
Package ‘hyperSMURF’
August 18, 2016

Type Package

Title Hyper-Ensemble Smote Undersampled Random Forests

Version 1.1.2

Date 2016-08-18

Author Giorgio Valentini [aut, cre] -
AnacletoLab, Dipartimento di Informatica, Universita' degli Studi di Milano;
Max Schubach [ctb] - Charite, Universitatsmedizin Berlin;
Matteo Re [ctb] - AnacletoLab, Dipartimento di Informatica, Universita' degli Studi di Milano;
Peter N Robinson [ctb] - The Jackson Laboratory for Genomic Medicine, Farmington CT, USA.

Maintainer Giorgio Valentini <valentini@di.unimi.it>

Description Machine learning supervised method to learn rare genomic features in imbalanced ge-
netic data sets. This method can be also applied to classify or rank examples character-
ized by a high imbalance between the minority and majority class. hyperSMURF adopts a hyper-
ensemble (ensemble of ensembles) approach, undersampling of the majority class and oversam-
pling of the minority class to learn highly imbalanced data. Both single-core and parallel multi-
core version of hyperSMURF are implemented.

License GPL (>= 2)

LazyLoad yes

Imports unbalanced, randomForest, foreach, iterators, doParallel,
parallel

NeedsCompilation no

R topics documented:
hyperSMURF-package . 2
do.random.partition . 3
do.stratified.cv.data . 4
do.stratified.cv.data.from.folds . 5
hyperSMURF.corr.cv.parallel . 6
hyperSMURF.cv . 7
hyperSMURF.cv.parallel . 9
hyperSMURF.test . 10

1

2 hyperSMURF-package

hyperSMURF.test.parallel . 11
hyperSMURF.test.thresh . 12
hyperSMURF.train . 13
hyperSMURF.train.parallel . 14
imbalanced.data.generator . 16
smote . 17
smote_and_undersample . 18

Index 19

hyperSMURF-package Hyper-Ensemble Smote Undersampled Random Forests

Description

Machine learning supervised method to learn rare genomic features in imbalanced genetic data sets.
This method can be also applied to classify or rank examples characterized by a high imbalance
between the minority and majority class. hyperSMURF adopts a hyper-ensemble (ensemble of
ensembles) approach, undersampling of the majority class and oversampling of the minority class
to learn highly imbalanced data. Both single-core and parallel multi-core version of hyperSMURF
are implemented.

Details

The DESCRIPTION file:

Package: hyperSMURF
Type: Package
Title: Hyper-Ensemble Smote Undersampled Random Forests
Version: 1.1.2
Date: 2016-08-18
Author: Giorgio Valentini [aut, cre] - AnacletoLab, Dipartimento di Informatica, Universita’ degli Studi di Milano; Max Schubach [ctb] - Charite, Universitatsmedizin Berlin; Matteo Re [ctb] - AnacletoLab, Dipartimento di Informatica, Universita’ degli Studi di Milano; Peter N Robinson [ctb] - The Jackson Laboratory for Genomic Medicine, Farmington CT, USA.
Maintainer: Giorgio Valentini <valentini@di.unimi.it>
Description: Machine learning supervised method to learn rare genomic features in imbalanced genetic data sets. This method can be also applied to classify or rank examples characterized by a high imbalance between the minority and majority class. hyperSMURF adopts a hyper-ensemble (ensemble of ensembles) approach, undersampling of the majority class and oversampling of the minority class to learn highly imbalanced data. Both single-core and parallel multi-core version of hyperSMURF are implemented.
License: GPL (>= 2)
LazyLoad: yes
Imports: unbalanced, randomForest, foreach, iterators, doParallel, parallel

Index of help topics:

do.random.partition Random partition of the data
do.stratified.cv.data Construction of random folds for

cross-validation
do.stratified.cv.data.from.folds

Construction of folds for cross-validation from
predefined folds

hyperSMURF-package Hyper-Ensemble Smote Undersampled Random

do.random.partition 3

Forests
hyperSMURF.corr.cv.parallel

hyperSMURF cross-validation with embedded
correlation-based feature selection

hyperSMURF.cv hyperSMURF cross-validation
hyperSMURF.cv.parallel

hyperSMURF cross-validation - parallel
implementation

hyperSMURF.test Test of a hyperSMURF model
hyperSMURF.test.parallel

Test of a hyperSMURF model - parallel version
hyperSMURF.test.thresh

Test of a thresholded hyperSMURF model
hyperSMURF.train hyperSMURF training
hyperSMURF.train.parallel

hyperSMURF training - parallel version
imbalanced.data.generator

Synthetic imbalanced data generator
smote SMOTE oversampling
smote_and_undersample SMOTE oversampling and undersampling

Author(s)

Giorgio Valentini [aut, cre] - AnacletoLab, Dipartimento di Informatica, Universita’ degli Studi di
Milano; Max Schubach [ctb] - Charite, Universitatsmedizin Berlin; Matteo Re [ctb] - Anacleto-
Lab, Dipartimento di Informatica, Universita’ degli Studi di Milano; Peter N Robinson [ctb] - The
Jackson Laboratory for Genomic Medicine, Farmington CT, USA.

Maintainer: Giorgio Valentini <valentini@di.unimi.it>

do.random.partition Random partition of the data

Description

Performs a random partition of the indices that refer to a given data set (data frame or matrix)

Usage

do.random.partition(n.ex, n.partitions, seed = 0)

Arguments

n.ex number of indices to be partitioned

n.partitions number of partitions

seed seed for the random generator

4 do.stratified.cv.data

Details

The partition of the data is performed using only the indices of the data not the data itself

Value

a list with n.partitions elements. Each element stores the indices of the partition.

Examples

do.random.partition(100, 10)

do.stratified.cv.data Construction of random folds for cross-validation

Description

The function randomly generates fold data for cross-validation

Usage

do.stratified.cv.data(examples, positives, k = 10, seed = 0)

Arguments

examples vector of integer: indices of the examples

positives vector of integer: Indices of the positive examples. The indices refer to the
indices of examples

k number of folds (def = 10)

seed seed of the random generator (def=0). If is set to 0 no initialization is performed

Details

he folds are separated for positive and negative examples. The elements included in each fold are
obtained by random sampling the data.

Value

a list with two components;

fold.non.positives

a list with k components. Each component is a vector with the indices of the
non positive elements of the fold

old.positives a list with k components. Each component is a vector with the indices of the
positive elements of the fold

See Also

do.stratified.cv.data.from.folds

do.stratified.cv.data.from.folds 5

Examples

do.stratified.cv.data(1:100, 1:20, k = 10)

do.stratified.cv.data.from.folds

Construction of folds for cross-validation from predefined folds

Description

The function generates data for cross-validation from pre-computed folds

Usage

do.stratified.cv.data.from.folds(examples, positives, folds, k = 10)

Arguments

examples vector of integer: indices of the examples

positives vector of integer: Indices of the positive examples. The indices refer to the
indices of examples

folds vector of indices : its length is equal to examples, with values in the interval
[0, kk). The value indicates the partition in the cross validation step of the class

k number of folds (def = 10)

Details

The folds are separated for positive and negative examples. The elements included in each fold are
obtained from the vector of fold indices folds.

Value

a list with two components;

fold.non.positives

a list with k components. Each component is a vector with the indices of the
non positive elements of the fold

old.positives a list with k components. Each component is a vector with the indices of the
positive elements of the fold

See Also

do.stratified.cv.data

Examples

do.stratified.cv.data.from.folds(1:100, 1:10, folds=sample(rep((0:4),20)), k = 5)

6 hyperSMURF.corr.cv.parallel

hyperSMURF.corr.cv.parallel

hyperSMURF cross-validation with embedded correlation-based fea-
ture selection

Description

This function implements the automated cross-validation procedure with hyperSMURF (hyper-
ensemble SMote Undersampled Random Forests), using at the same time a correlation-based feature
selection to select the best features to train the hyper-ensemble.

Usage

hyperSMURF.corr.cv.parallel(data, y, kk = 5, n.part = 10, fp = 1,
ratio = 1, k = 5, ntree = 10, mtry = 5, n.feature = 0, seed = 0,
fold.partition = NULL, ncores = 0, file = "")

Arguments

data a data frame or matrix with the data

y a factor with the labels. 0:majority class, 1: minority class.

kk number of folds (def: 5)

n.part number of partitions (def. 10)

fp multiplicative factor for the SMOTE oversampling of the minority class If fp<1
no oversampling is performed.

ratio ratio of the #majority/#minority

k number of the nearest neighbours for SMOTE oversampling (def. 5)

ntree number of trees of the base learner random forest

mtry number of the features to randomly selected by the decision tree of each base
random forest

n.feature number of the features to be selected in the training set according to the absolute
value of the correlation coefficient. If 0 (def), the top 5% are selected.

seed initialization seed for the random generator (if set to 0(def.) no initialization is
performed)

fold.partition vector of size nrow(data) with values in interval [0, kk). The values indicate the
fold of the cross validation of each example. If NULL (default) the folds are
randomly generated.

ncores number of cores. If 0, the max number of cores - 1 is selected

file name of the file where the cross-validated hyperSMURF models will be saved.
If file=="" (def.) no model is saved.

hyperSMURF.cv 7

Details

The cross-validation is performed by randomly constructing the folds (parameter fold.partition
= NULL) or using a set of predefined folds listed in the parameter vector fold.partition. The
cross validation is performed by training and testing in parallel the base random forests. To this end
the parameter ncores allows to choose the number of cores to be used. Note that by selecting a
large number of cores a larger primary memory is needed, and this can be an issue if the data to be
analyzed are relatively large with respect to the available RAM memory. At each step of the cross
validation a subset of features is selected on the training set by choosing the features most correlated
(according to the Pearson correlation) with the response variable and then the selected features are
used to train and test the hyper-ensemble.

Value

a vector with the cross-validated hyperSMURF probabilities (hyperSMURF scores).

See Also

hyperSMURF.cv, hyperSMURF.cv.parallel

Examples

d <- imbalanced.data.generator(n.pos=10, n.neg=160, n.features=7,
n.inf.features=1, sd=0.3, seed=1);

if (Sys.info()['sysname']!="Windows")
res<-hyperSMURF.corr.cv.parallel (d$data, d$labels, kk=2, n.part=2, fp=1, ratio=2, k=5,

ntree=5, mtry=2, n.feature=3, seed = 1, fold.partition=NULL, ncores=2, file="");

hyperSMURF.cv hyperSMURF cross-validation

Description

Automated cross validation of hyperSMURF (hyper-ensemble SMote Undersampled Random Forests)

Usage

hyperSMURF.cv(data, y, kk = 5, n.part = 10, fp = 1, ratio = 1,
k = 5, ntree = 10, mtry = 5, cutoff = c(0.5, 0.5), thresh = FALSE,

seed = 0, fold.partition = NULL, file = "")

Arguments

data a data frame or matrix with the data

y a factor with the labels. 0:majority class, 1: minority class.

kk number of folds (def: 5)

n.part number of partitions (def. 10)

8 hyperSMURF.cv

fp multiplicative factor for the SMOTE oversampling of the minority class If fp<1
no oversampling is performed.

ratio ratio of the #majority/#minority

k number of the nearest neighbours for SMOTE oversampling (def. 5)

ntree number of trees of the base learner random forest (def. 10)

mtry number of the features to randomly selected by the decision tree of each base
random forest (def. 5)

cutoff a numeric vector of length 2. Cutoff for respectively the majority and minority
class. This parameter is meaningful when used with the thresholded version of
hyperSMURF parameter (thresh=TRUE)

thresh logical. If TRUE the thresholded version of hyperSMURF is executed (def:
FALSE)

seed initialization seed for the random generator. If set to 0(def.) no initialization is
performed

fold.partition vector of size nrow(data) with values in interval [0,kk). The values indicate the
fold of the cross validation of each example. If NULL (default) the folds are
randomly generated.

file name of the file where the cross-validated hyperSMURF models will be saved.
If file=="" (def.) no model is saved.

Details

The cross-validation is performed by randomly constructing the folds (parameter fold.partition
= NULL) or using a set of predefined folds listed in the parameter fold.partition. The cross
validation is performed by training and testing in sequence the base random forests. More precisely
for each training set constructed at each step of the cross validation a separated random forest is
trained sequentially for each of the n.part partitions of the data, by oversampling the minority
class (parameter fp) and undersampling the majority class (parameter ratio). The random forest
parameters ntree and mtry are the same for all the random forest of the hyper-ensemble.

Value

a vector with the cross-validated hyperSMURF probabilities (hyperSMURF scores).

See Also

hyperSMURF.corr.cv.parallel, hyperSMURF.corr.cv.parallel

Examples

d <- imbalanced.data.generator(n.pos=10, n.neg=300, sd=0.3);
res<-hyperSMURF.cv (d$data, d$labels, kk=2, n.part=3, fp=1, ratio=1, k=3, ntree=7,

mtry=2, seed = 1, fold.partition=NULL);

hyperSMURF.cv.parallel 9

hyperSMURF.cv.parallel

hyperSMURF cross-validation – parallel implementation

Description

Automated cross validation of hyperSMURF (hyper-ensemble SMote Undersampled Random Forests)
with both training and testing phase parallelized.

Usage

hyperSMURF.cv.parallel(data, y, kk = 5, n.part = 10, fp = 1, ratio = 1, k = 5,
ntree = 10, mtry = 5, seed = 0, fold.partition = NULL, ncores = 0, file = "")

Arguments

data a data frame or matrix with the data

y a factor with the labels. 0:majority class, 1: minority class.

kk number of folds (def: 5)

n.part number of partitions (def. 10)

fp multiplicative factor for the SMOTE oversampling of the minority class If fp<1
no oversampling is performed.

ratio ratio of the #majority/#minority

k number of the nearest neighbours for SMOTE oversampling (def. 5)

ntree number of trees of the base learner random forest

mtry number of the features to randomly selected by the decision tree of each base
random forest

seed initialization seed for the random generator (if set to 0(def.) no initialization is
performed)

fold.partition vector of size nrow(data) with values in interval [0, kk). The values indicate the
fold of the cross validation of each example. If NULL (default) the folds are
randomly generated.

ncores number of cores. If 0, the max number of cores - 1 is selected

file name of the file where the cross-validated hyperSMURF models will be saved.
If file=="" (def.) no model is saved.

Details

The cross-validation is performed by randomly constructing the folds (parameter fold.partition
= NULL) or using a set of predefined folds listed in the parameter fold.partition. The cross
validation is performed by training and testing in parallel the base random forests. More precisely
for each training set constructed at each step of the cross validation a separated random forest is
trained in each of the n.part partitions of the data, by oversampling the minority class (parameter

10 hyperSMURF.test

fp) and undersampling the majority class (parameter ratio). The random forest parameters ntree
and mtry are the same for all the random forest of the hyper-ensemble. The parameter ncores
allows to choose the number of cores to be used. Note that the selection of a large number of cores
when data to be analyzed are large can be an issue if the available RAM memory is relatively small.

Value

a vector with the cross-validated hyperSMURF probabilities (hyperSMURF scores).

See Also

hyperSMURF.cv, hyperSMURF.corr.cv.parallel

Examples

construction of a synthetic unbalanced data set
d <- imbalanced.data.generator(n.pos=10, n.neg=150, n.features=7,

n.inf.features=2, sd=0.1);
if (Sys.info()['sysname']!="Windows")

res<-hyperSMURF.cv.parallel (d$data, d$labels, kk=2, n.part=2, fp=1, ratio=1,
k=1, ntree=5, mtry=2, seed = 1, fold.partition=NULL, ncores=2, file="");

hyperSMURF.test Test of a hyperSMURF model

Description

A hyperSMURF model is tested on a given data set. Predictions of each RF of the hyperensemble
are performed sequentially and the scores of each ensemble are finally averaged.

Usage

hyperSMURF.test(data, HSmodel)

Arguments

data a data frame or matrix with the test data. Rows: examples; columns: features

HSmodel a list including the trained random forest models. The models have been trained
with hyperSMURF.train.parallel or with hyperSMURF.train

Value

a named vector with the computed probabilities for each example (hyperSMURF score)

See Also

hyperSMURF.test.parallel, hyperSMURF.train.parallel, hyperSMURF.train

hyperSMURF.test.parallel 11

Examples

train <- imbalanced.data.generator(n.pos=20, n.neg=1000,
n.features=10, n.inf.features=2, sd=0.1, seed=1);

HSmodel <- hyperSMURF.train(train$data, train$label,
n.part = 5, fp = 1, ratio = 2, k = 5);

test <- imbalanced.data.generator(n.pos=20, n.neg=1000,
n.features=10, n.inf.features=2, sd=0.1, seed=2);

res <- hyperSMURF.test(test$data, HSmodel);
y <- ifelse(test$labels==1,1,0);
pred <- ifelse(res>0.5,1,0);
table(pred,y);

hyperSMURF.test.parallel

Test of a hyperSMURF model – parallel version

Description

A hyperSMURF model is tested on a given data set. Predictions are performed in parallel: more
precisely each RF of the hyperensemble is executed independently and in parallel and the scores
are finally averaged.

Usage

hyperSMURF.test.parallel(data, HSmodel, ncores = 0)

Arguments

data a data frame or matrix with the test data. Rows: examples; columns: features

HSmodel a list including the trained random forest models. The models have been trained
with hyperSMURF.train.parallel or with hyperSMURF.train

ncores number of cores used for the parallel execution. If 0, the max number of cores -
1 is selected

Value

a named vector with the computed probabilities for each example (hyperSMURF score)

See Also

hyperSMURF.test, hyperSMURF.train.parallel, hyperSMURF.train

12 hyperSMURF.test.thresh

Examples

train <- imbalanced.data.generator(n.pos=10, n.neg=200,
n.features=10, n.inf.features=2, sd=0.2, seed=1);

if (Sys.info()['sysname']!="Windows")
HSmodel <- hyperSMURF.train.parallel(train$data, train$label,

n.part = 4, fp = 1, ratio = 2, k = 3, ncores=2);
test <- imbalanced.data.generator(n.pos=10, n.neg=200,

n.features=10, n.inf.features=2, sd=0.2, seed=2);
if (Sys.info()['sysname']!="Windows") {

res <- hyperSMURF.test.parallel(test$data, HSmodel, ncores=2);
y <- ifelse(test$labels==1,1,0);
pred <- ifelse(res>0.5,1,0);
table(pred,y);

}

hyperSMURF.test.thresh

Test of a thresholded hyperSMURF model

Description

The predictions of each random forest are discrete, i.e. 1 or 0: the probabilities are thresholded
according to the cutoff value set in the training phase. The threshold is embedded in the HSmodel
according to the cutoff parameter set in the training phase. The score computed by the hyperensem-
ble is the average of the discrete predictions generated by each base random forest.

Usage

hyperSMURF.test.thresh(data, HSmodel)

Arguments

data a data frame or matrix with the test data. Rows: examples; columns: features

HSmodel a list including the trained random forest models. The models have been trained
with hyperSMURF.train.parallel or with hyperSMURF.train. The threshold
is embedded in the model according to the cutoff value set in the training phase.

Value

a named vector with the computed probabilities for each example (HyeprSMURF thresholded score)

See Also

hyperSMURF.test, hyperSMURF.test.parallel, hyperSMURF.train.parallel, hyperSMURF.train

hyperSMURF.train 13

Examples

train <- imbalanced.data.generator(n.pos=20, n.neg=500,
n.features=10, n.inf.features=2, sd=0.1, seed=1);

HSmodel <- hyperSMURF.train(train$data, train$label, n.part = 5,
fp = 1, ratio = 2, k = 5, cutoff=c(0.3, 0.7));

test <- imbalanced.data.generator(n.pos=20, n.neg=500,
n.features=10, n.inf.features=2, sd=0.1, seed=2);

res <- hyperSMURF.test.thresh(test$data, HSmodel);

hyperSMURF.train hyperSMURF training

Description

A hyperSMURF model is trained on a given data set. Training data are partitioned, and each RF is
separately trained on each partition by SMOTE oversampling of the positives (minority class exam-
ples) and undersampling of the negatives (majority class examples). Each RF is trained sequentially

Usage

hyperSMURF.train(data, y, n.part = 10, fp = 1, ratio = 1, k = 5, ntree = 10,
mtry = 5, cutoff = c(0.5, 0.5), seed = 0, file = "")

Arguments

data a data frame or matrix with the train data. Rows: examples; columns: features

y a factor with the labels. 0:majority class, 1: minority class.

n.part number of partitions (def. 10)

fp multiplicative factor for the SMOTE oversampling of the minority class. If fp<1
no oversampling is performed.

ratio ratio of the #majority/#minority

k number of the nearest neighbours for SMOTE oversampling (def. 5)

ntree number of trees of the base learner random forest (def. 10)

mtry number of the features to randomly selected by the decision tree of each base
random forest (def.5)

cutoff a numeric vector of length 2. Cutoff for respectively the majority and minority
class. This parameter is meaningful when used with the thresholded version of
hyperSMURF (parameter thresh=TRUE)

seed initialization seed for the random generator. If set to 0(def.) no initialization is
performed

file name of the file where the cross-validated hyperSMURF models will be saved.
If file=="" (def.) no model is saved.

14 hyperSMURF.train.parallel

Details

A different random forest is trained on each partition of the training set. If npos and nneg are the
the number of respectively the positive and negative examples, for each partition of the training data
fp*npos new synthetic positives constructed by the SMOTE algorithm are added to the training set.
The number of negatives is set to ratio*(fp*npos + npos). If no enough negatives are available
in the partition, then all the negatives in the partition are used to train the base RF associated to the
partition.

Value

A list of trained RF models. Each element of the list is a randomForest objects of the homonymous
package.

See Also

hyperSMURF.test, hyperSMURF.test.parallel, hyperSMURF.train.parallel

Examples

train <- imbalanced.data.generator(n.pos=20, n.neg=1000,
n.features=10, n.inf.features=2, sd=1, seed=1);

HSmodel <- hyperSMURF.train(train$data, train$label, n.part = 5, fp = 1, ratio = 2);

hyperSMURF.train.parallel

hyperSMURF training – parallel version

Description

A hyperSMURF model is trained on a given data set. Training data are partitioned, and each RF
is separately trained on each partition by SMOTE oversampling of the positives (minority class
examples) and undersampling of the negatives (majority class examples). Each RF is trained inde-
pendently and using parallel computation.

Usage

hyperSMURF.train.parallel(data, y, n.part = 10, fp = 1, ratio = 1, k = 5,
ntree = 10, mtry = 5, cutoff = c(0.5, 0.5), seed = 0, ncores = 0, file = "")

Arguments

data a data frame or matrix with the train data. Rows: examples; columns: features

y a factor with the labels. 0:majority class, 1: minority class.

n.part number of partitions (def. 10)

fp multiplicative factor for the SMOTE oversampling of the minority class. If fp<1
no oversampling is performed.

hyperSMURF.train.parallel 15

ratio ratio of the #majority/#minority

k number of the nearest neighbours for SMOTE oversampling (def. 5)

ntree number of trees of the base learner random forest (def. 10)

mtry number of the features to randomly selected by the decision tree of each base
random forest (def.5)

cutoff a numeric vector of length 2. Cutoff for respectively the majority and minority
class. This parameter is meaningful when used with the thresholded version of
hyperSMURF (parameter thresh=TRUE)

seed initialization seed for the random generator. If set to 0(def.) no initialization is
performed

ncores number of cores used for the parallel execution. If 0, the max number of cores -
1 is selected

file name of the file where the cross-validated hyperSMURF models will be saved.
If file=="" (def.) no model is saved.

Details

A different random forest is trained on each partition of the training set. If npos and nneg are the
the number of respectively the positive and negative examples, for each partition of the training data
fp*npos new synthetic positives constructed by the SMOTE algorithm are added to the training set.
The number of negatives is set to ratio*(fp*npos + npos). If no enough negatives are available
in the partition, then all the negatives in the partition are used to train the base RF associated to the
partition. Each random forests are trained in parallel by exploiting the multi-core architecture of the
processors.

Value

A list of trained RF models. Each element of the list is a randomForest objects of the homonymous
package.

See Also

hyperSMURF.test, hyperSMURF.test.parallel, hyperSMURF.train

Examples

train <- imbalanced.data.generator(n.pos=20, n.neg=500,
n.features=10, n.inf.features=2, sd=1, seed=1);

if (Sys.info()['sysname']!="Windows")
HSmodel <- hyperSMURF.train.parallel(train$data, train$label,

n.part = 6, fp = 1, ratio = 2, k = 3, ncores=2);

16 imbalanced.data.generator

imbalanced.data.generator

Synthetic imbalanced data generator

Description

A variable number of minority and majority class examples are generated. All the features of
the majority class are distributed according to a Gaussian distribution with mean=0 and sd=1. Of
the overall n.features, n.inf. features of the minority class are distributed according to a gaussian
centered in 1 with standard deviation sd.

Usage

imbalanced.data.generator(n.pos=100, n.neg=2000,
n.features=10, n.inf.features=2, sd=1, seed=0)

Arguments

n.pos number of positive (minority class) examples (def. 100)

n.neg number of negative (majority class) examples (def. 2000)

n.features total number of features (def. 10)

n.inf.features number of informative features (def. 2)

sd standard deviation of the informative features (def.1)

seed initialization seed for the random number generator. If 0 (def) current clock time
is used.

Value

A list with two elements:

data the matrix of the synthetic data having pos+n.neg rows and n.features columns

labels a factor with the labels of he examples: 1 for minority and 0 for majority class

Examples

imbalanced.data.generator(n.pos=10, n.neg=200, n.features=6, n.inf.features=2, sd=1)

smote 17

smote SMOTE oversampling

Description

Function to oversample by SMOTE the minority class

Usage

smote(data, fp = 1, k = 5)

Arguments

data data frame or matrix of data including only the minority class. Rows: examples;
columns: features

fp multiplicative factor for the SMOTE oversampling of the minority class (def=1).
If fp<1 no oversampling is performed.

k number of the nearest neighbours for SMOTE oversampling (def. 5)

Details

If n is the number of examples of the minority class, then fp*n new synthetic examples are generated
according to the SMOTE algorithm and returned in addition to the original set of positives. If fp<1
no new data are generated and the original data set is returned

Value

a data frame including the original minority class examples plus the SMOTE oversampled data

See Also

smote_and_undersample

Examples

d <- imbalanced.data.generator(n.pos=20, n.neg=1000, n.features=12, n.inf.features=2, sd=1, seed=1);
res <- smote(d$data[d$label==1,], fp = 2, k = 3);

18 smote_and_undersample

smote_and_undersample SMOTE oversampling and undersampling

Description

Function to both oversample by SMOTE the minority class and undersample the majority class

Usage

smote_and_undersample(data, y, fp = 1, ratio = 1, k = 5)

Arguments

data a data frame or matrix. Rows: examples; columns: features

y a factor with the labels. 0:majority class, 1: minority class.

fp multiplicative factor for the SMOTE oversampling of the minority class. If fp<1
no oversampling is performed.

ratio ratio of the #majority/#minority

k number of the nearest neighbours for SMOTE oversampling (def. 5)

Details

If n is the number of examples of the minority class, then fp*n new synthetic examples are generated
according to the SMOTE algorithm and ratio*(fp*n + n) negative examples are undersampled form
the majority class.

Value

A list with two entries:

X a data frame including the original minority class examples plus the SMOTE
oversampled and undersampled data

Y a factor with the labels of the data frame

See Also

smote

Examples

d <- imbalanced.data.generator(n.pos=20, n.neg=1000, n.features=12, n.inf.features=2, sd=1, seed=1);
res <- smote_and_undersample(d$data, d$label, fp = 2, ratio = 3);

Index

do.random.partition, 3
do.stratified.cv.data, 4, 5
do.stratified.cv.data.from.folds, 4, 5

hyperSMURF (hyperSMURF-package), 2
hyperSMURF-package, 2
hyperSMURF.corr.cv.parallel, 6, 8, 10
hyperSMURF.cv, 7, 7, 10
hyperSMURF.cv.parallel, 7, 9
hyperSMURF.test, 10, 11, 12, 14, 15
hyperSMURF.test.parallel, 10, 11, 12, 14,

15
hyperSMURF.test.thresh, 12
hyperSMURF.train, 10–12, 13, 15
hyperSMURF.train.parallel, 10–12, 14, 14

imbalanced.data.generator, 16

smote, 17, 18
smote_and_undersample, 17, 18

19

	hyperSMURF-package
	do.random.partition
	do.stratified.cv.data
	do.stratified.cv.data.from.folds
	hyperSMURF.corr.cv.parallel
	hyperSMURF.cv
	hyperSMURF.cv.parallel
	hyperSMURF.test
	hyperSMURF.test.parallel
	hyperSMURF.test.thresh
	hyperSMURF.train
	hyperSMURF.train.parallel
	imbalanced.data.generator
	smote
	smote_and_undersample
	Index

