spec = levelMatrix))
Running main iterations.

Done

>

> anova(nullModel, commonTopo, multTopo, separateTopo)

Analysis of Deviance Table

Model 1. Freq ~ country:origin + country:destination

Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin +
country:destination

Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) +
country:origin + country:destination

Model 4: Freq ~ country:origin + country:destination + country:Topo(origin,
destination, spec = levelMatrix)

Resid. Df Resid. Dev Df Deviance

1 108 4860.0

2 103 2443 5 46157
3 101 2164 2 28.0
4 93 2085 8 7.9

Here we have usednmto fit all of these log-link models; the first, second and fourth are log-linear and could equally
well have been fitted usingim .

2.4 Thewedderburn family

In Wedderburh| (1974) it was suggested to represent the mean of a continuous response vafialeising a quasi-
likelihood model with logit link and the variance functigrf (1 — x)2. This is not one of the variance functions made
available as standard in Rasi family. Thewedderburn family provides it. As an example, Wedderburn’s analysis
of data on leaf blotch on barley can be reproduced as follows:

> data(barley)

> |ogitModel <- glm(y ~ site + variety, family = wedderburn, data = barley)
> fit <- fitted(logitModel)

> print(sum((barley$y - fit) 2/(fit * (1 - fit))*2))

[1] 71.17401

This agrees with the chi-squared value reported on page 331 of McCullagh and Neldér (1989), which differs slightly from
Wedderburn’s reported value.

2.5 termPredictors

The generic functiotermPredictors
generalized linear or generalized nonlinear model.
As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows:

> print(temp <- termPredictors(quasi.symm))

(Intercept) row col Symm(row, col)
1 -0.2641848 0.0000000 0.000000 9.62354843
2 -0.2641848 0.0000000 4.918310 -0.09198126
3 -0.2641848 0.0000000 1.539852 4.63901793
4 -0.2641848 0.0000000 5.082641 0.00000000
5 -0.2641848 4.8693457 0.000000 -0.09198126
6 -0.2641848 4.8693457 4.918310 0.00000000
7 -0.2641848 4.8693457 1.539852 0.07295506
8 -0.2641848 4.8693457 5.082641 -3.94766844
9 -0.2641848 0.7465235 0.000000 4.63901793
10 -0.2641848 0.7465235 4.918310 0.07295506
11 -0.2641848 0.7465235 1.539852 7.76583039
12 -0.2641848 0.7465235 5.082641 0.00000000
13 -0.2641848 4.4109017 0.000000 0.00000000
14 -0.2641848 4.4109017 4.918310 -3.94766844
15 -0.2641848 4.4109017 1.539852 0.00000000
16 -0.2641848 4.4109017 5.082641 0.00000000

> rowSums(temp) - quasi.symm$linear.predictors

extracts a term-by-term decomposition of the predictor function in a linear,

1 2 3 4 5 6 7 8 91011 12 13 14 15 16
0O 0o 0o OO OO0 0O OOOOTO0OTUO0OTUO0OTO

Such a decomposition might be useful, for example, in assessing the relative contributions of different terms or groups
of terms.
3 Nonlinear Terms

Thegnmpackage provides a flexible framework for the specification and estimation of generalized models with nonlinear
terms. Multiplicative interaction terms can be estimated using the in-built capability ghthdunction and are specified

in the model formula using the symbolic functibfult . Other nonlinear terms can be estimated using plug-in functions
for gnmand are specified usirigonlin

There are two plug-in functions currently made available inghmpackageMultHomog for fitting multiplicative
interaction terms with homogeneous effects Bmdf for fitting diagonal reference terms. Usersgpimcan define their
own custom plug-in functions to specify other types of nonlinear term.

3.1 Multiplicative Interaction Terms using Mult

Multiplicative interaction terms can be included in the formula argumeghta by using the symbolic wrapper function

Mult . Constituent multiplie@in the interaction are passed as unspecified argumeniiilio and are expressed by
symbolic linear formulae. An intercept is automatically added to each constituent multiplier unless otherwise specified.
For example, to fit the row-column association model

log Ure = Qi + BC + ’V’r‘(sm
also known as the Goodman RC model (Goodman, [1979jotheulaargument ognmwould be
mu~R + C + Mult(-1 + R, -1 + C)

whereRandC are row and column factors respectively.
Mult has one specified argumentiltiplicity, which is1 by default. This argument determines the number of times
that the specified multiplicative structure appears in the model. For example,

mu ~ R + C + Mult(-1 + R, -1 + C, multiplicity = 2)
would give the RC(2) mode]l (Goodman, 1979)

log Ure = Qi + Be + ’Yr(;c + 0, ¢c.

In some contexts, it may be desirable to constrain one or more of the constituent multipliers so that it is always
nonnegative. This may be achieved by specifying the multiplier as an exponential, as in the following ‘uniform difference’
model (Xie] 1992; Erikson and Goldthoipe, 1992)

1Og Hret = Qg + ﬂct +e 67'c~

Exponentiated constituent multipliers are specifiedyimm models using the symbolic functidexp; for example, the
uniform difference model above would be specified by the formula

mu ~ RT + C:T + Mult(Exp(-1 + T), R:C)

3.2 Other Nonlinear Terms usingNonlin

Nonlinear terms which can not be specified usiigt may be specified usingonlin . This symbolic function indicates
a term which requires a plug-in function to estimate the associated paranitats takes a single argument, which
is a call to the relevant plug-in function.

For example, in the formula

mu ~ X + A + B + Nonlin(PluginFunction(A, B, argl = x, arg2 = C))

the call toNonlin is used to specify a term that requires the plug-in funcitrginFunction
The two plug-in functions already included in thapmpackage are described below, followed by a guide to writing
custom plug-in functions.

1 A note on terminology: the rather cumbersome phrase ‘constituent multiplier’, or sometimes the abbreviation ‘multiplier’, will be used throughout
this document in preference to the more elegant and standard mathematical term ‘factor’. This will avoid possible confusion with the completely
different meaning of the word ‘factor’ — that is, a categorical variable — in R.

3.2.1 MultHomog

TheMultHomog function provides the tools required to fit multiplicative interaction terms with one component in which
the constituent multipliers are the effects of two or more factors and the effects of these factors are constrained to be equal
when the factor levels are equal. The argumentgloitHomog are the factors in the interaction, which are assumed to
be objects of clastactor.
As an example, consider the following association model with homogeneous row-column effects:

10g fire = 0 + Be 4 0-1(r = ¢) + Yo Ye-
To fit this model, with response variable nanmad the formula argument tgnmwould be
mu ~ R + C + Diag(R, C) + Nonlin(MultHomog(R, C))
If the factors passed fdultHomog do not have exactly the same levels, a common set of levels is obtained by taking
the union of the levels of each factor, sorted into increasing order.
3.2.2 Dref

Dref is a plug-in function to fit diagonal reference terms involving two or more factors with a common set of levels. A
diagonal reference term comprises an additive component for each factor. The component fgt, fagimen by

wf’yl

for an observation with levélof factor f, wherewy is the weight for factorf and~; is the “diagonal effect” for level.
The weights are constrained to be nonnegative and to sum to one so that a “diagonal effegt'isse value of the
diagonal reference term for data points with lelvatross the factor®ref constrains the weights by defining them as

and estimating thé;.
Factors in the interaction are passed to unspecified argumebtsfof For example, the following diagonal reference
model for a contingency table classified by the row fa&and the column factdt,

et ed2
Yr +

Hre Yes

T 0+ e el + %
would be specified by the formula
mu ~ -1 + Nonlin(Dref(R, C))

Dref has one specified argumdatmula, which is a symbolic description of the dependencésafn any covariates.
For example, the formula

mu ~ -1 + x + Nonlin(Dref(R, C, formula = ~ 1 + X))
specifies the following diagonal reference model

eS1tfbiz eb2tp2z
fre = Pxz+ eS1thir 4 e§2+521’,yr + ef1the e§2+ﬁ2$’yc,

The default value oformulais ~1, so that constant weights are estimated. The coefficients returngdrbgre those
that are directly estimated, i.e. the or the{; and gy, rather than the implied weights; .

3.2.3 Custom Plug-in Functions

Custom plug-in functions may be written to enablen to fit nonlinear terms that can not be specified\bylt or the
plug-in functions provided by thgnmpackage.

There are no constraints on the arguments that a plug-in function may take. However it is importaluriirat ,
when given a call to the plug-in function, can determine the variables that are in the term, so that these variables can be
added to the model frame. By default, expressions passed to unspecified arguments of the plug-in function are assumed
to represent the variables in the term.

If the default action oNonlin will not capture the required variables, a companion function must exist (in the envi-
ronment of the plug-in function), which takes the same arguments as the plug-in function and returns deparsed expressions
representing the necessary variables. The name of this function must be the name of the plug-in function suffixed with
"Variables". For example, the (hon-visible) companion functiorfoef is defined as

DrefVariables <- function(..., formula = ~ 1) {
as.character(c(match.call(expand.dots = FALSE)[[2]], formula[[2]]))
}

returning the expressions passed to unspecified arguments and the right-hand side of the formula frasseld, tas
character strings. For instance

> gnm:::DrefVariables(A, B, formula = ~1 + C)
[1] "A" "B" "1 + C"

from whichNonlin will know thatA, B andC need to be added to the model frame.

The call to the plug-in function is evaluated in the environment of the model frame and in the enclosing environment
of the parent frame of the call fgnm. This should ensure that variables passed directly to the plug-in function can be
found. However, to evaluate variables within the plug-in function, it may be necessary to access the model frame, which
can be obtained using the functigatModelFrame

For example, the factors in@ref term are passed directly to unspecified arguments, so the dummy variables for
these factors can be found as follows

get design matrices for Dref factors
designList <- lapply(list(...), class.ind)

But any covariates on which the weights depend are only represented symbolicalljamtéaargument, so the design
matrix for these variables must be found in the context of the model frame

get design matrix for local structure
gnmData <- getModelFrame()
local <- model.matrix(formula, data = gnmbData)

The plug-in function should return a list with at least the following three components:
labels a character vector of labels for the parameters (to whiah will prefix the call to the plug-in function).

predictor a function which takes a vector of parameter estimates and returns either a vector of fitted values or a matrix
whose columns are additive components of the fitted values.

localDesignFunction a function which takes the specified argumestusf (a vector of parameter estimates) and
predictor (the result of the predictor function), and returns the local design matrix. If the plug-in function does not
return astart component (see below), thecalDesignFunction must also take the argumentd, which
specifies the index of a column to be returned instead of the full matrix.

and optionally one further component

start a vector of default starting values for the parametétg may be used to indicate parameters which may be
treated as linear for the purpose of finding starting values, given thé&Aoralues. See Sectign 4.2 for details of
how these starting values will be used if provided and the starting procedure for nonlinear parameters that will be
used otherwise.

As an example of atart componentPref returns
c(runif(nLocal) - 0.5, rep(0.5, nGlobal))

wherenLocal is the number of weight parameters (parameters which are “local” to a specific factorizéotohl is
the number of diagonal effects (“global” level effects across factors). The randomness in the starting values for the weight
parameters ensures that arbitrariness of the final parameterization is emphasised.

TheMultHomog function provides a simple example opeedictor =~ component:

predictor <- function(coef) {
do.call("pprod", lapply(designList, "% * 0", coef))
}

which computes the product of the vectors found by multiplying the design matrix for each factor in the interaction
(held indesignList) by the homogeneous coefficients @oef). This function takes advantage lekical scoping
designList is an object defined iMultHomog , which predictor is able to find becausgredictor is also
defined inMultHomog and hencéultHomog is the enclosing environment pfedictor

ThelocalDesignFunction created byMultHomog is slightly more complicated:
localDesignFunction <- function(coef, ind = NULL, ...) {
X <0
vList <- lapply(designList, "% * 00", coef)

for (i in seq(designList)) {
if (is.null(ind))
X <- X + designList[[x]] * drop(do.call("pprod”, vList[-i]))
else
X <- X + designList[[]][, ind] *
drop(do.call("pprod”, vList[-i]))

}
X
}
Since the result of the predictor function is not needed here, the local design function does not have the specified argument
predictor, but allows such an argument to be passed to the function by the use of the special arguméntince
MultHomog does not return atart component, the local design function can optionally return a single column of

the local design matrix as specified ioygl. This functionality is required by the default starting procedure for nonlinear
parameters.

4 Controlling the Fitting Procedure

Thegnmfunction has a number of arguments which affect the way a model will be fitted. Basic control parameters can
be set using the argumerntderance iterStartanditerMax. Starting values for the parameter estimates can be stalty

and parameters can be constrained to zero by specifyngstrainargument. Finally parameters of a stratification factor

can be handled more efficiently by specifying the factor irekminateargument. These options are described in more
detall below.

4.1 Basic control parameters

The argument@terStart and iterMax control respectively the number of starting iterations (where applicable) and the
number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either

verboseor traceto TRUE If verboses TRUEandtraceis FALSE, which is the default setting, progress is indicated by
printing the character “.” at the beginning of each iteratiortrdteis TRUE the deviance is printed at the beginning of
each iteration (over-riding the printing of “.” if necessary). Whenesgbosdas TRUE additional messages indicate each
stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart.

The fitting algorithm will terminate before the number of main iterations has redtdréthx if the convergence cri-
teria have been met, with tolerance specifiedddgrance Convergence is judged by comparing the squared components
of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all components
of the score vector, the ratio is less thaterance 2, or the corresponding diagonal element of the Fisher information
matrix is less than 1e-20, the algorithm is deemed to have converged.

4.2 Usingstart

In some contexts, the default starting values may not be appropriate and the algorithm will fail to converge, or perhaps
only converge after a large number of iterations. Alternative starting values may be passemrbiospecifying sstart
argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated
parameters, see Sectjon|4.4), however missing starting valde} gre allowed.

If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful
when adding terms to a model, since the estimates from the original model can be used as starting values, as in this
example:

modell <- gnm(mu ~ R + C + Mult(-1 + R, -1 + C))
model2 <- gnm(mu ~ R + C + Mult(-1 + R, -1 + C, multiplicity = 2),
start = c(coef(modell), rep(NA, 10))

Thegnmcall can be made witmethod = "coefNames" to identify the parameters of a model prior to estimation,
to assist with the specification of arguments suchtag.
The starting procedure used ggmis as follows

1. Generate starting valués for all parameters = 1,...,p from the Uniform(-0.1, 0.1) distribution. Shift these
values away from zero as follows

0, — 0, —0.1 |f91<1
‘16, +0.1 otherwise

2. Replace generic starting values with default starting values set by plug-in functions, where applicable.

3. Replace default starting values with any starting values specified lsyati@argument ofgnm.

4. Compute thglm estimate of any parameters that may be treated as linear (i.e. those in linear terms or those with
a default starting value dflAset by a plug-in function), offsetting the contribution to the predictor of any terms
specified bystart or a plug-in function.

5. Run starting iterations: update one at a time any remaining nonlinear parameters not spesifietbby plug-in
function, updatingll parameters that may be treated as linear after each round of updates.

Note that no starting iterations (step 5) will be run if all parameters are linear, or if all nonlinear parameters are specified
by start or a plug-in function.

4.3 Usingconstrain

By default,gnmonly imposes identifiability constraints according to the general conventions udRtbllyandle linear
aliasing. Therefore models that have any nonlinear terms will be usually be over-parameterizgoiranmil return a
random parameterization for unidentified coefficients.

To illustrate this point, consider the following applicationgsfm, discussed later in Sectipn B.1:

10

data(occupationalStatus)

set.seed(1)

RChomogl <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
Nonlin(MultHomog(origin, destination)), family = poisson,
data = occupationalStatus, verbose = FALSE)

+ + V V V

Running the analysis again from a different seed

> set.seed(2)
> RChomog2 <- eval(RChomogl$call)

gives a different representation of the same model:

> compareCoef <- chind(coef(RChomogl), coef(RChomog2))
> colnames(compareCoef) <- c¢("RChomogl"”, "RChomog2")
> round(compareCoef, 4)

RChomogl RChomog?2

(Intercept) 0.0103 0.1063
origin2 0.5268 0.5200
origin3 1.6553 1.6296
origin4 1.9964 1.9523
origins 0.7777 0.7331
originé 2.8590 2.7983
origin7 15482 1.4744
origin8 1.2956 1.2142
destination2 0.9459 0.9390
destination3 1.9997 1.9740
destination4 2.2848 2.2407
destination5 1.6771 1.6325
destination6 3.1625 3.1018
destination7 2.2998 2.2260
destination8 1.8710 1.7895
Diag(origin, destination)1 1.5267 1.5267
Diag(origin, destination)2 0.4560 0.4560
Diag(origin, destination)3 -0.0160 -0.0160
Diag(origin, destination)4 0.3892 0.3892
Diag(origin, destination)5 0.7385 0.7385
Diag(origin, destination)6 0.1347 0.1347
Diag(origin, destination)7 0.4576 0.4576
Diag(origin, destination)8 0.3885 0.3885
MultHomog(origin, destination).1 -1.5411 -1.5097
MultHomog(origin, destination).2 -1.3228 -1.2914
MultHomog(origin, destination).3 -0.7247 -0.6932
MultHomog(origin, destination).4 -0.1408 -0.1093
MultHomog(origin, destination).5 -0.1236 -0.0921
MultHomog(origin, destination).6 0.3881 0.4196
MultHomog(origin, destination).7 0.8043 0.8358
MultHomog(origin, destination).8 1.0479 1.0793

Even though the linear terms are constrained, the parameter estimates for the main effégits of anddestination

still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained.
Standard errors are only meaningful for identified parameters and hence the ouspurofry.gnm will show

clearly which coefficients are estimable:

11

> summary(RChomog2)

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +
Nonlin(MultHomog(origin, destination)), family = poisson,

data = occupationalStatus, verbose = FALSE)

Deviance Residuals:

Min 1Q Median 30 Max
-1.659e+00 -4.297e-01 -7.379e-08 3.862e-01 1.721e+00
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.10631 NA NA NA
origin2 0.51997 NA NA NA
origin3 1.62956 NA NA NA
origin4 1.95230 NA NA NA
origins 0.73307 NA NA NA
originé 2.79828 NA NA NA
origin7 1.47441 NA NA NA
origin8 1.21416 NA NA NA
destination2 0.93899 NA NA NA
destination3 1.97398 NA NA NA
destination4 2.24074 NA NA NA
destination5 1.63249 NA NA NA
destination6 3.10176 NA NA NA
destination7 2.22600 NA NA NA
destination8 1.78954 NA NA NA
Diag(origin, destination)l 1.52667 0.44658 3.419 0.00063 okk
Diag(origin, destination)2 0.45601 0.34595 1.318 0.18746
Diag(origin, destination)3 -0.01598 0.18098 -0.088 0.92964
Diag(origin, destination)4 0.38918 0.12748 3.053 0.00227 ok
Diag(origin, destination)5 0.73852 0.23329 3.166 0.00155 ok
Diag(origin, destination)6 0.13474 0.07934 1.698 0.08945 .
Diag(origin, destination)7 0.45764 0.15103 3.030 0.00244 *k
Diag(origin, destination)8 0.38846 0.22172 1.752 0.07977 .
MultHomog(origin, destination).1 -1.50965 NA NA NA
MultHomog(origin, destination).2 -1.29136 NA NA NA
MultHomog(origin, destination).3 -0.69319 NA NA NA
MultHomog(origin, destination).4 -0.10931 NA NA NA
MultHomog(origin, destination).5 -0.09214 NA NA NA
MultHomog(origin, destination).6 0.41961 NA NA NA
MultHomog(origin, destination).7 0.83576 NA NA NA
MultHomog(origin, destination).8 1.07933 NA NA NA
Signif. codes: 0 ' # ' 0001 "' *='001L"' =+ 005" 01"'"1

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 32.561 on 34 degrees of freedom

12

AIC: 4149

Number of iterations: 5

Additional constraints may be specified through ¢oastrainargument ofgnm. This argument indicates parameters
that are to be constrained to zero in the fitting process. Parameters can be indicated by a logical vector, a numeric vector
of indices, a character vector of names ogahstrain = "pick" they can be selected througf adialog.

In the case above, constraining one level of the homogeneous multiplicative factor is sufficient to make the parameters
of the nonlinear term identifiable, and hence all parameters in the model identifiable. For example, setting the last level of
the homogeneous multiplicative factor to zero,

> multCoef <- coef(RChomogl)[grep("Mult", names(coef(RChomogl)))]

> set.seed(1)

> RChomogConstrainedl <- update(RChomogl, constrain = 31, start = c(rep(NA,
+ 23), multCoef - multCoef[8]))

> set.seed(2)

> RChomogConstrained2 <- eval(RChomogConstrainedl$call)

> identical(coef(RChomogConstrainedl), coef(RChomogConstrained2))

[1] TRUE

gives the same results regardless of the random seed set beforehand.

It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However, the
simple constraints imposed lmpnstrainare often sufficient to make particular coefficients of interest identifiable. The
functionscheckEstimable or getContrasts , described in Section| 5, may be used to check whether particular
contrasts are estimable.

4.4 Usingeliminate

Sometimes a model will include a “stratification” factor which identifies units for which a unit-specific intercept should
be estimated. It is often the case that such factors have a large number of levels and though they are required in the model,
are not of direct interest in themselves.

The eliminateargument ofgnm can be used to specify a stratification factor in a model, so that this factor can be
handled more efficiently. The factor should be specified by an expression, which is interpreted as the first term in the
model formula, replacing any intercept term. So in terms of the structure of the model,

gnm(mu ~ A + B + Mult(A, B), eliminate = stratal:strata2)
is equivalent to
gnm(mu ~ -1 + stratal:strata2 + A + B + Mult(A, B))

However specifying a stratification factor througliminatehas two advantages over the standard specification. First, the
structure of the eliminated factor is exploited so that computational speed is improved — substantially so if the number
of eliminated parameters is large. Second, the eliminated parameters are excluded from summaries of the model so that
they focus on the coefficients of interest.

The eliminatefeature is useful, for example, when multinomial-response models are fitted by using the well known
equivalence between multinomial and (conditional) Poisson likelihoods. In such situations the sufficient statistic involves
a potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest.
For an example see Sectjon]6.6 below.

The eliminatefeature as implemented gnmextends the earlier work of Hatzinger and Francis (2004) to a broader
class of models and to over-parameterized model representations.

13

5 Methods and Accessor functions

The gnm function returns an object of clas¢'gnm”, "gim", "Im") . There are several methods that have been
written for objects of clasglm or Im to facilitate inspection of fitted models. Out of the generic functions inbtee
statsandgraphicspackages for which methods have been writtergforor Im objects, Figurg]1 shows those that can be
used to analysgnmobjects, whilst Figur]2 shows those that are not implementeghimobjects.

anova hatvalues rstandard
case.names labels summary
coef logLik variable.names
cooks.distance model.frame vcov
deviance model.matrix weights
extractAIC plot

family print

formula residuals

Figure 1: Generic functions in tHease statsandgraphicspackages that can be used to analysmobjects.

add1l dummy.coe
alias effects
confint influence
dfbeta kappa
dfbetas predict
dropl proj

Figure 2: Generic functions in tHease statsandgraphicspackages for which methods have been writtergaror Im
objects, but which araotimplemented fognmobjects.

In addition to the accessor functions shown in Figure 1,ghm package provides a new generic function called
termPredictors that has methods for objects of clagsm gimandim. This function returns the additive contribution
of each term to the predictor. See Secfipn 2 for an example of its use.

Most of the methods listed in Figuré 1 can be used as they would lpgnfiarr Im objects, however care must be taken
with vcoy, as the variance-covariance matrix will depend on the parameterization of the model. In particular, standard
errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are estimable!

ThecheckEstimable function can be used to check the estimability of contrasts. Consider the following model,
that is described later in Sectibn.3:
> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion +
+ Mult(Exp(election - 1), religion:vote - 1) + Mult(Exp(election -
+ 1), class:vote - 1), family = poisson, data = cautres)
Initialising

Running start-up iterations..
Running main iterations......
Done

The effects of the first constituent multiplier in the first multiplicative interaction are identified when the estimate of one

of these effects is constrained to zero, say for the effect of the first level. The parameters to be estimated are then the
differences between each effect and the effect of the first level. These differences can be represented by a contrast matrix
as follows:

14

coefs <- names(coef(doubleUnidiff))

contrCoefs <- coefs[grep("Multl.Factorl”, coefs)]

nContr <- length(contrCoefs)

contrMatrix <- matrix(0, length(coefs), nContr, dimnames = list(coefs,
contrCoefs))

contr <- contr.sum(contrCoefs)

contr <- rbind(contr[nContr,], contr[-nContr,])

contrMatrix[contrCoefs, 2:nContr] <- contr

contrMatrix[contrCoefs, 2:nContr]

VVVYV+VYVVYV

Multl.Factorl.election2 Multl.Factorl.election3

Multl.Factorl.electionl -1 -1

Multl.Factorl.election2 1 0

Multl.Factorl.election3 0 1

Multl.Factorl.election4 0 0
Multl.Factorl.election4

Multl.Factorl.electionl -1

Multl.Factorl.election2 0

Multl.Factorl.election3 0

Multl.Factorl.election4 1

Then their estimability can be checked usoigckEstimable
> checkEstimable(doubleUnidiff, contrMatrix)

Multl.Factorl.electionl Multl.Factorl.election2 Multl.Factorl.election3
NA TRUE TRUE
Multl.Factorl.election4
TRUE

which confirms that the effects for the other three levels are estimable when the effect for the last level is set to zero.
However, applying the equivalent constraint to the second constituent multiplier in the interaction is not sufficient to
make the parameters in that multiplier estimable:

coefs <- names(coef(doubleUnidiff))

contrCoefs <- coefs[grep("Multl.Factor2", coefs)]

nContr <- length(contrCoefs)

contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs,
contrCoefs))

contr <- contr.sum(contrCoefs)

contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr,], contr[-nContr,

)

checkEstimable(doubleUnidiff, contrMatrix)

V +VV+VVVYV

Multl.Factor2.religionl:votel Multl.Factor2.religion2:votel

NA FALSE

Multl.Factor2.religion3:votel Multl.Factor2.religion4:votel
FALSE FALSE

Multl.Factor2.religionl:vote2 Multl.Factor2.religion2:vote2
FALSE FALSE

Multl.Factor2.religion3:vote2 Multl.Factor2.religion4:vote2
FALSE FALSE

To investigate simple “sum to zero” contrasts such as those above, it is easiest togst&Cth@rasts function,
which checks the estimability of the contrasts and returns the parameter estimates with their standard errors. Returning
to the example of the first constituent multiplier in the first multiplicative interaction term, the differences between each
election and the first can be obtained as follows:

15

> coefs.of.interest <- grep("Multl.Factorl”, names(coef(doubleUnidiff)))
> getContrasts(doubleUnidiff, coefs.of.interest)

Loading required package: qvcalc

(11

Estimate Std. Error quasiSE quasiVar
Multl.Factorl.electionl 0.00000000 0.0000000 0.09803072 0.009610021
Multl.Factorl.election2 -0.08781853 0.1136831 0.05702819 0.003252214
Multl.Factorl.election3 -0.26152062 0.1184134 0.06812240 0.004640661
Multl.Factorl.election4 -0.32834637 0.1221302 0.07168295 0.005138445

Attempting to obtain the equivalent contrasts for the second (religion-vote association) multiplier produces the following
result:

> coefs.of.interest <- grep("Multl.Factor2", names(coef(doubleUnidiff)))
> getContrasts(doubleUnidiff, coefs.of.interest)

Multl.Factor2.religionl:votel Multl.Factor2.religion2:votel

NA FALSE

Multl.Factor2.religion3:votel Multl.Factor2.religion4:votel
FALSE FALSE

Multl.Factor2.religionl:vote2 Multl.Factor2.religion2:vote2
FALSE FALSE

Multl.Factor2.religion3:vote2 Multl.Factor2.religion4:vote2
FALSE FALSE

Note: not all of the specified contrasts in this set are estimable

(11
Estimate Std. Error
Multl.Factor2.religionl:votel 0 0

6 Examples

This section provides some examples of the wide range of models that may be fitted usingntpackage. Sections
[6.1,[6.2 anfl 6]3 consider various models for contingency tables; Sgcijon 6.4 considers AMMI and GAMMI models which
are typically used in agricultural applications, and Sedtioh 6.6 considers the stereotype model, which is used to model an
ordinal response.

6.1 Row-column Association Models

There are several models that have been proposed for modelling the relationship between the cell means of a contingency
table and the cross-classifying factors. The following examples consider the row-column association models proposed by
Goodman[(1979). The examples shown use data from two-way contingency tables,dgniheckage can also be used

to fit the equivalent models for higher order tables.

6.1.1 RC(1) model

The RC(1) model is a row and column association model with the interaction between row and column factors represented
by one component of the multiplicative interaction. If the rows are indexed &yd the columns by, then the log-
multiplicative form of the RC(1) model for the cell meamns. is given by

log Ure = Qi + ﬂc + 77“60

We shall fit this model to thenentalHealth data set taken fro Agreisti (2002) page 381, which is a two-way con-
tingency table classified by the child’s mental impairment (MHS) and the parents’ socioeconomic status (SES). Although

16

both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the
contrasts attribute of these factors‘teatment”

set.seed(1)

data(mentalHealth)

mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
mentalHealth$SES <- C(mentalHealth$SES, treatment)

V V V V

Thegnmmodel is then specified as follows, using the poisson family with a log link function:

> RC1model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS),
+ family = poisson, data = mentalHealth)

Initialising

Running start-up iterations..

Running main iterations....
Done

> RC1model

Call:

gnm(formula = count ~ SES + MHS + Mult(-1 + SES, -1 + MHS), family = poisson,
data = mentalHealth)

Coefficients:
(Intercept) SESB
3.831001 -0.067413
SESC SESD
0.109938 0.404937
SESE SESF
0.025196 -0.200766
MHSmild MHSmoderate
0.713248 0.205317
MHSimpaired Multl.Factorl.SESA
0.252311 0.341189
Multl.Factorl.SESB Multl.Factorl.SESC
0.343966 0.115341
Multl.Factorl.SESD Multl.Factorl.SESE
-0.005967 -0.305568
Multl.Factorl.SESF Multl.Factor2. MHSwell
-0.551688 0.934517
Multl.Factor2.MHSmild Multl.Factor2.MHSmoderate
0.094601 -0.056957
Multl.Factor2.MHSimpaired
-0.754612
Deviance: 3.570562
Pearson chi-squared: 3.568094
Residual df: 8

The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be
normalized as in Agresti's eqn (9.15):

17

> rowProbs <- with(mentalHealth, tapply(count, SES, sum)/sum(count))
> colProbs <- with(mentalHealth, tapply(count, MHS, sum)/sum(count))
> rowScores <- coef(RC1imodel)[10:15]
> colScores <- coef(RC1lmodel)[16:19]
> rowScores <- rowScores - sum(rowScores * rowProbs)
> colScores <- colScores - sum(colScores * colProbs)
> betal <- sqrt(sum(rowScores”*2 * rowProbs))
> beta2 <- sgrt(sum(colScores”2 * colProbs))
> assoc <- list(beta = betal * beta2, mu = rowScores/betal, nu = colScores/beta?)
> assoc
$beta
[1] 0.1664870
$mu
Multl.Factorl.SESA Multl.Factorl.SESB Multl.Factorl.SESC Multl.Factorl.SESD
1.11234361 1.12145891 0.37108476 -0.02706533
Multl.Factorl.SESE Multl.Factorl.SESF
-1.01039041 -1.81818542
$nu
Multl.Factor2.MHSwell Multl.Factor2.MHSmild Multl.Factor2.MHSmoderate
1.6774975 0.1404000 -0.1369601
Multl.Factor2.MHSimpaired
-1.4137095

6.1.2 RC(2) model
The RC(1) model can be extended to an REModel withm components of the multiplicative interaction. For example,
the RC(2) model is given by

log Ure = Qp + Be + ’77"50 + 0, ¢c.

Extra instances of the multiplicative interaction can be specified byrihkiplicity argument ofMult , so the RC(2)
model can be fitted to thmentalHealth data as follows

> RC2model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS,
+ multiplicity = 2), family = poisson, data = mentalHealth)
Initialising

Running start-up iterations..

Running main iterations......
Done

> RC2model

Call:

gnm(formula = count ~ SES + MHS + Mult(-1 + SES, -1 + MHS, multiplicity = 2),
family = poisson, data = mentalHealth)

Coefficients:
(Intercept) SESB
3.85511 -0.06447
SESC SESD

18

0.11139 0.38471

SESE SESF
0.01090 -0.18477
MHSmild MHSmoderate
0.69870 0.17003
MHSimpaired Multl.Factorl.SESA
0.22888 0.94938
Multl.Factorl.SESB Multl.Factorl.SESC
0.99486 0.33903
Multl.Factorl.SESD Multl.Factorl.SESE
-0.17301 -0.91537
Multl.Factorl.SESF Multl.Factor2.MHSwell
-1.39141 0.35835
Multl.Factor2. MHSmild Multl.Factor2.MHSmoderate
0.03799 -0.02140
Multl.Factor2.MHSimpaired Mult2.Factorl.SESA
-0.28068 -0.17737
Mult2.Factorl.SESB Mult2.Factorl.SESC
-0.25127 -0.16575
Mult2.Factorl.SESD Mult2.Factorl.SESE
0.29054 0.22753
Mult2.Factorl.SESF Mult2.Factor2.MHSwell
-0.45487 0.30770
Mult2.Factor2.MHSmild Mult2.Factor2.MHSmoderate
0.09770 -0.25568
Mult2.Factor2.MHSimpaired
0.06702
Deviance: 0.5225353
Pearson chi-squared: 0.5233306

Residual df: 3

6.1.3 Homogeneous effects

If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction
could be modelled by a multiplicative interaction with homogeneous effects, that is

IOg Mre = Qip + ﬁc + YrYe-

For example, theccupationalStatus data set fromd Goodmah (1979) is a contingency table classified by the oc-
cupational status of fathers (origin) and their sons (destinatjon). Goodman (1979) fits a row-column association model
with homogeneous effects to these data after deleting the cells on the main diagonal. Equivalently we can account for the
diagonal effects by a separddag term:

\Y

data(occupationalStatus)

> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Nonlin(MultHomog(origin, destination)), family = poisson,

+ data = occupationalStatus)

Initialising

Running start-up iterations..

Running main iterations........

Done

> RChomog

19

Call:

gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +
Nonlin(MultHomog(origin, destination)), family = poisson,
data = occupationalStatus)

Coefficients:
(Intercept) origin2
-0.12078 0.53600
origin3 origin4
1.68951 2.05513
originb origin6
0.83716 2.93994
origin7 origin8
1.64663 1.40427
destination2 destination3
0.95502 2.03393
destination4 destination5
2.34356 1.73657
destination6 destination7
3.24342 2.39822
destination8 Diag(origin, destination)1
1.97965 1.52667
Diag(origin, destination)2 Diag(origin, destination)3
0.45601 -0.01598
Diag(origin, destination)4 Diag(origin, destination)5
0.38918 0.73852
Diag(origin, destination)6 Diag(origin, destination)7
0.13474 0.45764
Diag(origin, destination)8 MultHomog(origin, destination).1
0.38847 -1.58308
MultHomog(origin, destination).2 MultHomog(origin, destination).3
-1.36478 -0.76662
MultHomog(origin, destination).4 MultHomog(origin, destination).5
-0.18274 -0.16557
MultHomog(origin, destination).6 MultHomog(origin, destination).7
0.34619 0.76233
MultHomog(origin, destination).8
1.00590
Deviance: 32.56098
Pearson chi-squared: 31.20716
Residual df: 34

To determine whether it would be better to allow for heterogeneous effects on the association of the fathers’ occupa-
tional status and the sons’ occupational status, we can compare this model to the RC(1) model for these data:

> data(occupationalStatus)

> RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Mult(origin, destination), family = poisson, data = occupationalStatus)
Initialising

Running start-up iterations..

20

Running main iterations........
Done

> RChomog$dev - RCheterog$dev

[1] 3.411823

> RChomog$df.residual - RCheterog$df.residual
[1] 6

In this case there is little gain in allowing heterogeneous effects.

6.2 Diagonal Reference Models

Diagonal reference models, proposed by Sabel (1981,/1985), are designed for contingency tables classified by factors
with the same levels. The cell means are modelled as a function of the diagonal effects, i.e., the mean responses of the
‘diagonal’ cells in which the levels of the row and column factors are the same.

Dref example 1: Political consequences of social mobility

To illustrate the use of diagonal reference models we shall usethrey data from Clifford and Heath (1993). The data

come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class
of the head of householdi¢stination) and the class of their fatheorfgin). In order to weight these percentages

by the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour:

set.seed(1)

data(voting)

count <- with(voting, percentage/100 * total)
yvar <- chind(count, voting$total - count)

V V V V

The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonall
effects for the corresponding origin and destination classes. This model may be expressed as
e ed2
Yo +

Hod d-

€% 4 e el + %

See Sectiop 3.7.2 for more detail on the parameterization.
The basic diagonal reference model may be fitted ugimg as follows

> classMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination)),

+ family = binomial, data = voting)
Initialising

Running main iterations......

Done

> classMobility

Call:

gnm(formula = yvar ~ Nonlin(Dref(origin, destination)), family = binomial,
data = voting)

Coefficients:

21

(Intercept) Dref(origin, destination).origin

-1.60548 -0.30735
Dref(origin, destination).destination Dref(origin, destination).1
-0.05501 -0.57232
Dref(origin, destination).2 Dref(origin, destination).3
0.47288 -0.34936
Dref(origin, destination).4 Dref(origin, destination).5
1.02723 1.64593
Deviance: 21.22093
Pearson chi-squared: 18.95311
Residual df: 19

and the origin and destination weights can be evaluated as below

> prop.table(exp(coef(classMobility)[2:3]))

Dref(origin, destination).origin Dref(origin, destination).destination
0.4372473 0.5627527

This model is slightly different from that reported py Clifford and Héath (1993). The reason for this is unclear: we are
confident that the above results are correct for the data as given in Clifford and Heath (1993), but have not been able to
confirm that the data as printed in the journal were exactly as used in Clifford and Heath'’s analysis.

Clifford and Heath[(1993) suggest that movements in and out of the salariat (class 1) should be treated differently
from movements between the lower classes (classes 2 - 5), since the former has a greater effect on social status. Thus they
propose the following model

661 652
ifo=1
ed1 +€52’70+651+662’yd I
(53 54
& e .
Hod = 653+e54%+e‘53+664w ifd=1
665 656]
eds + 65670 + % + ed6 Yd if o 7& 1 andd 7é 1

To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat

> upward <- with(voting, origin !'= 1 & destination == 1)
> downward <- with(voting, origin == 1 & destination != 1)

Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows

> socialMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,

+ formula = ~1 + downward + upward)), family = binomial, data = voting)
Initialising

Running main iterations.......

Done

> socialMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +
downward + upward)), family = binomial, data = voting)

22

Coefficients:
(Intercept)

-1.58441
Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)
-0.39835
Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE
0.37857
Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE
0.06226
Dref(origin, destination, formula = ~1 + downward + upward).destination.(Intercept)
-0.01157
Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE
-0.43218
Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE
0.12246
Dref(origin, destination, formula = ~1 + downward + upward).1
-0.47318
Dref(origin, destination, formula = ~1 + downward + upward).2
0.47171
Dref(origin, destination, formula = ~1 + downward + upward).3
-0.41037
Dref(origin, destination, formula = ~1 + downward + upward).4
1.01526
Dref(origin, destination, formula = ~1 + downward + upward).5
1.64200
Deviance: 18.97407
Pearson chi-squared: 17.07492

Residual df: 17

The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be
evaluated as below

> prop.table(exp(coef(socialMobility)[c(4, 7)] + coef(socialMobility)[c(2,

+ 5))
Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE
0.3900796
Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE
0.6099204
> prop.table(exp(coef(socialMobility)[c(3, 6)] + coef(socialMobility)[c(2,
+ 5)D)
Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE
0.6044347
Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE
0.3955653
> prop.table(exp(coef(socialMobility)[c(2, 5)]))
Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)
0.4044945
Dref(origin, destination, formula = ~1 + downward + upward).destination.(Intercept)
0.5955055

23

Again, the results differ slightly from those reported|by Clifford and Heath (1993), but the essence of the results is the
same: the origin weight is much larger for the downwardly mobile groups than for the other groups. The weights for the
upwardly mobile groups are very similar to the base level weights, so the model may be simplified by only fitting separate
weights for the downwardly mobile groups:

> downwardMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,

+ formula = ~1 + downward)), family = binomial, data = voting)
Initialising

Running main iterations.......

Done

> downwardMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +
downward)), family = binomial, data = voting)
Coefficients:
(Intercept)
-1.58578
Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)
-0.02851
Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE
0.37533
Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)
0.38028
Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE
-0.43542
Dref(origin, destination, formula = ~1 + downward).1l
-0.48409
Dref(origin, destination, formula = ~1 + downward).2
0.47925
Dref(origin, destination, formula = ~1 + downward).3
-0.40587
Dref(origin, destination, formula = ~1 + downward).4
1.01270
Dref(origin, destination, formula = ~1 + downward).5
1.64207
Deviance: 18.99389
Pearson chi-squared: 17.09981
Residual df: 18
> prop.table(exp(coef(downwardMobility)[c(3, 5)] + coef(downwardMobility)[c(2,
+ 4)))
Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE
0.5991608
Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE
0.4008392

> prop.table(exp(coef(downwardMobility)[c(2, 4)]))

24

Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)
0.3992038

Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)
0.6007962

Dref example 2: Conformity to parental rules

Another application of diagonal reference models is giveh by van der SliK et al.|(2002). The data from this paper are not
publicly availabl@, but we shall show how the models presented in the paper may be estimatedgnusing

The data relate to the value parents place on their children conforming to their rules. There are two response variables:
the mother’s conformity score (MCFM) and the father's conformity score (FCFF). The data are cross-classified by two
factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates
(AGEM, MRMM, FRMF, MWORK, MFCM and FFCF).

In their baseline model for the mother’s conformity score, van der Slik|et al. (2002) include five of the six covariates
(leaving out the father’s family conflict score, FCFF) and a diagonal reference term with constant weights based on the
two education factors. This model may be expressed as

81 92
Yr +

Hre = P11 + Pozo + B3x3 + Baxy + Bsxs + Y-

el + ed2 edr + ed2

The baseline model can be fitted as follows:

> set.seed(1)

> A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)

>

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM FRMF
0.06364 -0.32425 -0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM
-0.06430 -0.06043 -0.33730
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2
-0.02507 4.95123 4.86328
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5
4.86458 4.72343 4.43516
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7
4.18873 4.43379
Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The coefficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic
identifiability constraints that have been imposed are sufficient for these parameters to be identified. The diagonal effects

do not need to be constrained as they represent contrasts with the off-diagonal cells. Therefore the only unidentified

parameters in this model are the weight parameters. This is confirmed in the summary of the model:

2 We thank Frans van der Slik for his kindness in sending us the data.

25

> summary(A)

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.63689 -0.50383 0.01714 0.56752 2.25140

Coefficients:

Estimate Std. Error t value Pr(>|t|)
AGEM 0.06364 0.07375 0.863 0.38859
MRMM -0.32425 0.07766 -4.175 3.44e-05 ok
FRMF -0.25324 0.07681 -3.297 0.00104 ok
MWORK -0.06430 0.07431 -0.865 0.38727
MFCM -0.06043 0.07123 -0.848 0.39663
Dref(MOPLM, FOPLF).MOPLM -0.33730 NA NA NA
Dref(MOPLM, FOPLF).FOPLF -0.02507 NA NA NA
Dref(MOPLM, FOPLF).1 4.95123 0.16639 29.757 < 2e-16 ok
Dref(MOPLM, FOPLF).2 4.86328 0.10436 46.601 < 2e-16 ok
Dref(MOPLM, FOPLF).3 4.86458 0.12855 37.842 < 2e-16 ek
Dref(MOPLM, FOPLF).4 4.72343 0.13523 34.928 < 2e-16 xHk
Dref(MOPLM, FOPLF).5 4.43516 0.19315 22.963 < 2e-16 *Hk
Dref(MOPLM, FOPLF).6 4.18873 0.17142 24.435 < 2e-16 ok
Dref(MOPLM, FOPLF).7 4.43379 0.16903 26.231 < 2e-16 ok
Signif. codes: 0 ' # ' 0001 "' *='001L' =+ 005"'"01"'"1

(Dispersion parameter for gaussian family taken to be 0.7384355)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 425.34 on 576 degrees of freedom
AIC: 1507.8

Number of iterations: 10

The over-parameterization of the weights is immaterial, since the weights have been constrained to sum to one as described
earlier, so the weights themselves are estimable. The weights may be evaluated as follows:

> prop.table(exp(coef(A)[6:7]))
Dref(MOPLM, FOPLF).MOPLM Dref(MOPLM, FOPLF).FOPLF
0.4225701 0.5774299

giving the values reported by van der Slik el al. (2002). All the other coefficients of model A are the same as those
reported by van der Slik et al. (2002) except the coefficients of the mother’s gender role (MRMM) and the father's gender
role (FRMF). van der Slik et all (2002) reversed the signs of the coefficients of these factors since they were coded in
the direction of liberal values, unlike the other covariates. However, simply reversing the signs of these coefficients does
not give the same model, since the estimates of the diagonal effects depend on the estimates of these coefficients. For
consistent interpretation of the covariate coefficients, it is better to recode the gender role factors as follows:

26

> MRMM2 <- as.numeric(!conformity$MRMM)

> FRMF2 <- as.numeric(!conformity$FRMF)

> A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)

> A

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM2 FRMF2
0.06364 0.32425 0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM
-0.06430 -0.06043 -0.08270
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2
0.22955 437372 4.28579
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5
4.28708 4.14593 3.85766
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7
3.61123 3.85629
Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The coefficients of the covariates are now as reported by van der Slik et all (2002), but the diagonal effects have been
adjusted appropriately.

van der Slik et al.[(2002) compare the baseline model for the mother’s conformity score to several other models in
which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they
consider incorporates an interaction of the weights with the mother’s conflict score as follows:

eSr1tfiz eb2tB2m
Hre = P11+ Pawa + faa + Baza + Bss + mmpn—armm W+ Cee e 1

This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the
results reported by van der Slik et al. (2002),

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

+ Nonlin(Dref(MOPLM, FOPLF, formula = ~ 1 + MFCM)), family = gaussian,
+ data = conformity, verbose = FALSE)

> F

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF, formula = ~1 + MFCM)), family = gaussian,
data = conformity, verbose = FALSE)

Coefficients:
AGEM

27

0.05818

MRMM
-0.32701
FRMF
-0.25772
MWORK
-0.07847
MFCM
-0.01694
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.(Intercept)
0.79413
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.MFCM
-2.51751
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.(Intercept)
-0.27618
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM
2.03673
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).1
4.82477
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).2
4.88066
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).3
4.83969
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).4
4.74849
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).5
4.42019
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).6
4.17956
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).7
4.40819
Deviance: 420.9022
Pearson chi-squared: 420.9022
Residual df: 575

In this case there are two sets of weights, one for when the mother’s conflict score is less than average (coded as zero) and
one for when the score is greater than average (coded as one). These can be evaluated as follows:

> prop.table(exp(coef(F))[c(6,8)])
Dref(MOPLM, FOPLF, formula

~1 + MFCM).MOPLM.(Intercept)
0.7446574

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.(Intercept)
0.2553426
> prop.table(exp(coef(F)[c(7,9)]
Dref(MOPLM, FOPLF, formula

+

coef(F)[c(6,8)]))

~1 + MFCM).MOPLM.MFCM
0.02977308

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM

0.97022692

giving the same weights as in Table 4 of van der Slik éf al. (2002).

28

6.3 Uniform Difference (UNIDIFF) Models

Uniform difference models (Xje, 1992; Erikson and Goldthofpe, 1992) use a simplified three-way interaction to provide
an interpretable model of contingency tables classified by three or more variables. For example, the uniform difference
model for a three-way contingency table, also known as the UNIDIFF model, is given by

Mijk = ik + Bk + exp(Or)vij-

The~;; represent a pattern of association that varies in strength over the dimension indéxethtyxp(J) represents
the relative strength of that association at leel

This model can be applied to tlyaish data set|[(Yaish, 1998, 2004), which is a contingency table cross-classified
by father's social claso(ig), son’s social clasglest) and son’s education levedduc). In this case, we can consider
the importance of the association between the social class of father and son across the education levels:

> set.seed(1)

> data(yaish)

> unidiff <- gnm(Freq ~ educ:orig + educ:dest + Mult(Exp(-1 + educ),
+ orig:dest), family = poisson, data = yaish)

Initialising

Running start-up iterations..
Running main iterations............c.coeccvvvvveeeeennn.
Done

> coefs.of.interest <- grep("Multl.Factorl”, names(coef(unidiff)))
> coef(unidiff)[coefs.of.interest]

Multl.Factorl.educl Multl.Factorl.educ2 Multl.Factorl.educ3 Multl.Factorl.educ4

1.08019340 0.86344199 0.34895823 0.05006952
Multl.Factorl.educ5
-1.15766885
The coefs.of.interest are the multipliers of the association between the social class of father and son. We can

contrast each multiplier to that of the lowest education level and obtain the standard errors for these parameters as follows:

> getContrasts(unidiff, coefs.of.interest)

(1111

Estimate Std. Error quasiSE quasivVar
Multl.Factorl.educl 0.0000000 0.0000000 0.09743542 0.00949366
Multl.Factorl.educ2 -0.2167514 0.1605286 0.12813630 0.01641891
Multl.Factorl.educ3 -0.7312352 0.2311500 0.20930039 0.04380665
Multl.Factorl.educ4 -1.0301239 0.3425339 0.32517407 0.10573817
Multl.Factorl.educ5 -2.2378623 0.9411155 0.93130683 0.86733242

Four-way contingency tables may sometimes be described by a “double UNIDIFF” model

Pijel = i + Bir + exp(61)vi; + exp(¢r)bi,

where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth
variable. Thecautres data set, fromi Cautres et|dl. (1998), can be used to illustrate the application of the double
UNIDIFF model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF
model, we can see how the association between class and vote, and the association between religion and vote, differ
between the most recent election and the other elections:

29

> set.seed(1)

> data(cautres)

> doubleUnidiff <- gnm(Freq ~ election * vote + election * class =
+ religion + Mult(Exp(-1 + election), religion:vote) + Mult(Exp(-1 +

+ election), class:vote), family = poisson, data = cautres)

Initialising

Running start-up iterations..
Running main iterations......
Done

> getContrasts(doubleUnidiff, rev(grep("Multl.Factorl", names(coef(doubleUnidiff)))))

(11

Estimate Std. Error quasiSE quasiVar
Multl.Factorl.election4 0.00000000 0.00000000 0.07168286 0.005138432
Multl.Factorl.election3 0.06682586 0.09906912 0.06812238 0.004640659
Multl.Factorl.election2 0.24052755 0.09116476 0.05702819 0.003252215
Multl.Factorl.electionl 0.32834529 0.12213022 0.09803077 0.009610033

> getContrasts(doubleUnidiff, rev(grep("Mult2.Factorl”, names(coef(doubleUnidiff)))))

(11

Estimate Std. Error quasiSE quasiVar
Mult2.Factorl.election4 0.00000000 0.0000000 0.10934927 0.011957262
Mult2.Factorl.election3 0.08756123 0.1446841 0.09475909 0.008979286
Mult2.Factorl.election2 0.31992441 0.1320031 0.07395865 0.005469882
Mult2.Factorl.electionl -0.36181301 0.2534752 0.22854321 0.052231998

6.4 Generalized Additive Main Effects and Multiplicative Interaction (GAMMI) Models

Generalized additive main effects and multiplicative interaction models, or GAMMI models, were motivated by two-way
contingency tables and comprise the row and column main effects plus one or more components of the multiplicative
interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the
strength of association between the row and column scores, indicating the importance of the component, or axis.

For cell meang:,.. a GAMMI-K model has the form

K

g(/J/rc) = o, + ﬁc + Z Jk’ykr(skca
k=1

in which g is a link function,c,. and g, are the row and column main effects,. anddy. are the row and column scores
for multiplicative component andoy, is the singular value for componehit The number of multiplicative components,
K, is less than or equal to the rank of the matrix of residuals from the main effects.

The row-column association models discussed in Seffign 6.1 are examples of GAMMI models, with a log link and
poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a
constant variance.

We shall use thevheat data set taken from Vargas et al. (2001), which gives wheat yields measured over ten years.
First we scale these yields and create a new treatment factor, so that we can reproduce the gnalysis of \jargas|et al. (2001):

set.seed(1)

data(wheat)

yield.scaled <- wheat$yield * sQrt(3/1000)

treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure,
wheat$N, sep = ™)

+ V V V V

30

Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from the
wheat dataset:

> bilinearl <- gnm(yield.scaled ~ year + treatment + Mult(year,
+ treatment), family = gaussian, data = wheat)

Initialising

Running start-up iterations..
Running main iterations..................
Done

and compare the AMMI-1 model to the main effects model

> mainEffects <- glm(yield.scaled ~ year + treatment, family = gaussian,
+ data = wheat)
> anova(mainEffects, bilinearl)

Analysis of Deviance Table

Model 1: yield.scaled ~ year + treatment

Model 2: yield.scaled ~ year + treatment + Mult(year, treatment)
Resid. Df Resid. Dev Df Deviance

1 207 279515

2 176 128383 31 151133

giving the same results as in Table 1 of Vargas éf al. (2001) (up to error caused by rounding).

6.5 Biplot Models

Biplots are used to display two-dimensional data transformed into a space spanned by linearly independent vectors, such
as the principal components or singular vectors. The plot represents the levels of the two classifying factors by their scores
on the two axes which show the most information about the data, for example the first two principal components.

A rank-n model is a model based on the firsttomponents of the decomposition. In the case of a singular value
decomposition, this is equivalent to a model witikomponents of the multiplicative interaction.

To illustrate the use of biplot models, we shall usellhdey data set which describes the incidence of leaf blotch
over ten varieties of barley grown at nine sites (Weddeiburn,|1974; Gabriel, 1998). The biplot model is fitted as follows:

> data(barley)

> set.seed(1)

> biplotModel <- gnm(y ~ -1 + Mult(site, variety, multiplicity = 2),
+ family = wedderburn, data = barley)

Initialising

Running start-up iterations..
Running main iterations................euvvvrvieiniiiiiiees

using thewedderburn family function introduced in Sectidrj 2. Matrices of the row and column scores for the first two
singular vectors can then be obtained by:

> barleySVD <- svd(matrix(biplotModel$predictors, 10, 9))

> A <- sweep(barleySVD$v, 2, sqrt(barleySvD$d), " *")[, 1:2]
> B <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), " *", 1:2]
> A

31

>

(1]
(2]
[3.]
[4.]
[5.]
[6.]
[7.]
8.]
[9.]

B

[1.]
(2]
(3]
[4.]
[5.]
[6.]
[7.]
8]
[9.]

(10,]

[.1]

4.1945581
2.7643876
1.4250932
1.8463184
1.2704687
1.1563616
1.0171974
0.6451498
-0.1471004

(1]

-2.0675116
-3.0597870
-2.9595994
-1.8087092
-1.5580232
-1.8940658
-1.1790575
-0.8490158
-0.9704780
-0.6036867

[.2]
-0.39203762
-0.33933197
-0.04652144

0.33364399
0.15780901
0.40053626
0.72728762
1.46162874
2.13232959

(2]
-0.9742098
-0.5068344
-0.3318903
-0.4976057
-0.0844504
1.0845658
0.4068721
1.1467214
1.2655639
1.3965960

These matrices are essentially the same as in Gabriel/(1998). From these the biplot can be produced for sitexl
varietiesl ...9, X:

> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),

+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data")
Biplot for barley data
< 4
~ 4 I
H
— s %
= 7 GF
m D
< © 5 c
g 2 4 B A
2 1
N
|
<]
|
T T T T I
-4 -2 0 2 4
rbind(A, B)[,1]

32

The product of the matrice& andB is unaffected by rotation or reciprocal scaling along either axis, so we can rotate the
data so that the points for the sites are roughly parallel to the horizontal axis and the points for the varieties are roughly
parallel to the vertical axis. In addition, we can scale the data so that points for the sites are about the line one unit about
the horizontal axis, roughly

> a <- pib

> rotation <- matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2,

+ byrow = TRUE)

>rA <- (2 =+ AI3) % *% rotation

> B <- (3 =* B/2) %*% rotation

> plot(rbind(rA, rB), pch = c(levels(barley$site), levels(barley$variety)),

+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot (rotated) for barley data")

Biplot (rotated) for barley data

q-_
N_
X A
~ I H
= G D B
@ 98 FEC
< ©
= 6
= 7
5
5
N
: 4
3 1
2
< |
|
I I I I I
-4 -2 0 2 4

rbind(rA, rB)[,1]

In the original biplot, the co-ordinates for the sites and varieties were given by the rows of A and B respectively, i.e

af = /(d)(us, ug:)
B = V(d) (v,)

The rotated and scaled biplot suggests the simpler model

Bl = (8;,7))

which implies the following model for the logits of the leaf blotch incidence:
of Bj = vib; + 7.

Gabrie] (1998) describes this as a double additive model, which we can fit as follows:

33

> variety.binary <- factor(match(barley$variety, c(2, 3, 6), nomatch = 0) >
+ 0, labels = c("rest", "2,3,6")

> doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary),

+ family = wedderburn, data = barley)

Initialising

Running start-up iterations..
Running main iterations...................
Done

Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch
incidence:

biplotModChiSq <- sum(residuals(biplotModel, type = "pearson')"2)

doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")"2)

c(doubleAddChiSq - biplotModChiSqg, doubleAdditive$df.residual -
biplotModel$df.residual)

+ V V V

[1] 9.515599 15.000000

6.6 Stereotype Model

The stereotype model was proposed by Anderson (1984) for ordered categorical data. It is a linear logistic model, in
which there is assumed to be a common relationship between the response and the covariates in the model, but the scale
of this association varies between categories and there is an additional category main effect or category-specific intercept:

log Hic = ﬁOc + Ye Z /Brwir-

This model can be estimated by re-expressing the categorical data as counts andgrsimgnadel with a log link
and poisson variance function. Tgampackage includes the utility functiexpandCategorical to facilitate the
required data processing.

For example, thdackPain data set from Anderson (1984) describes the progress of patients with back pain. The
data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. These data
can be re-expressed as follows:

> set.seed(1)
> data(backPain)
> backPain[1:2,]

x1 x2 x3 pain
1 1 1 same
2 1 1 1 marked.improvement

[N

> backPainLong <- expandCategorical(backPain, "pain")
> backPainLong[1:12,]

x1 x2 x3 pain count id
1 1 1 1 worse 0 1
1.1 1 1 1 same 1 1
1.2 1 1 1 slight.improvement 0 1
1.3 1 1 1 moderate.improvement 0 1
14 1 1 1 marked.improvement 0 1
15 1 1 1 complete.relief 0 1
2 1 1 1 worse 0 2

34

21 1 1 1 same 0 2
22 1 1 1 slight.improvement 0 2

23 1 1 1 moderate.improvement 0 2

24 1 1 1 marked.improvement 1 2
25 1 1 1 complete.relief 0 2

We can now fit the stereotype model to these data:

> oneDimensional <- gnm(count ~ pain + Mult(pain - 1, x1 + x2 +
+ x3 - 1), eliminate = id, family = "poisson", data = backPainLong)

Initialising

Running start-up iterations..
Running main iterations...........
Done

> oneDimensional

Call:
gnm(formula = count ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),
eliminate = id, family = "poisson”, data = backPainLong)

Coefficients:
painsame painslight.improvement
16.1561 15.6832
painmoderate.improvement painmarked.improvement
12.4538 19.9124
paincomplete.relief Multl.Factorl.painworse
21.6640 -1.8974
Multl.Factorl.painsame Multl.Factorl.painslight.improvement
0.2758 0.1586
Multl.Factorl.painmoderate.improvement Multl.Factorl.painmarked.improvement
-0.3551 0.8042
Multl.Factorl.paincomplete.relief Multl.Factor2.x1
1.2497 -1.7068
Multl.Factor2.x2 Multl.Factor2.x3
-0.9790 -0.8621
Deviance: 303.1003
Pearson chi-squared: 433.3746
Residual df: 493

usingeliminateto handle theéd factor so that these structural parameters do not appear in the model summaries. This
model is one dimensional since it involves only one functior ef (x1, 22, 23). We can compare this model to one with
category-specific coefficents of thevariables, as may be used for a qualitative categorical response:

> threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id,

+ family = "poisson", data = backPainLong)
Initialising

Running main iterations............

Done

> threeDimensional

35

Call:
gnm(formula = count ~ pain + pain:(x1 + x2 + x3), eliminate = id,
family = "poisson”, data = backPainLong)

Coefficients:
painsame painslight.improvement
29.70686 29.32610
painmoderate.improvement painmarked.improvement
26.20863 33.40921
paincomplete.relief painworse:x1
35.85726 9.82649
painsame:x1 painslight.improvement:x1
-0.53353 -0.20389
painmoderate.improvement:x1 painmarked.improvement:x1
0.05953 -1.76367
paincomplete.relief:x1 painworse:x2
-2.27558 2.49619
painsame:x2 painslight.improvement:x2
-0.17784 -0.05522
painmoderate.improvement:x2 painmarked.improvement:x2
0.82415 -0.34765
paincomplete.relief:x2 painworse:x3
-0.77878 1.36650
painsame:x3 painslight.improvement:x3
0.21105 0.07443
painmoderate.improvement:x3 painmarked.improvement:x3
0.62026 -0.32502
paincomplete.relief:x3
-1.57415
Deviance: 299.0154
Pearson chi-squared: 443.0045
Residual df: 485

This model has the maximum dimensionality of three (as determined by the number of covariates). To obtain the log-
likelihoods as reported in Andersan (1984) we need to adjust for the extra parameters introduced to formulate the models
as Poisson models. We write a simple function to do this and compare the log-likelihoods of the one dimensional model

and the three dimensional model:

> logLikMultinom <- function(model) {

+ object <- get(model)

+ if (inherits(object, "gnm")) {

+ | <- logLik(object) + object$eliminate

+ c(nParameters = attr(l, "df") - object$eliminate, logLikelihood = 1)
+ }

+ else c(nParameters = object$edf, logLikelihood = -deviance(object)/2)
+}

> t(sapply(c("oneDimensional”, "threeDimensional"), logLikMultinom))

nParameters logLikelihood
oneDimensional 12 -151.5501
threeDimensional 20 -149.5077

36

which show that theneDimensional model is adequate.

To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location
and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the
second multiplier td., which may be achieved by specifying the covariate as an offset:

> summary(oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),
eliminate = id, family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 30 Max
-0.9708 -0.6506 -0.4438 -0.1448 2.1386

Coefficients:

Estimate Std. Error z value Pr(>|z|)
painsame 16.1561 6.5735 2.458 0.013981 *
painslight.improvement 15.6832 6.5267 2.403 0.016265 *
painmoderate.improvement 12.4538 6.4305 1.937 0.052785 .
painmarked.improvement 19.9124 6.4969 3.065 0.002177 *k
paincomplete.relief 21.6640 6.5565 3.304 0.000952 *kk
Multl.Factorl.painworse -1.8974 NA NA NA
Multl.Factorl.painsame 0.2758 NA NA NA
Multl.Factorl.painslight.improvement 0.1586 NA NA NA
Multl.Factorl.painmoderate.improvement -0.3551 NA NA NA
Multl.Factorl.painmarked.improvement 0.8042 NA NA NA
Multl.Factorl.paincomplete.relief 1.2497 NA NA NA
Multl.Factor2.x1 -1.7068 NA NA NA
Multl.Factor2.x2 -0.9790 NA NA NA
Multl.Factor2.x3 -0.8621 NA NA NA
Signif. codes: 0 ' # ' 0001 "' %'001' " 005"'"01"'"'1

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 11

> oneDimensional <- gnm(count ~ pain + Mult(pain - 1, offset(x1) +

+ X2 + x3 - 1), eliminate = id, family = "poisson", data = backPainLong)
Initialising

Running start-up iterations..

Running main iterations...........
Done

> summary(oneDimensional)

37

Call:
gnm(formula = count ~ pain + Mult(pain - 1, offset(xl) + x2 +
x3 - 1), eliminate = id, family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 30 Max
-0.9708 -0.6506 -0.4438 -0.1448 2.1386

Coefficients:

Estimate Std. Error z value Pr(>|z|)
painsame 16.1566 6.5737 2.458 0.013981 *
painslight.improvement 15.6837 6.5269 2.403 0.016265 *
painmoderate.improvement 12.4543 6.4307 1.937 0.052783 .
painmarked.improvement 19.9129 6.4971 3.065 0.002178 ok
paincomplete.relief 21.6644 6.5566 3.304 0.000953 *kk
Multl.Factorl.painworse 3.2753 NA NA NA
Multl.Factorl.painsame -0.4341 NA NA NA
Multl.Factorl.painslight.improvement -0.2341 NA NA NA
Multl.Factorl.painmoderate.improvement 0.6427 NA NA NA
Multl.Factorl.painmarked.improvement -1.3359 NA NA NA
Multl.Factorl.paincomplete.relief -2.0962 NA NA NA
Multl.Factor2.x2 0.5736 0.2178 2.634 0.008451 *
Multl.Factor2.x3 0.5051 0.2432 2.077 0.037796 *
Signif. codes: 0 ' # ' 0001 "' *='001L"' =+ 005"'01"'"1

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AlC: 731.1

Number of iterations: 11

The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through
theconstrainargument ofyjnm or with getContrasts

> getContrasts(oneDimensional, 6:11)

(1111

Estimate Std. Error quasiSE
Multl.Factorl.painworse 0.000000 0.000000 1.7795378
Multl.Factorl.painsame -3.709344 1.825372 0.4281258
Multl.Factorl.painslight.improvement ~ -3.509338 1.791539 0.4024574
Multl.Factorl.painmoderate.improvement -2.632580 1.669065 0.5518443
Multl.Factorl.painmarked.improvement -4.611194 1.895044 0.3133199

Multl.Factorl.paincomplete.relief -5.371505 1.999470 0.4919611
quasivVar

Multl.Factorl.painworse 3.16675476

Multl.Factorl.painsame 0.18329169

Multl.Factorl.painslight.improvement 0.16197196
Multl.Factorl.painmoderate.improvement 0.30453215

38

Multl.Factorl.painmarked.improvement 0.09816934
Multl.Factorl.paincomplete.relief 0.24202574

giving the required estimates.

39

A User-level Functions

We list here, for easy reference, all of the user-level functions igtimepackage. For full documentation see the package
help pages.

Model Fitting

gnm fit generalized nonlinear models

Model Specification

Diag create factor differentiating diagonal elements
Symm create symmetric interaction of factors
Topo create ‘topological’ interaction factors
Mult specify a multiplicative interaction ingnmformula
Exp specify an exponentiated constituent multiplier iMalt term
Nonlin specify a special nonlinear term irgamformula
Dref gnm plug-in function to fit diagonal reference terms
MultHomog gnm plug-in function to fit multiplicative interactions with homogeneous effects
wedderburn specify the Wedderburn quasi-likelihood family
Methods and Accessor Functions
summary.gnm summarizegnmfits
getContrasts estimate contrasts and their standard errors for parameters in a gnm model
checkEstimable check whether one or more parameter combinationgyimmamodel is identified
se get standard errors of linear parameter combinatiogsmimmodels
termPredictors (generig extract term contributions to predictor

Auxiliary Functions

getModelFrame get the model frame in use lgnm

MPinv Moore-Penrose pseudoinverse of a real-valued matrix

residSvVD multiplicative approximation of model residuals
expandCategorical expand a data frame by re-expressing categorical data as counts

40

B Key Changes since Last Release

The new features, improvements and changes in behaviour since the last release are given below. For bug fixes since the
last release and the changes made in previous releases, see the CHANGES file in the package directory.

Changes in gnm 0.8-0

New Features

o added "model.matrix" option for 'method' argument of gnm() so that
model matrix can be obtained much faster. The new method is used in
model.matrix.gnm() and vcov.gnm().

o added new utility function residSVD(), to facilitate the calculation
of good starting values for parameters in certain Mult() terms.

0 added new dataset House2001, to illustrate the use of gnm in
Rasch-type scaling of legislator votes.

o] added new utility function expandCategorical() for expanding data frame
on the basis of a categorical variable.

0 added formula.gnm() method - returns formula from "gnm" object excluding
the 'eliminate'd factor where necessary.

Improvements

o] gnm() now takes less time to run due to improvements made in internal
functions.

o the fitting algorithm used by gnm() now copes better with zero-valued
residuals.

o output given by gnm() when ‘trace’ = TRUE or 'verbose' = TRUE is now
displayed as it is generated on console-based versions of R.

o plot.gnm() now includes option 'which' = 5 as in plot.Im() in
R >= 2.2.0. Now has separate help page.

o the 'constrain' argument to gnm() now accepts the names of parameters.

o the 'formula’ argument to gnm() now accepts as described in
?terms.formula, ignoring eliminated factor if in 'data’.

o} interface for se() extended - can now use to find standard errors for
all parameters or (a selection of) individual parameters in a gnm model.

o] made it possible to use gnm() with alternative fitting function.

o ".Environment" attribute now attached to "gnm" objects so that gnm package

41

loaded when workspace containing "gnm" objects is loaded.

Changes in Behaviour

o] start-up iterations now only update column of design matrix required in
next iteration. Therefore plug-in functions using the default start-up
procedure for nonlinear parameters need a localDesignFunction() with the
argument 'ind' specifying the column that should be returned.

o] modified output given by gnm() when 'trace’ = TRUE: now prints initial
deviance and the deviance at the end of each iteration.

o] modified updates of linear parameters in starting procedure: now offset
contribution of fully specified terms only.

o] results of summary.gnm(), vcov.gnm() and coef.gnm() now include any
eliminated parameters. Print methods have been added for vcov.gnm and
coef.gnm objects so that any eliminated parameters are not shown.

o] Mult() terms are no longer split into components by anova.gnm(),
termPredictors.gnm(), labels.gnm() or the "assign" attribute of the
model matrix - consistent with terms() output.

o the 'eliminate’ argument to gnm() must now be an expression that
evaluates to a factor - this reverts the extension of 0.7-2.

o when using gnm() with ‘constrain’ = "pick", the name(s) of the chosen
parameter(s) will replace "pick" in the reurned model call.

o] getContrasts() now uses first level of a factor as the reference level
(by default).

o gnmControl() replaced by arguments to gnm().

o gnm() now uses gim.fit() for linear models (with control parameters at
the gnm() defaults).unless ‘eliminate'is non-NULL.

o vcov.gnm() and summary.gnm() now return variance-covariance matrices
including any aliased parameters. v

o summary.gnm() now returns standard errors with test statistics etc,
where estimated parameters are identified.

42

References

Agresti, A. (2002).Categorical Data Analysi§€2nd ed.). New York: Wiley.
Anderson, J. A. (1984). Regression and ordered categorical varidbRsStatist. Soc. B 48), 1-30.

Cautres, B., A. F. Heath, and D. Firth (1998). Class, religion and vote in Britain and Fraadeettre de la Maison
Francaise 8

Clifford, P. and A. F. Heath (1993). The political consequences of social mohiliigoy. Stat. Soc. A 16b), 51-61.
Erikson, R. and J. H. Goldthorpe (1992)he Constant FluxOxford: Clarendon Press.

Erikson, R., J. H. Goldthorpe, and L. Portocarero (1982). Social fluidity in industrial nations: England, France and
Sweden British Journal of Sociology 331-34.

Gabiriel, K. R. (1998). Generalised bilinear regressiBiometrika 85 689—-700.

Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories.
J. Amer. Statist. Assoc. 7/837-552.

Hatzinger, R. and B. J. Francis (2004). Fitting paired comparison models in R. Technical Report 3, Department of
Statistics and Mathematics, Wirtschaftsuniversitat Wien.

McCullagh, P. and J. A. Nelder (1989%eneralized Linear Models (Second Editio@hapman & Hall Ltd.

Sobel, M. E. (1981). Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility
effects.Amer. Soc. Rev. 4893-906.

Sobel, M. E. (1985). Social mobility and fertility revisited: Some new models for the analysis of the mobility effects
hypothesisAmer. Soc. Rev. 5699-712.

van der Slik, F. W. P., N. D. de Graaf, and J. R. M. Gerris (2002, 4). Conformity to parental rules: Asymmetric influences
of father's and mother’s levels of educatidBurop. Soc. Rev. 1889-502.

Vargas, M., J. Crossa, F. van Eeuwijk, K. D. Sayre, and M. P. Reynolds (2001). Interpreting treatment by environment
interaction in agronomy trialsAgronomy Journal 93949-960.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method.
Biometrika 61 439-447.

Xie, Y. (1992). The log-multiplicative layer effect model for comparing mobility tableserican Sociological Review 57
380-395.

Yaish, M. (1998). Opportunities, Little Change. Class Mobility in Israeli Society, 1974—19Bh. D. thesis, Nuffield
College, University of Oxford.

Yaish, M. (2004).Class Mobility Trends in Israeli Society, 1974-199%wiston: Edwin Mellen Press.

43

	Introduction
	Generalized Linear Models
	Preamble
	Diag and Symm
	Topo
	The wedderburn family
	termPredictors

	Nonlinear Terms
	Multiplicative Interaction Terms using Mult
	Other Nonlinear Terms using Nonlin
	MultHomog
	Dref
	Custom Plug-in Functions

	Controlling the Fitting Procedure
	Basic control parameters
	Using start
	Using constrain
	Using eliminate

	Methods and Accessor functions
	Examples
	Row-column Association Models
	RC(1) model
	RC(2) model
	Homogeneous effects

	Diagonal Reference Models
	Uniform Difference (UNIDIFF) Models
	Generalized Additive Main Effects and Multiplicative Interaction (GAMMI) Models
	Biplot Models
	Stereotype Model

	User-level Functions
	Key Changes since Last Release

