Heterogeneity analysis is a way to explore how the results of a model can vary depending on the characteristics of individuals in a population, and demographic analysis estimates the average values of a model over an entire population.
In practice these two analyses naturally complement each other: heterogeneity analysis runs the model on multiple sets of parameters (reflecting differents characteristics found in the target population), and demographic analysis combines the results.
For this example we will use the result from the assessment of a new total hip replacement previously described in vignette("d-non-homogeneous", "heemod")
.
The characteristics of the population are input from a table, with one column per parameter and one row per individual. Those may be for example the characteristics of the indiviuals included in the original trial data.
For this example we will use the characteristics of 100 individuals, with varying sex and age, specified in the data frame tab_indiv
:
tab_indiv
## # A tibble: 100 x 2
## age sex
## <dbl> <int>
## 1 61 0
## 2 53 1
## 3 59 1
## 4 51 1
## 5 72 0
## 6 71 0
## 7 74 1
## 8 68 1
## 9 60 0
## 10 46 1
## # … with 90 more rows
library(ggplot2)
ggplot(tab_indiv, aes(x = age)) +
geom_histogram(binwidth = 2)
res_mod
, the result we obtained from run_model()
in the Time-varying Markov models vignette, can be passed to update()
to update the model with the new data and perform the heterogeneity analysis.
res_h <- update(res_mod, newdata = tab_indiv)
## No weights specified in update, using equal weights.
## Updating strategy 'standard'...
## Updating strategy 'np1'...
The summary()
method reports summary statistics for cost, effect and ICER, as well as the result from the combined model.
summary(res_h)
## An analysis re-run on 100 parameter sets.
##
## * Unweighted analysis.
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 450.15881156 611.6289179 633.0955487 702.4054888
## standard - Effect 7.47256790 24.8754832 27.5787861 26.5086356
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 593.80297968 637.3508591 643.1891043 663.2927048
## np1 - Effect 7.49009703 25.1436592 27.8705838 26.7828586
## np1 - Cost Diff. -155.93829747 -129.4829089 10.0935556 -39.1127840
## np1 - Effect Diff. 0.01752913 0.2051119 0.2294328 0.2742231
## np1 - Icer -349.93447295 -333.0519971 42.1744509 56.1590428
## 3rd Qu. Max.
## standard - Cost 828.5434528 865.5323779
## standard - Effect 29.2971568 31.9019192
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 699.0605439 709.5940804
## np1 - Effect 29.7280141 32.1420157
## np1 - Cost Diff. 25.7219412 143.6441681
## np1 - Effect Diff. 0.3887769 0.4456214
## np1 - Icer 125.9207494 8194.5991768
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'end'.
##
## Values:
##
## utility cost
## standard 26508.64 702405.5
## np1 26782.86 663292.7
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -39.11278 0.2742231 -142.6313 standard
The variation of cost or effect can then be plotted.
plot(res_h, result = "effect", binwidth = 5)
plot(res_h, result = "cost", binwidth = 50)
plot(res_h, result = "icer", type = "difference",
binwidth = 500)
plot(res_h, result = "effect", type = "difference",
binwidth = .1)
plot(res_h, result = "cost", type = "difference",
binwidth = 30)
The results from the combined model can be plotted similarly to the results from run_model()
.
plot(res_h, type = "counts")
Weights can be used in the analysis by including an optional column .weights
in the new data to specify the respective weights of each strata in the target population.
tab_indiv_w
## # A tibble: 100 x 3
## age sex .weights
## <dbl> <int> <dbl>
## 1 52 0 0.242
## 2 80 0 0.0588
## 3 59 1 0.00756
## 4 42 1 0.669
## 5 67 1 0.540
## 6 69 0 0.532
## 7 68 0 0.144
## 8 70 1 0.828
## 9 65 0 0.288
## 10 61 1 0.851
## # … with 90 more rows
res_w <- update(res_mod, newdata = tab_indiv_w)
## Updating strategy 'standard'...
## Updating strategy 'np1'...
res_w
## An analysis re-run on 100 parameter sets.
##
## * Weigths distribution:
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00756 0.29967 0.54075 0.52547 0.76437 0.97849
##
## Total weight: 52.54664
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 485.85297365 613.8364635 630.0317060 699.7521913
## standard - Effect 11.78433667 25.5696426 27.7806580 26.4483396
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 603.34263272 637.9508204 642.7626632 662.5098137
## np1 - Effect 11.82839436 25.8299343 27.9754765 26.7185468
## np1 - Cost Diff. -160.47985885 -110.7286273 12.7340198 -37.2423776
## np1 - Effect Diff. 0.04405769 0.1948185 0.2214442 0.2702072
## np1 - Icer -352.23489020 -316.4394659 54.5439570 -10.1404799
## 3rd Qu. Max.
## standard - Cost 802.3426777 871.8854128
## standard - Effect 29.2087467 31.5986556
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 691.6140504 711.4055539
## np1 - Effect 29.6376464 31.8353665
## np1 - Cost Diff. 24.1143568 117.4896591
## np1 - Effect Diff. 0.3499204 0.4556047
## np1 - Icer 115.6325465 2666.7229585
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'end'.
##
## Values:
##
## utility cost
## standard 26448.34 699752.2
## np1 26718.55 662509.8
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -37.24238 0.2702072 -137.8289 standard
Updating can be significantly sped up by using parallel computing. This can be done in the following way:
use_cluster()
functions (i.e. use_cluster(4)
to use 4 cores).close_cluster()
function.Results may vary depending on the machine, but we found speed gains to be quite limited beyond 4 cores.