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1 Introduction

1.1 What is Survival Analysis?

Survival analysis is the modeling of time-to-event data. For example, a re-
searcher may be interested in modeling the distribution of time until engine
failure in a car or time until full recovery after a surgery. “Time” can be gen-
eralized to exposure; in the engine failure example, modeling miles driven until
failure may prove more precise than time until failure and would still be consid-
ered a survival analysis problem. All that is required to be a survival problem
is that we have a measure such that for each subject, if the measure is below
some value, the event has not occurred and if it is greater than or equal to this
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value, it has occurred. The term“survival”originates from the fact that in many
studies, the response of interest is time until death.

In theory, traditional statistical models (linear regression, ANOVA, etc.) can
be applied to model time-to-event data. In practice, it is found that there are
very frequently issues in the collected data that invalidate such models. These
include censoring, truncation (both to be explained soon) and non-normality.
As such, survival analysis tools are typically built to be robust to non-normality,
censoring and (less frequently) truncation.

1.1.1 Important Functions

In the field of survival analysis, three new functions are commonly used to
characterize a distribution. All three of these functions are a function of fT (t),
the pdf/pmf of the distribution of a random variable T . For convience, we also
define FT (t) to be the cumulative distribution function. The new functions are:

• Survival function: ST (t) = 1− FT (t)

• Hazard function: hT (t) = fT (t)
ST (t)

• Cumulative hazard function: HT (t) =

∫ t

−∞
hT (x)dx = − log(ST (t))

The survival function is easiest to interpret: ST (t) represents the probability
of survival (if the outcome of interest is death) up to time t. This value is a
probability, so we always have that S(t) ∈ [0, 1]. Likewise, S is necessarily a
decreasing (but not strictly decreasing) function. Two common assumptions are
that S(0) = 1, i.e., event times must be strictly positive, and S(∞) = 0, i.e., an
event will eventually happen with probability 1.

The hazard function is slightly more awkward to interpret: it is the fail-
ure rate at time t conditional on survival up to time t. Although the hazard
function is mostly motivated by the regression model built around it, in some
ways the hazard function may be more relevant than the pdf/pmf for certain
situations. For example, if a patient goes to a doctor to assess their risk of heart
disease, they are interested in their hazard rate (given that they have not suf-
fered heart disease), rather than the estimated pdf/pmf. The hazard function
is non-negative, but not to be confused with a pdf/pmf; the integral/sum is not
bounded by 1.

The cumulative hazard function does not have a nice interpretation, but
proves to be mathematically convienent in many problems. It is a non-negative
function.

1.2 What is Censoring?

Very frequentially, survival analysis studies exhibit censored data. This occurs
when an event time for a given study is not observed exactly, but rather only
known to have occurred within some range.

1.2.1 Types of Censoring

• Right censoring
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Right censoring occurs when an event time T is only known to be greater
than some observed value C. For example, suppose a study follows subjects and
records age of onset of cancer. The study ends in 10 years, and several of the
subjects never developed cancer. For these subjects, we do not know the age of
cancer development (Ti for subject i), other than it is greater than the age of
the subjects at the end of the study (Ci for subject i).

Standard notation for right censoring is to represent the response with a
tuple {Yi, δi}, with δi being an indicator for whether the event was observed to
have occurred in the study. Formally,

δi =

{
1 if Yi < Ci

0 if Yi ≥ Ci

. If δi = 1, Yi is the observed event time for the ith subject (i.e., Yi = Ti).
If δi = 0, Yi is the last time in which it is known the event has not occurred for
the ith subject (Yi = Ci).

The vast majority of the survival analysis literature focusses on right cen-
soring.

• Left censoring

Left censoring occurs when an event is only known to have occurred before
some observed value C. In the cancer study example, suppose a subject enrolled
in the study and during the initial screening, they tested positive for cancer. In
this case, the age of onset is known to be lower than the age at tested. In this
case, C represents the earliest time for which the event has already occurred.

Similar to right censoring, left censored data is often represented with the
tuple {Yi, δi}, with Yi = Ti if Ci ≤ Ti (i.e. uncensored) and Yi = Ci if Ci > Ti
and δi being an indictor for whether the ith subject was left censored.

• Interval censoring

Interval censoring occurs when event times are only known up to an interval.
In the cancer study example, suppose subjects had semi-regular doctor check
ups. If a subject tested negative at one check up, but positive at the next, all
that is known is that the onset occurred sometime between check ups. If these
check ups are performed with high frequency (i.e., monthly check ups in this
case), ignoring the interval censoring by using some simple imputation strategy
will likely be inconsequential. However, if the check ups are less frequent such
that using inappropriate imputation methods could significantly affect inference,
interval censoring methods should be used for valid inference.

Interval censored responses are typically represented with the tuple {Li, Ui},
where Li the lower end of the interval capturing the true event time for the
ith subject and Ui represents upper end of the interval. This allows for right
censoring (Ui = ∞), left censoring (Li = 0), general interval censoring (0 <
Li < Ui <∞) and uncensored data (Li = Ui).

A special case of interval censoring is current status data. This occurs when
each subject is only inspected a single time. If the event has already occurred
at the time of inspection, that subject is left censored, otherwise it is right
censored. Data may be collected in this manner for cost effectiveness (no need
to follow patients) or because inspection may alter the samples. As an example,
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sensitivity analysis for explosives involves testing new materials at different levels
of impact. It is assumed that for each sample, impacts above a certain threshold
will always trigger the explosive, below this threshold will never trigger the
explsives, and that this threshold is random for each sample. After a failed test
(i.e., failed to detonate), the sample will be damaged and is no longer suited
for retesting. This results in current status data; instead of time, the exposure
measurement is force of impact. If a sample failed to detonate at its tested level,
it is right censored. If a sample successfully detonated, it is left censored.

1.3 Censoring and the likelihood function

We cover the case of right censoring in detail and state the results for left
censoring and interval censoring.

As stated above, for each subject there exists a response time Ti and a
censoring time Ci. The tuple {Yi, δi} is observed for each subject. Defining
fT,C(t, c,Θ) to be the joint pdf of Ti and Ci, conditional on some parameters
set Θ, we can write the joint pdf of {Yi, δi} 1 as

fYi,δi(y, δ) =

(∫ y

−∞
fT,C(y, x,Θ)dx

)δ (∫ ∞
y

fT,C(x, y,Θ)dx

)(1−δ)

.

In otherwords, if Yi is uncensored with value y, then Ci ≤ y and so we
intergrate over this range of Ci in the pdf of {Yi, δi}. If Yi is censored, then
Ti > y, and we integrate over this range of Ti in the pdf.

In order to make this problem more tractable, it is often assumed Ti and Ci
are independent, conditional on two sets of parameters ΘT (associated with the
distribution of Ti) and ΘC (associated with the distribution of Ci). Under this
assumption of independence, the joint pdf of {Yi, δi} can be factored into

fY,δi(y, δ) =

(
fT (y,ΘT )×

∫ y

−∞
fC(x,ΘC)dx

)δ (∫ ∞
y

fT (x,Θ)dx× fC(y,ΘC)

)(1−δ)

= (fT (y,ΘT )× (1− SC(y,ΘC))
δ

(ST (y,ΘT )× fC(y,ΘC))
(1−δ)

.

= fT (y,ΘT )δST (y,ΘT )1−δ × fC(y,ΘC)1−δ(1− SC(y,ΘC)δ)

When the assumption of independence of Ti and Ci is used, typically the
researcher is only concerned with estimation of ΘT . As such, only the partial
log likelihood

n∑
i=1

log
(
fT (yi,ΘT )δiST (yi,ΘT )1−δi

)
(1)

is relevant in the estimation of ΘT .

1Technical note: the pdf presented is under the condition that Ci is unknown if the event
is uncensored. In some cases, both Ti and Ci may be known. We will see that this distinction
is inconsequential under the standard assumption of independence of Ti and Ci.
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In the case of left censoring, the results are nearly identical; under the as-
sumption of indepedence of Ti and Ci, the relevant partial pdf of {Yi, δi} can
be written as

fT (y,ΘT )δi(1− ST (y,ΘT ))1−δi

For interval censoring, the results are slightly more complicated. In this
case, there is a sequence of inspection times Ci1, Ci2, ... for each subject i. We
observe Li = max{Cij : Cij ≤ Ti} and Ri = min{Cij : Cij ≥ Ti}. Note
that it is possible for Li = Ri, resulting in an uncensored observation. The
simplifying assumption is that this sequence of inspection times is independent
of Ti (though clearly Li and Ri will not be). We also define δi = I{Li=Ri}
(an indicator function for whether the time was observed exactly). Then the
relevant partial pdf can be written as

n∑
i=1

log
(
fT (Li)

δi(ST (Li)− ST (Ri))
1−δi

)
. (2)

1.4 Truncation

Another issue that can arise in surival studies is that of truncation. In this case,
the event time affects the probability of a subject being in the sample. The
difference between a censored subject and truncated subject is that a censored
subject was in the sample, but only partial information about the event time is
known (e.g., Ti > Ci). A truncated subject does not appear in the sample at
all.

To illustrate, consider our cancer study example. A subject who was enrolled
and tested positive for cancer at the initial screening would be left censored. A
subject who developed cancer prior to the study and died before the study began
would be truncated; because of their early event time, they had probability 0 of
entering the study.

1.5 Motivating examples

1.5.1 Right censoring

As an example of right censoring, we consider the retinopathy dataset in the
survival package included in R. In this study, subjects at high risk for diabetic
retinopathy were assigned to one of two laser treatments randomly assigned
to one of their eyes, with no treatment applied to their other eye. They were
followed and an event was considered to have occurred when they scored less
than 5/200 on a vision test for a particular eye two visits in a row. Note that a
single patient could have two different event times for each eye. For illustration,
we present the first few rows of the dataset below.

> library(survival)

> data(retinopathy)

> head(retinopathy)
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id laser eye age type trt futime status risk

1 5 argon left 28 adult 1 46.23 0 9

2 5 argon left 28 adult 0 46.23 0 9

3 14 argon right 12 juvenile 1 42.50 0 8

4 14 argon right 12 juvenile 0 31.30 1 6

5 16 xenon right 9 juvenile 1 42.27 0 11

6 16 xenon right 9 juvenile 0 42.27 0 11

The variable status represents the evaluation of the eye at the last check
up, with zero representing no event (vision scores did not drop below threshold)
and one representing an event has occurred. Censoring was caused by three
mechanisms; death, drop out or end of study. The variable futime represents
follow up time, i.e. time from beginning of the study until either the last
examination (status == 0) or first examination in which it was decided that
the event had occurred (status == 1).

Looking at our sample data, we see subject id 14 suffered an event in their
right2 31.3 months into the study. No other events were observed during the
course of the study in the sample shown above.

We note that this dataset could be considered to be interval censored rather
than right censored; presumably eye failure did not happen at the time of check
ups, but between check ups. However, since previous check up time is not
available for subjects who experienced an event, we will assume that the time
between check ups was short enough that the interval-censored aspect of the
data can be ignored.

1.5.2 Interval censoring

For interval censoring, we will consider the IR_diabetes dataset found in icen-
Reg. This includes data collected on based on semi-regular doctor checkups,
inspecting for diabetic nephronpathy. Three variables are included: gender,
left (last time subject was known not have diabetic nephronpathy) and right

(first time subject was known to have diabetic nephronpathy).

> library(icenReg)

> data("IR_diabetes")

> head(IR_diabetes)

left right gender

1 24 27 male

2 22 22 female

3 37 39 male

4 20 20 male

5 1 16 male

6 8 20 female

Note that some of this data is recorded as exact observations, such as subjects
2 and 4, and some as intervals. This is a result of the frequency of doctor
checkups.

2Somewhat confusingly, the variable eye refers to which eye was treated, not which is
presented in the given row. For example, subject id 5 was treated in their left eye. This eye
is represented in row 1, as trt = 1, and the right eye is represented in row 2.
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2 Fundamental survival estimators

2.1 Why mean estimators are avoided

Most statistical models focus on estimating means and mean effects. In sur-
vival analysis, focus is typically on the quantiles, and difference in quantiles.
This is at least partially motatived by the issue of censoring. To illustrate, sup-
pose a researcher has a data set in which the top 10% of observations are right
censored. In this case, the researcher would be unable to make any inference
about the mean, or difference in means between two groups, without strong,
untestable assumptions about the tails of the distribution. This issue is further
compounded by the observation that survival data is often heavily right skewed.
On the other hand, the censoring would not affect the estimation of the me-
dian, so a researcher could compare medians without worrying about untestable
assumptions. Similarly, non-parametric and semi-parametric models are often
preferred over fully parametric models, as parametric assumptions are difficult
to evaluate due to censoring.

2.2 Univariate estimators

2.2.1 Kaplan Meier curves

Kaplan Meier curves are a generalization of the empirical distribution function
(EDF) that allow consistent estimation of the survival curves in the prescence
of right censoring.

The Kaplan Meier curves are formed by creating building up a discrete non-
parametric hazard function, summing over this function to get the cumulative
hazard function and finally transforming this into an estimated survival curve.

The Kaplan Meier curves are defined by

Ŝ(t) =

j−1∏
i=1

(
1− di

ri

)
, yj−1 ≤ t < yj

where yj is the j-th ordered observed event time, di is the number of events
observed at time yi and ri is the risk set3 at time yi. This estimator can be
derivated as a Method-of-Moments estimator; (1− di/si) is an estimate for the
probability of survival over (yi−1, yi), conditional on survival up to yi−1, or
Ŝ(ti|t > ti−1) = (1− di/si). These estimates are then combined in that

Ŝ(tk) = Ŝ(t1)Ŝ(t2|t > t1)...Ŝ(tk|t > tk−1).

The Kaplan Meier estimator produces a step function, much like the EDF.
Unlike the EDF, these steps can get much larger toward the tails if heavy cen-
soring is observed.

Below, we plot the Kaplan Meier curves for the treated and untreated eyes
in the eye treatment dataset. This first involves creating a Surv response object.

Visually examining these curves, we can see right away that untreated eyes
are experiencing diabetic retinopathy at a much higher rate than treated eyes.
Note that these curves do not go below 0.6 and 0.3. This is because a large

3risk set at time t is defined as subjects who have not yet either experienced an event or
been censored by time t
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> # Creating Surv response object

> surv_resp <- Surv(time = retinopathy$futime,

+ event = retinopathy$status)

> # time defines response time

> # event defines whether an event occurred (1)

> # or whether observation was censored (0)

>

> # Fitting Kaplan Meier Curve

> km_fit <- survfit(surv_resp ~ trt,

+ data = retinopathy)

> # Plotting curves

> plot(km_fit, col = c('red', 'blue'), lwd = 2)

> legend('bottomleft', legend = c('Untreated', 'Treated'),
+ col = c('red', 'blue'), lwd = 2)
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Figure 1: Retinopathy Kaplan Meier curves

8



percentage of the subjects never experienced diabetic retinopathy during the
course of the study, so one cannot obtain non-parametric estimates of the tails
from the data alone.

2.2.2 NPMLE

Just as the Kaplan Meier curves are a generalization of the EDF that allows for
right censoring, the non-parametric maximum likelihood estimator (NPMLE)
is a generalization of the Kaplan Meier curves that allow for general interval
censoring. In the case that each event time is known to be in the closed interval
[Li, Ri], the estimator can be written as

Ŝ(t) = arg max
S

n∑
i=1

log(S(L−i )− S(Ri))

S(t) ∈ [0, 1]

S decreasing

It can be shown that with only right censored data, the NPMLE will result
in the Kaplan Meier estimator. In the general case, the NPMLE is not in closed
form and must be solved for iteratively.

The NPMLE assigns probability mass only to Turnbull intervals. A Turnbull
interval is an interval [Li, Rj ] made up of the left and right side of (potentially
different) observation intervals such that no other end points lie inbetween. How
the probability is assigned within these intervals does not affect the likelihood
function, so the NPMLE is defined only up to an interval (although with ties
in the data, these intervals can be of length 0). This is sometimes referred to
as representational non-uniqueness. To demonstrate this, we borrow the bcos

from the interval package.
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> library(interval)

> data(bcos)

> # Fit the NPMLE for each treatment group

> npmle_fit <- ic_np(cbind(left, right) ~ treatment,

+ data = bcos)

> plot(npmle_fit)
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Figure 2: NPMLEs for breast cancer dataset

Note that for some sections of each estimated survival curve, the estimated
survival probability is given up to an interval, rather than a single point estimate.
This is a realization of representational non-uniqueness.

For the remainder of this work, we will use the IR_diabetes data set for
demonstrational purposes. Below is the plotted NPMLE.
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> npmle_fit <- ic_np(cbind(left, right) ~ gender,

+ data = IR_diabetes)

> plot(npmle_fit, col = c('red', 'blue') )
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Figure 3: NPMLE for diabetes dataset

We note that visually, there appears to be no issue with representational
non-uniqueness in this example. This is due to the many ties in the data, which
collapse the Turnbull intervals down to a single point for any given t.

2.2.3 Parametric Models

Using the likelihood functions presented in 1.3, standard fully parametric max-
imum likelihood (MLE) or Bayesian models can be fit for censored data. Com-
monly used parametric families include the exponential distribution, Weibull,
gamma, log-normal and log-logisitic to name a few. Note that for all these
models, S(0) = 1, a standard assumption in survival analysis.

In partice, the single parameter exponential distribution [TO BE COM-
PLETED]

2.3 Regression models

Generalized linear models (GLM’s) have the relation that

E[yi|xi, β] = g(xiβ)
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where g is the link function connecting the linear predictor (xiβ) to the
conditional mean of yi. Traditional survival regression models are linear models,
similar to GLM’s, but the effect of the covariates can typically be most succinctly
described as an effect on various baseline survival functions rather than the
expected value. As such, survival regression models will typically be defined so
that they can be written as

S(t|x, β) = g(So(t), xβ)

where S represents the survival function conditional on the covariates and
regression parameters and So represents the baseline survival distribution, i.e.
the survival distribution for a subject with all 0 covariates.

2.3.1 Proportional hazards

One of the most popular regression models is the proportional hazards model.
The model can be defined as

h(ti|xi, β) = ho(ti)e
xiβ

where h(t|xi, β) is the hazard for subject i conditional on covariates xi and
ho(t) is a baseline hazard rate, i.e. the hazard rate for a subject with covariates
all equal to 0. In other words, for a subject with covariates xi, their current
hazard is exiβ times higher than a baseline subject at any given time. With a
little bit of algebra, it can be shown that the proportional hazards assumption
is equivalent to

S(ti|xi, β) = So(ti)
exiβ

.
Note that the relation between the hazards rates is constant as a func-

tion of time enforcing the proportional-hazards assumption, which should be
inspected. For example, consider a hypothetical experiement with two groups
of cancer patients, one treated with chemotherapy, one not receiving treatment.
Chemotherapy is an extremely damaging treatment, so shortly after treatment,
the chemotherapy group will have higher hazards than the untreated group.
However, once the treated group recovers from the chemotherapy, they are at
much lower risk than the untreated group.
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Figure 4: Hazard functions for chemotherapy vs untreated subject. The pro-
portional hazards assumption for the Cox-PH model is clearly inappropriate.

A typical rule of thumb for assessing proportional hazards is that if the
estimated survival curves cross, the hazards are likely non-proportional4. It’s
worth noting that crossing survival curves is a much stronger condition than
non-proportional hazards. As such, crossing survival curves should be seen as
evidence of very strong violations of the proportional hazards assumption. In
fact, crossing survival functions is a strong violation of any of regression models
discussed in this work. Other methods for model inspection will be discussed
later.

Using the relation S(t) = e
∫ t
−∞−h(x)dx, we calculate the survival curves from

the hazard curves in the chemotherapy treatment example. We see that the
survival curves do in fact cross for the two groups.

4An exception to the crossing survival curves rule is that crossing of the estimated extreme
tails is less worrisome, as estimates of the extreme tails are typically very noisy.
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Figure 5: Survival curves for chemo and untreated patients

Now let’s consider a case where the proportional hazards model is more
appropriate; lung cancer rates between smokers and non-smokers. Over time,
the hazard rates for each group is non-constant, as the current risk of cancer
increases as subjects age. But it seems quite reasonable that the risk of cancer
is, say, twice as high for smokers at any given time. On figure 6, we see what
might be reasonable hazard functions for smokers and non-smokers.
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Figure 6: Hazard functions for smokers vs non-smokers. The proportional haz-
ards assumption holds true for this data.

On figure 7, we see the survival curves generated from the hazard functions
on figure 6.
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Figure 7: Survival functions for lung cancer for smokers and non-smokers.

2.3.2 Accelerated failure time

The accelerated failure time (AFT) model is built on the relation

S(ti|xi, β) = So(tie
−xiβ)

.
In otherwords, a subject with covariates xi experience events e−xiβ times

faster than subjects with xi = 0. One advantage of the AFT model is the
ease of interpretation; it is very common for casual users of survival analysis to
interpret a Cox-PH model as an AFT model, i.e. it is a common mistake to
state that doubling the hazard implies events occur twice as fast.

If the baseline survival distribution So is a Weibull distribution, then the
AFT model is equivalent to the proportional hazards model, up to a linear
transformation of the regression parameters. In such a case, it is recommended
to use the AFT parameterization due to easier interpretation of regression co-
efficients. It does not hold that these models are generally equivalent, however.

As a motivating example, consider a crew of workers working on a task. An
AFT model may do a good job of capturing the relation between crew size and
time to completion of task; a (somewhat overly optimisitic) model may be that
a crew of 4 is twice as fast as a crew of 2, which is twice as fast as a crew of
1. That could be represented with an AFT model in which one covariate was
log(crew size) with β = 1. We can then see that the time to completion for a
crew of size x would be
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elog(x)×1 = x

times faster than a crew of size 1. Economists would point out that this
model is overly optimistic, as it defies the law of dimensioning returns. As such,
they may argue that β < 1.

For visual representation, we plot the survival curve for an AFT model re-
lating log crew size to completion time with β = 1.
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Figure 8: Survival curve for completion time by crew size with an AFT model.

Close examination of figure 8 will reveal that at any given quantile of crew
size two will be twice that of crew size four and half that of crew size one.

2.3.3 Proportional odds

The proportional odds model is built off the following relation:

S(t|x, β)

1− S(t|x, β)
= exβ

So(t)

1− So(t)
.

In otherwords, the odds of survival at any given time is eβ times higher for
a subject with a one unit higher value of x. Interestingly, with the special case
of current status data, it can be shown that fitting a proportional odds model
is equivalent to using logistic regression with log(t) as a predictor.
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