The R package ‘icosa’ v0.9 for global triangular and
hexagonal gridding

Addm T. Kocsis
2017-04-17

Introduction

The purpose of this vignette is to demonstrate the basic usage of the ’icosa’ package, explain object structures
and basic functionalities. The primary targeted application of the package is in global biological sciences
(e.g. in macroecological, biogeographical analyses), but other fields might find the structures and procedures
relevant, given that they operate with point coordinate data. This is just a brief introduction to the package’s
capabilities and will be expanded substantially in the future.

The grids

The primary problem with ecological samples is that due to density and uniformity issues, the data points
are to be aggregated to distinct units. As coordinate recording is very efficient on the 2d surface of a polar
coordinate system (i.e. latiude and longitude data), this was primarly achieved by rectangular gridding of the
surface (for instance 1°x1° grid cells). Unfortunately, this method suffers from systematic biasing effects: as
the poles are approached, the cells become smaller in area, and come closer together.

The ’icosa’ package approaches this problem from one of the most straightforward ways, by tessellation of a
regular icosahedron to a given resolution. This procedure ends up with a polyhedral object of triangular faces
of higly isometric properties: very similar shapes of cells which are roughly equally distanced, and similar in
cell area.

Basic procedures
Grid creation

To create a triangular grid use the function trigrid ()’

library(icosa)
create a trigrid class object
tri <- trigrid()

the show() method displays basic information
tri

A/An trigrid object with 12 vertices, 30 edges and 20 faces.
The mean grid edge length is 7053.65 km or 63.43 degrees.
Use plot3d() to see a 3d render.

plot the object in 3d
plot3d(tri, guides=F)

Without any specified additional entry, the first line will create an icosahedron with the center of 'c(0,0,0)’
Cartesian coordinates and the ‘R2’ (authalic, as defined by IUGG (1)) radius of Earth between the object
center and the vertices. These can be altered by setting the 'radius’ and 'center’ arguments if necessary.
When dealing with properly georeferenced data, the model ellipsoid (or in this case, the sphere) is to be taken
into account when the data and the grid interact. Therefore a slot called 'projé4strig’ is added to the grid
object, which contains a CRS class string generated automatically from the input radius. With the default
settings this is:

tri@proj4string

CRS arguments: +proj=longlat +a=6371007 +b=6371007
Setting the first argument of the trigrid ()’ function will create more complex objects that have tessellated
faces:

create a trigrid class object
glow <- trigrid(tessellation=c(4,4))

plot the object in 3d
plot3d(glow, guides=F)

The result is another 'trigrid’ class object with the tessellation vector of ’c(4,4)". The tessellation vector is
the primary argument influencing grid resolution. It consists of integer values which are larger than 1. These
values will be passed in sequence to the tessellation function, using the result of the previous round as an
input. In the example of the 'c(4,4)’ grid, the icosahedron will be tessellated with the value of 4 in the first
round, meaning that every edge of the 20 faces are split to 4, which then results in 4x4 new triangular faces
instead of the one original (4x4x20 new faces in total). The second round will be repeated for every newly
formed face as well, so the total resolution of the grid will be 4x4x4x4x20 faces.

The obvious question is then: what is the difference between the 'c(2,2,2,2))’, 'c(4,4)’, ’c(8,2)’, 'c(2,8)’
and ’c(16)’ grids? The answer depends on the applied tessellation method. The icosahedron itself is smaller
in surface area and volume than the sphere. The points created between the faces need to be projected to the
sphere, which can be done in a number of different ways.

The current version of the 'icosa’ package uses a single tessellation method, which requires the least amount
of information to provide a consistent output: The "meanGC"’ method uses spherical functions to calculate
new points directly on the great circles that connect points which are on a single edge without any sort of
projection. The internal points are calculated by connecting the newly formed points on the edges. This
results in some scatter for these internal points, as their position depends on the pair of edges that are
connected. In this method, the points are defined as their centroids projected to the surface of the sphere,
which results in a systematic increase in cell area as the center of the tessellated face is approached. Therefore,
the answer to the question of the different tessellation vectors is: the number of faces will be equal as that is
set by the total product of the tessellation vector, but as every tessellation round includes the above described
procedure, the cell areas, cell shapes will be somewhat different with these. In the future, multiple tessellation
methods are to be incorporated that produce grid cells with exactly the same areas just to mention one.

As grid complexity increases the time to create the structure increases as well (The highest resolution grid
so far was the 'c(10,10,4)’ trigrid, which took about 2,500 seconds using a single thread of an Intel Xeon
E5-1620 processor, it had 3,200,000 faces, the mean edge length of 0.17 degrees (20km) and its size was almost
2GB). Performance also becomes an issue with very large tessellation values, as they currently incorporate
distance matrix calculations (will be updated later, if required).

A rectangular grid has an additional problem that is not solved by triangular replacement, which is the
definition of neighbouring cells. With both the rectangular and the triangular grid, two types of possible
connections exist: cells can share either one or two vertices (an edge), which leads to problems with cell to
cell relationship calculations. The inversion of the triangular grid solves this problem: if every center of the
face becomes a new vertex a hexagonal pattern emerges, which creates a neighbourhood pattern where the
neighbouring faces can share exactly two vertices only. Every resolution triangular grid can be turned to a
penta-hexagonal one, which is directly created by the 'hexagrid ()’ function.

create a hezagrid object
hLow <- hexagrid()

plot 2t in 3d
plot3d(hLow, guides=F)

By default ("tessellation=1’), the ’hexagrid()’ function inverts the regular icosahedron, creating a regular
pentagonal-dodecahedron. This object paradoxically has no hexagonal faces. Increasing the tessellation
vector, however, will add these, while keeping the 12 pentagonal faces at the positions which were originally
containing the icosahedron’s vertices.

create a hexzagrid object
hLow <- hexagrid(c(4,4))

plot 2t in 3d
plot3d(hLow)

The function of the tessellation vector is exactly the same as for the 'trigrid ()’ function, which is invoked by
the 'hexagrid ()’ function before the inversion is implemented. This naturally leads to an equality between
the vertex numbers of the hexagrid and face numbers of the trigrid, and the face numbers of the trigrid and
the vertex numbers of the hexagrid objects.

All methods that are implemented for the trigrid are implemented for the hexagrid as well. The examples
that follow use the two types of grids at random, and work interchangably.

Grid structure

The grids implented by this package represent compound objects that have different ‘dimensions’. For example,
grids represent both a regular 3d object structure and an object of interconnected cells. The primary 3d
structure of the grid is similar to a generic 3d .obj file structure. There are two main tables: one contains
the grid vertex coordinates and the other contains which coordinates form which faces. This information is
stored by the vertices and faces slots, respectively:

the beginning of the wertices matriz
head (gLow@vertices)

X y z
P1 0.0000 -1.854072e-13 6371.007
P2 -418.9419 -1.361225e+02 6355.760
P3 0.0000 -4.405015e+02 6355.760
P4 418.9419 -1.361225e+02 6355.760
P5 258.9203 3.563732e+02 6355.760
P6 -258.9203 3.563732e+02 6355.760

the beginning of the faces matriz
head(gLow@faces)

#it [,11 [,2]1 [,3]

F1 "P1" "P2" "P3"
F2 "P1" "P3" "P4"
F3 "P1" "P5" "PA4"
F4 "P1" "P5" "P6"
F5 "P1" "P2" "P6"
F6 "P2" "P6" "PT"

The information content is stored and all the calculations are executed in XYZ Cartesian space instead
of a polar coordinate system. This facilitates the definition of additional projection methods, potential
grid-grid interaction, 3d plotting and calculations, and it also permits higher overall flexibility. The Cartesian
coordinates are based on the value of the grid radius and center.

grid radius
gLow@r

[1] 6371.007

grid center
glow@center

[11 00O
The centers of the faces can also be directly accessed in a format that is similar to the grid vertices format:

head(gLow@faceCenters)

X vy z
F1 -139.7730 -192.3810 6366.568
F2 139.7730 -192.3810 6366.568
F3 226.1574 73.4830 6366.568
F4 0.0000 237.7960 6366.568
F5 -226.1574 73.4830 6366.568
F6 -453.0188 147.1947 6353.176

Both the 'vertices’ and the 'faceCenters ()’ slots are accessible using the shorthand functions 'vertices()’
and ’centers()’, which also do coordinate transformations, if requested.

The vertices forming the edges (these are not ordered in the current version) can be extracted from the
‘edges’ slot:

head (gLow@edges)

#it [,11 [,2]
El llPlll IIP3|I
E2 "P1" "P4"
E3 "P3" "P4"
E4 "P39" "P22"
E5 "P39" "P40"
E6 "P22" "P40"

Each grid has an orientation which is stored in the 'orientation’ slot. The values are in radians, and denote
the xyz rotation relative to the default. The faces and vertices table are organized so that both vertices and
faces spiral down from the zenith point to the nadir. This can be visualized in 3d using the 'gridlabs3d()’
function.

plot3d(gLlow)
gridlabs3d(glow, type="v'", col="blue", cex=0.6)

The grid orientation can be changed using the ’rotate()’ function. To see the effect of this on the 3d
plots, compare the orientations of the grids using the ’guides3d ()’ function that displays the polar gridding
oriented to match the cartesian coordinate system.

glow2 <- rotate(glow) # random rotation
plot3d(gLow2)
guides3d(col="green")

Subsetting

In case only one part of the grid is required for a certain calculation, procedure or analysis, the subset function
can be used on the grid.

select faces F1000 through F1800

gLowSub <- subset(glow, paste("F",1000:1800, sep=""))

plot3d(gLowSub)

Even though the grid faces are ordered in a spiral from higher to lower latitudes, it can be somewhat difficult
to find the subsets of a grid based on the indices alone. Therefore the ’subset ()’ function accepts one
additional type of numeric subscripting, by setting the minimum/maximum latitude/longitude values of the
face centers. Let’s suppose that you need all grid cells below the latitude of 30 degrees. In this case the
subscript vector should contain an element which is named ’lamax’:

numeric subscript: polar coordinates
gLowSub3<-gLow [c(lamax=30)]
plot3d(gLowSub3)

If you want the subset to be confined between -30°, 30° latitudes and -120°, 60° longitudes:

numeric subscript: polar coordinates
gLowSub4<-gLow [c(lamax=30, lamin=-30, lomin=-120,lomax=-60)]
plot3d(gLowSub4)

10

Spatial positions of the cells is somewhat different than the longitudinal-latitudinal structure that we are
accustomed to, which is the reason for the jagged edges in these subsets. Still, the cells are forming latitudinal
bands, which in can be accessed using the 'belts’ slot. This slot contains the number of latitudinal belt the
face belongs to.

logical subscript
gLowSubb5<-gLow [gLow@belts==17]

the 17th belt
plot3d(gLow)
faces3d(glLowSub5, col="blue")

The package was designed so that an intermediately skilled R user can get all the wanted data at a somewhat
lower level of programming. For instance, the average latitude of the belt selected above can be calculated
with a combination of basic functions and slot access:

transform the faceCenter coordinates
longlat <- CarToPol(gLowSub5@faceCenters, norad=T)
mean(longlat[,2])

[1] 28.02662
The Grid Skeleton

The grid structure contains a skeleton slot which is a list containing most information that is represented in
the other slots (UI, or ,user interface“). As resolution increases, the iterative methods implemented in R
become less and less effective, so most of the calculations are done with C or C++ (Rcpp). The tessellation
procedure also results in a hierarchical ordering of faces and vertices which can make handling data that are
assigned to the indices very difficult to handle. Therefore, the information present in the grid is doubled: one
for the R user (1-based indexing, character —rownames,colnames- references, north-south ordering) and one
for the functions of the package (0-based indexing, integer row/column indices, hierarchical ordering).

11

str(gLow@skeleton)

List of 10

##t $ v : num [1:2562, 1:3] 0 0 O O 3349 ...

$ av : num [1:2562] 1 1961 633 2562 665 ...

$ uiv : Named num [1:2562] 1 301 163 166 427 430 682 302 307 164 ...
..— attr(*, "names")= chr [1:2562] "P1" "p2" "p3" "p4"

$ e : num [1:7680, 1:2] 0 0 162 12 12 164 15 15 167 162 ...
$ aE : logi [1:7680] TRUE TRUE TRUE TRUE TRUE TRUE ...

##t ¢ f : num [1:5460, 1:5] 00 0 0 0 9 11 9 1 11

¢ aF : num [1:5460] 0 00O OO O0OO0O0O0O0 ...

$ uiF : Named num [1:5120] 257 1 769 513 1025 ...

..— attr(x, "names")= chr [1:5120] "Fi" "F2" "F3" "F4"

#* $n : num [1:5120, 1:4] 01 23 053149 ...

$ offsetF: num 340

The ’subset ()’ function will also affect the grid skeleton and the UI differently: the information will be
omitted from the Ul during subsetting, but everything will be kept in the grid skeleton.

Plotting

Both 3d and 2d plotting are incorporated in the package. As the grid structure exists in 3d space, 3d is
the default plotting scheme which is implemented with the package 'rgl’. All 3d plotting functions pass
arguments to either the’points3d()’, 'segments3d()’, 'triangles3d ()’ and ’text3d ()’ functions.

The 'plot3d()’ method of the grids call for either the border plotting function 'lines3d()’ or the face
plotting function 'faces3d ()’ In a workflow involving 3d plotting, these functions are used usually to create
a compound plot representing different types of information. Experiment with these to optimize the 3d
plotting experience.

The inner sphere is plotted by default, but can be turned off by setting the ’sphere’ argument of the
'plot3d ()’ function to 'FALSE’ The radius of the sphere can also be set using this argument. In case it is not
set by the user, it defaults to the distance of the planar face center from the center of the grid.

The 3d plots so far showed only linear edges, but the plotting of arcs can be forced by setting the ’arcs’
argument to 'TRUE’.

plot3d(tri, guides=F, arcs=T, sphere=6300)

12

The nature of the triangular/hexagonal grids is that they are intuitive in 3 dimensions, but behave cumbersome
in 2d projections. Still, in any sort of printed or software publications, maps are the primary way to publish
geographic data, which renders the projections very important. This part of the package is linked to the 'sp’
and 'rgdal’ packages, which deal with the projection of data.

Each grid can be converted to either a ’Spatiallines’ or a ’SpatialPolygons’ object defined by the ’sp’
package. Two dimensional plotting can only happen if the 2d representation is calculated, which is (to save
computation time) not automatic, but can be called for on demand.

The function 'SpPolygons ()’ and ’SpLines’ will create separate objects, while the 'newsp ()’ function will
append the SpatialPolygons object to the grid structure to the predefined ’sp’ slot. If requested, this procedure
can be run when the grid is created (by setting the 'sp’ argument of the 'trigrid()’ and 'hexagrid’ functions),
but it is turned off by default to increase performance.

hLow <- newsp(hLow)
After this procedure finishes, a regular 2d plotting function can be invoked:
plot (hLow)

13

S Sy 2 S
------..---
S P S O o D S W B G o
<= <=3 TS
S XA T o~ X Y
XS

C % -
5 L 52 -
‘. '-

3 335A
Seesss
SOOOOI LTS, - -
% - W e E gy Xy o $2 -~ - -
D e e s D e B e D e A D D S G e D S .
b T i s S D e S g i S D e S i e SR D e T i i D

As resolution increases, the default plotting devices of R become slower and slower at the visualization of
gridded data. On the upside, unlike raster data, the plots are vector images, which present many advantages
if the images are saved as .pdfs.

A change in projection can automatically be employed on the grid structure by adding a ’projargs’ argument
that is used by the function ’spTransform()’. This can be either a CRS class object, or a character string
that will be transformed to be one.

Lambert cylcindrical equal area projection
cea <- '"+proj=cea"
plot(hLow, projargs=cea)

14

{0
SR
D o
333X
-

load rgdal package for the CRS function
library(rgdal)

Loading required package: sp

rgdal: version: 1.2-6, (SVN revision 651)

Geospatial Data Abstraction Library extensions to R successfully loaded

Loaded GDAL runtime: GDAL 2.0.1, released 2015/09/15

Path to GDAL shared files: C:/Users/kocsis/Documents/R/win-library/3.5/rgdal/gdal
Loaded PR0OJ.4 runtime: Rel. 4.9.2, 08 September 2015, [PJ_VERSION: 492]

Path to PR0OJ.4 shared files: C:/Users/kocsis/Documents/R/win-library/3.5/rgdal/proj
Linking to sp version: 1.2-4

The Mollweide projection
moll <- CRS("+proj=moll")
plot(hLow, projargs=moll)

15

»

5
'
4

O
NS
\ R
AR
\°““\'s
ANNRRE
§\\ DR
\

3‘
\!

S
\

/

h

)

st ‘\‘t‘u
N

s‘

\

0
N
\
i

T

Here are some additional examples of projections using the World Borders Dataset (2) that can be accessed
in the 'SpatialPolygonsDataframe’ format using the following chunk of code:

Here are some additional examples of projections using the ‘z3’ resolution of landy polygons from the OSM
archive (2) that can be accessed in the ’SpatialPolygons’ format using the following chunk of code:

file path
file <- system.file("extdata", "land_polygons_z3.shx", package = "icosa"

read in the shape file
wo <- readOGR(file, "land_polygons_z3")

and plot
plot (wo)

16

A grid can be plotted easilly with this map, after their projection methods are adjusted:

transform the land data to long-lat coordinates
wo <- spTransform(wo, glLow@proj4string)

#triangular grid
gLow<-newsp (gLow)

load in a map
plot the grid (default longitude/latitude)
plot(glow, border="gray", lty=1)

the reconstruction
lines(wo, lwd=2, col="blue")

17

Naturally the ’SpatialPolygons’ representation of the grid can be created and transformed on its own.

the Winkel tripel projection
wintri<-CRS("+proj=wintri")

plot the grid (default longitude/latitude)

gLow2d<-SpPolygons (glow, res=50) # create SpatialPolygons
glow2dTrans<-spTransform(glow2d, wintri) # transform projection
plot(glow2dTrans, border="gray",lty=1) # plot

#transform the reconstruction
woTrans<-spTransform(wo, CRS("+proj=wintri"))

the reconstruction
lines(woTrans, lwd=2, col="blue")

18

The ’gridlabs()’ function can also be of use here to locate the vertices and faces of the plotted grid. The
"type’ argument is used to choose which part of the grid is to be shown. The rest of the argumnets are passed
to the "text ()’ function.

a very low resolution hexagrid

hVeryLow<-hexagrid(c(4))

add 2d component

hVeryLow<-newsp (hVeryLow)

the Robinson projection

robin <- CRS("+proj=robin")

plot with labels

plot(hVeryLow, projargs=robin)

gridlabs (hVeryLow, type="f", cex=0.6,projargs=robin)

19

Similarly useful can be the 'pos()’ function, that retrieves the position of a named element in the grid,
e.g. vertices and face centers:

pos(hLow, c("P2", "F12", NA))

long lat
P2 -54 87.86095
F12 -18 82.07063
<NA> NA NA
Layers

The grid itself operates as a scaffold for all kinds operations we can do based on data which can be organized
in layers. At this moment, the layers are built on vectors, but in the next major update of the package they
will incorporate both memory and harddrive-stored data similar to the 'RasterLayer’ class objects defined
in the 'raster’ package.

Currently only the 'facelayer’ class is defined, which link individual values to the faces of a ’trigrid’ or
'hexagrid’ class object.

fli<-facelayer(glow) # the argument %is the grid object to which the layer is linked
fl1

class : facelayer

linked grid : 'glow' (name), trigrid (class), 4,4 (tessellation)

dimensions : 5120 (values) @ mean edge length: 481.07 km, 4.33 degrees
values : logical

max value : NA

20

min value : NA
missing : 5120

str(£f11)

Formal class 'facelayer' [package "icosa"] with 6 slots

#i# ..0 grid : chr "gLow"

..Q tessellation: num [1:2] 4 4

..Q@ gridclass : atomic [1:1] trigrid

.. ..- attr(x, "package")= chr "icosa"

..0 names : chr [1:5120] "Fi" "F2" "F3" "F4"
..0 values : logi [1:5120] NA NA NA NA NA NA ...
..Q@ length : int 5120

The ’facelayer’ has the same number of values as the the number of faces in the linked grid, accessed by
the "length ()’ function

length(£f11)

[1] 5120

The stored values can be assigned or shown by the values function:

values(f11) <-1:length(£f1l1)
values(f11) [1:10]

[1] 1 2 3 4 5 6 7 8 9 10

Arithmethics for the 'facelayer’ class objects are defined as well.
layer definition

fl2<-facelayer (gLow)

all values should be ome

values(£f12)[] <- 1

layer arithmetics
£f11+£12
fl1+4

Besides storage and data manipulation, layers can be especially useful for plotting data. For logical data the
'faces3d ()’ function will indicate which faces are occupied.

a <-facelayer (gLow)

values(a) <- sample(c(T,F), length(a), replace=T)
plot the grid first

plot3d(glow, guides=F)

invoke lower level plotting for the facelayer

(draws on previously plotted rgl environemnts)
faces3d(a, col="green")

21

This is the lower level graphic function, that is called when the 'plot3d ()’ method of the 'facelayer’ is
called. For numeric data, heatmaps are built automatically based on the range of the data. Let’s examine
the basic case, where its number in sequence is assigned to every face.

new layer

b<-facelayer (gLow)

sequenced wvalues

values(b)<-1:1length(b)

plot3d method of the facelayer (implements faces3d too)

plot3d(b, guides=F, frame=F)

22

The colors of the heatmaps can be changed by adding standard color names to the ’col’ argument:
new layer

grid frame

plot3d(gLlow)

the heatmap

faces3d(b, col=c("green", "brown"))

23

The function create the legend is the heatMapLegend() function that allows further customization of the
legend. It uses a png device to render a plot to the background. The resolution of this image is dependendent
on the size of the 'rgl’ device (window). At small window sizes (green and brown heatmap) the legend will
have a worse resolution. The 'plot3d ()’ method of the facelayer includes an automatic resizing statement
(’par3d ()’), which can be turned off, if the size of the 'rgl ()’ device is to be determined before plotting.

plot3d method of the facelayer (implements faces3d too)
par3d(windowRect=c(20,30,1000,400))
plot3d(b, guides=F, frame=F, defaultPar3d=F)

24

Categorical values can also be stored and plotted with the facelayer. By default, these values will be plotted
with random colours, without a legend.

new layer
catLayer<-facelayer (hLow)

assign random information
catLayer@values<-sample(c("one","two","three"),length(catLayer), replace=T)

plot(catLayer)

25

In case a legend is necessary, a lower level solution is recommended, defining the colours by hand:

the colours of the wvariables

allColours<-c("red", "blue", "orange")

par(mar=c(4,2,4,6), xpd=TRUE)

plot (hLow, col=allColours[as.numeric(factor(catLayer@values))])

draw a rudimentary legend
legend("right",fill=allColours, legend=levels(factor(catlLayer@values)), inset=c(-0.15,0))

26

B one
B three
0 two

In case the plotting and data manipulation functions of the ’sp’ package are preferred, the grid object and
the data can easilly be converted to a 'SpatialPolygonsDataFrame’ class.

data frame of wvariables

dat<-data.frame(
category=catLayer@values, # character/factor data
boolvar=sample(c(T, F), length(hLow), replace=T), # logical data
numvar=rnorm(length(hLow))) # numerical data

add the rownames
rownames (dat) <- rownames(hLow@faces)

SpatialPolygonsDataFrame class
spdf <- SpatialPolygonsDataFrame (
Sr=hLow@sp,
data=dat)

plot with spplot()
spplot (spdf, zcol="category", main="plotting with spplot")

27

plotting with spplot

two
three
one

Application

Lookup

Until this point only those features of the package were demonstrated that have no practicality on their own.
All real world application of a gridding scheme relies on the capacity to look up coordinates and assign them
to grid cells. The overall performance of the package boils down to the speed of this procedure. ’icosa’ uses
a very eflicient point-in-tetrhedron check to get the assigned cells to each set of coordinates. In the case of the
'trigrid’, every face on the surface of the grid outlines a tetrahedron with the center of the object. At high
resolutions this in itself can be very slow, especially if the number of queries is large, hence the necessity of
the skeleton slot and the multiple levels of tessellations. With the 'meanGC’ tessellation method, the vertices
of the input do not change, which means that every level of resolution can be retained when multiple rounds
of tessellation happen. This allows the implementation of a hierarchical lookup algorithm, which searches the
position of a point given by progressively refining the resolution, so an exhaustive lookup is not required.

The ‘locate()’ function - point query

The most straightforward implementation is the 'locate ()’ function which is used to find the position of a
set of points on the grid:

generate 50000 random coordinates on a sphere of default radius
pointdat <- rpsphere(5000)

and locate them on the grid 'gLow'

28

cells<-locate(glow, pointdat)

the return of this function ts wvector of cell names
head(cells)

[1] "F1436" "F729" "F786" "F4447" "F1702" "F3094"

The function accepts matrices in longitude-latitude, and XYZ format as well. An object of the ’SpatialPoints’
class defined in the package 'sp’ can alse be provided as input. In the case of the polar coordinate entry, the
coordinates will be transformed to the xyz Cartesian coordinate system using the default radius. This function
returns the names of the faces that the points fell on. In the case of points that fall on vertices or edges
(which is extremely unlikely with real world data), the returned values are by default NAs. The "locate()’
function is especially powerful if it combined with the’table ()’ and "tapply ()’ functions or similar types of
iterators:

tCell <- table(cells)

f1 <- facelayer(glow,0)

[] invokes a method that save the values to places that
correspond to the names attribute of tCell

f1[] <-tCell #

heat map of the point densities

plot3d(f1l)

This function operates just as fine with the 'hexagrid’ object, and uses subfaces to locate the points. Every
hexagonal face consists of 6 subfaces and every pentagonal face contains 5 subfaces.

do the same for the hezagrid

cells2<- locate(hLow, pointdat)

b<-facelayer (hLow,0) # initialize to O

b[]<-table(cells2)

hLow<-newsp (hLow) # was run before

29

plot the faces
plot(b, axes=T)

The performance of the 'locate ()’ function is linearly related to the number of queries. It is also positively
related to the grid resolution, although larger tessellation values will increase computation time more than
using multiple levels of tessellations.

The occupied() function
For presence-absence values the function ’occupied ()’ can be used. It returns a 'facelayer’ class objecte
with logical values ('TRUE’ when the face is occupied an 'FALSE’ when the face is not).

The example below shows how the occupied cells can be shown with the points:

run function only on the first 300
fl<-occupied(hLow, pointdat[1:300,])

after the SpatialPolygons object is calculated
hLow<-newsp (hLow) # was run before

the plot function can also be applied to the facelayer object
plot(f1l, col="blue")

show the points as well
points(CarToPol (pointdat[1:300,]), col="red", pch=3, cex=0.7)

30

Naturally the grid can be shown as well, for instance with '1ines()”:

the plot function can also be applied to the facelayer object
plot(fl, col="blue")

points(CarToPol(pointdat[1:300,]), col="red", pch=3, cex=0.7)
lines(hLow, col="gray")

31

The ’occupied ()’ function also applies to various other object types and behaves as a wrapper function
around methods that return which faces are occupied by the input objects. Most notable among these is the
‘SpatialPolygons’, 'SpatialLlines’, and ’SpatialPoints’ classes defined by the package 'sp’. The method
changes the coordinate reference system (CRS) of the input object is used to transform it to the spherical
model first, and then the function transforms the coordinates to XYZ Cartesian space.

Let us consider the land polygon data that were imported previously. The advantage of this class is that it
can be transformed to any types of classes in the ’sp’ package to show how the 'occupied ()’ function works.
For instance, on the 'SpatialPoints’ class:

transform it to Spatiallines
wol. <- as(wo, "SpatialLines")
woP <- as(wol, "SpatialPoints")

the facelayer of the occupied cells
fL<-occupied(hLow, woP)

plot3d(fL, col="red")

32

The shapes of North and South America are only roughly visible at this resolution.

As the map itself is a only collection of well organized coordinates of points, the borders might not form
continuous lines when they are plotted as tiles of gridcells. If, on the other hand, a SpatialLines object is
created, the ’occupied ()’ method will perform a latitude-longitude linear interpolation on the coordinates
within the individual lines, set by the ’f’ argument (the number of inserted points between two points).

the facelayer of the occupied cells
gHigh<-trigrid(c(8,8))
fl<-occupied(gHigh, woL, f=10)

plot3d(fL, col="blue")

33

As the core algorithm which is shared with the function 'locate ()’ operates in 3d space, all these lookups
are carried out by invoking a very simple conversion function that translate the ’sp’ class objects to their 3d
counterparts (i.e. 'SpatialLines3d’, 'SpatialPolygons3d’) that are defined in the ’icosa’ package. This
allows 3d plotting if the '1ines3d ()’ function is invoked on the original calls (no polygon plotting method is
defined until this point).

plot the faces

plot3d(fL, col="blue", guides=F)

and then on top, plot the actual lines
lines3d(woL, col="red", plot=F)

34

Calculating the occupied faces of a ’SpatialPolygons’ or 'SpatialPolygonsDataFrame’ object is a somewhat
more complicated. The current version relies on the 'raster’ package to regularly sample the inner parts of
the polygons. These points are then looked up by the same method that looks up coordinates of individual
points in a matrix.

hHigh<- hexagrid(c(8,8))

look up the polygons
landFaces<-occupied(hHigh, wo)
the empty grid
plot3d(hHigh, guides=F)

the landmass of the world
faces3d(landFaces, col="blue")

35

The number of points is guessed by a rough algorithm that overestimates the number of points necessary to
make the polygons whole. This algorithm will be replaced in the future to a more efficient and more precisely
defined one.

Raster type data

Most global data compilations use raster formats to store information. These data can be fitted to the
icosahedral grids using the 'resample()’ function. For a brief example, we can use a grid object of global
precipitation data downloaded from the WorldClim database (3). The data included in the package was
downscaled to 1°x1° resolution to decrease size.

library(raster)
read in the file
file<-system.file("extdata", "precl_ldegree.grd", package = "icosa"

r<-raster(file)

plot the raster
plot(r)

36

The usage of the 'resample ()’ function is very straightforward, it requires designation of the original data
and the new grid. Depending on the resolution of the original and the new grids, this can be time consuming.

resample the original data
resDat<-resample(r, hHigh, "ngb")

The return value of the 'resample ()’ function is a named 'numeric’ vector, which is easilly transformed to a
'facelayer’ using the empty brackets operator "[]’:

new facelayer

preclayer<- facelayer (hHigh)
fill in the new facelayer
preclayer[]<-resDat

Using the methods written for the facelayer, the data can be easilly plotted in 3d:
the grid
plot3d(precLayer, col=c("red","orange", "yellow", "cyan", "blue"))

37

And after projection, in two dimensions as well:

the grid
hHigh<-newsp (hHigh)
the

plot(preclLayer, col=c("red","orange", "yellow", "cyan", "blue"), tick.cex=0.7, axes=T)

38

The arguments of this function depend on the nature and interpretation of the data points. As resampling
requires some form of interpolation, it needs assumptions on the representativity of the measurements. Each
original data point can be thought of either as an entity that represent the entire cell or only the center of
the cell. In the first case the original raster object needs to be upscaled with the nearest neighbour method,
and in the latter, another form of interpolation is necessary (e.g. the bilinear or bicubic resampling). The
‘method’ argument of this function is passed to the 'resample ()’ function in the 'raster’ package, and is
used to generate higher resolution data from the original raster.

The ’resample ()’ function can also be used to upscale, or downscale a 'facelayer’ linked to 'trigrid’ or
’hexagrid’ object as well.

the resampling function (downsample in this case)

lowResDat<-resample(precLayer, gLow)

the lower resolution facelayer

lowPrecLayer <- facelayer(gLow)

put the results in the layer

lowPrecLayer[] <- lowResDat

plot it

plot(lowPrecLayer, col=c('"red","orange", "yellow", "cyan", "blue"), tick.cex=0.7, axes=T)

39

Dowscaling naturally decreases the variance of the values. Currently there is only one method for downscaling
and one method for upscaling data stored in a ’facelayer’ class but more will be implemented in the future.

Graph representation

The grid structure is a compound object, can also be understood as a graph of connected faces. This
representation is efficiently implemented using the 'igraph’ package. On default, ’igraph’ represenation of
the grid is added to the ’graph’ slot of the grid object. In this graph, each face is connected to its direct
neighbours, which allows etheir efficient lookup, the implementation of shortest path algorithms and more.

Neighbours

The most direct application of this representation is the 'vicinity ()’ function that allows the user to look
up cells that are closest to a focal cell, without calculating distance matrices. This particular example gets
all the neighbouring cells of the 'F125’ cell.

calculate a very coarse resolution grid
gVeryLow<-trigrid(8, sp=T)

names of faces that are neighbours to face F125
facenames<-vicinity(gVeryLow, "F125")

plot a portion of the grid

plot(gVeryLow, x1im=c(0,180), ylim=c(0,90))

plot the original and the neighbouring faces
plot(gVeryLow@sp[facenames], col="red", add=T)

40

the names of all the cells
gridlabs(gVeryLow, type="f", cex=0.5)

The 'vicinity ()’ function accepts a vector of face names as well:

the neighbours of cells F125 and F126
facenames2<-vicinity(gVeryLow, c("F125", "F126"))
plot the empty grid

plot(gVeryLow, x1im=c(0,180), ylim=c(0,90))

plot these faces with red
plot(gVeryLow@sp[facenames2], col="red", add=T)
the names of the cells

gridlabs(gVeryLow, type="f", cex=0.5)

41

The true strength of the vicintiy function is that it allows the user to select higher order neighbourhoods, by
setting the ’order’ argument (the second order neighbours is the neighbour of the neighbours).

the 2nd order netghbourhood of cell F125

facenames3 <- vicinity(gVeryLow, c("F125"), order=2)

empty grid

plot(gVeryLow, x1im=c(0,180), ylim=c(0,90))

the neighbourhood

plot(gVeryLow@sp[facenames3], col="red", add=T)

the names of the cells

gridlabs(gVeryLow, type="f", cex=0.5)

42

The returning object can either lump the cells together (default) or separate them by the input faces. Setting
the ’output’ argument, allows the user to choose between vector and list output.

the neighbours a cell

facenames4 <- vicinity(gLow, c("F125", "F126"), output="list", order=2)

In both cases, the output can either contain the the input cell, or it can be omitted. This is set with the
self’ argument.

the names of the neighbouring cells of F125, without itself
facenamesb<-vicinity(gVeryLow, "F125", self=F)

plot the empty grid

plot(gVeryLow, x1lim=c(0,180), ylim=c(0,90))

plot the meighbours

plot(gVeryLow@sp[facenames5], col="red", add=T)

the names of the cells

gridlabs(gVeryLow, type="f", cex=0.5)

43

Using ‘igraph’ in geographic calculations

At any point, a new graph can be calculated from a grid with the ’gridgraph’ function.

new graph from the faces of the icosahedron
graphTri <- gridgraph(tri)
plot (graphTri)

44

Setting the directed argument creates either a directed two-way edge system, or an undirected graph.

new graph
graphTriDir <- gridgraph(tri, directed=T)
plot(graphTriDir)

45

Using a separate 'igraph’ class object can be especially useful when subsets of the grids are to be used for an
analysis or simulation.

attach igraph

library(igraph)

#i#

Attaching package: 'igraph'

The following object is masked from 'package:raster':
#i#

union

The following objects are masked from 'package:icosa':
#it

edges, vertices

The following object is masked from 'package:rgl':

#i#

%W>h

The following objects are masked from 'package:stats':
#i#

decompose, spectrum

The following object is masked from 'package:base':

#i#t

#it union

Please note that 'igraph’ masks out some of the auxilliary functions written in this package as well

46

. These

functions are just shorthands for tasks that are available with other methods as well.

Naturally, you can use the ’induced_subgraph ()’ function of the 'igraph’ package directly:

faces<—pa5te(nFn , 1:10, sep=" "
subGraph <- induced_subgraph(graphTri,faces)
plot (subGraph)

The subsetting of the grid will also subset the ’igraph’ class representation:
lowGraph<-gLow[1:12]@graph

or you can create it from a logical 'facelayer’, for example from the occupied cells of the land data we
imported earlier:

landGraph<-gridgraph(landFaces)
plot(landFaces, col="brown")

47

This particular graph is a rough estimate for the presence of terrestrial settings, and can be useful for path
calculations.

shortest path in tgraph

path <- shortest_paths(landGraph, from="F6284", to="F17089", output="vpath")
the names of the cells in order

cells<-path$vpath[[1]]$name

plot the map

plot(landFaces, col="brown", xlim=c(0,90), ylim=c(0,90))

make a subset of the grid - which corresponds to the path
routeGrid<-hHigh[cells]

plot the path

plot(routeGrid, col="red", add=T)

48

The shortest path using grid cells is a suboptimal estimate of the actual shortest route between two points,
as the graph structure limits the angles the path can turn to. A future update will include a function that
allows more accurate estimates of the actual shortest paths.

Random walk simulations can also be built using the graph represetation. In this example a random walker
will walk 1000 steps on the grid, starting from face 'F6284’.
plot the map
plot(landFaces, col="brown", xlim=c(0,90), ylim=c(0,90))
create a random walk from source cell with a given no. of steps
randomWalk <- random_walk(landGraph, steps=1000, start="F6284")
the names of the cells visited by the random walker
cells<-randomWalk$name
the source cell
plot(hHigh["F6284"], col="green",add=T)
the centers of these faces
centers<-CarToPol (hHigh@faceCenters[cells,], norad=T)
draw the lines of the random walk
for(i in 2:nrow(centers)){
segments (x0=centers[i-1,1], yO=centers[i-1,2], xl=centers[i,1], yl=centers[i,2], lwd=2)

}

49

Utility functions

A number of additional functions are included in the package that will help efficient workflow. Random data
generation for the spherical model can fastened with the 'rpsphere ()’ function:

sphere 1

aSphere<-rpsphere (n=500, origin=c(0,0,0), radius=1)
sphere 2

bSphere<-rpsphere (n=500, origin=c(1,1,1), radius=3)
points3d(aSphere, col="blue")

points3d(bSphere, col='"red")

50

The default settings of the 'rpsphere ()’ function will create random points on a spherical Earth model with
the center of ’c(0,0,0)’, and a radius of ca. 6371 km.

The next among these utility functions is the pair of coordinate transformation functions that were shown
previously to transform polar coordinates to Cartesian ones and vica versa: A quick plot for the grid vertices
can be drawn by:

coordinate transformations from cartesian to polar:
v2d <- CarToPol(gLow@vertices)
plot(v2d, x1im=c(-180,180), ylim=c(-90,90))

o1

coordinate transformation from polar to cartesian
longLatMat<-rbind(c(35,20), c(45,50))
PolToCar (longLatMat)

X y z
[1,] 4904.090 3433.881 2179.013
[2,] 2895.747 2895.747 4880.475

An efficient arc distance calculator is included in the package as well, implemented by the ’arcdist ()’ It
returns either kms, radians or degrees and can be set to varius sphere centers and radii. The ’arcdistmat ()’
function implements the Repp core of the 'arcdist ()’ function to create arc distance matrices with similar
flexibility, which can be either symmetric or asymmetric. For example a symmetric distance matrix might be
useful if a function is dependent on the distances between the faces:

#great circle distance matriz between the facecenters
amat<-arcdistmat (hLow@faceCenters, radius=hLow@r, origin=hlLow@center)

the relationship of the first 6 points
amat[1:6,1:6]

F1 F2 F3 F4 F5 Fé
F1 0.0000 440.8533 440.8533 440.8533 440.8533 440.8533
F2 440.8533 0.0000 517.9833 838.4888 838.4888 517.9833
F3 440.8533 517.9833 0.0000 517.9833 838.4888 838.4888
F4 440.8533 838.4888 517.9833 0.0000 517.9833 838.4888
F5 440.8533 838.4888 838.4888 517.9833 0.0000 517.9833
F6 440.8533 517.9833 838.4888 838.4888 517.9833 0.0000

52

Asymmetric distance matrices can be very useful, when there is no need for within group distance calculations
(i.e. faceCenters and occurrence coordinates)

randPoints<-rpsphere(500)
#great circle distance matriz between the facecenters
amat<-arcdistmat (hLow@faceCenters, randPoints, radius=hLow@r, origin=hLow@center)

the relationship of the first 6 points
amat[1:6,1:6]

[,1] [,2] [,3] [,4] [,5] [,6]
F1 10250.122 11441.55 8345.877 16430.99 15444 .57 6095.830
F2 10276.037 11880.82 8706.764 16183.02 15128.90 6227.194
F3 9839.764 11609.40 8218.342 16700.96 15045.83 6536.432
F4 9969.800 11106.54 7905.054 16834.89 15489.99 6255.700
F5 10486.780 11063.55 8208.570 16374.06 15878.40 5752.688
F6 10676.774 11538.70 8700.838 16001.44 15635.96 5734.035

Acknowledgements

The ‘icosa’ package development is part of a Deutsche Forschungsgemeinschaft project for global biogeographic
analyses (KO 5382/1-1). Special thanks are due to all early testers of the project in particular to: Wolfgang
Kiessling, Kilian Eichenseer, Carl Reddin, Vanessa Roden, Emilia Jarochowska and Andreas Lauchstedt

Expected updates, notes and known bugs

e The tessellation procedure needs modularization: this will allow the addition of new tessellation-
projection methods for completely equal areas, and to further increase resolution, by applying the
tessellation to subsets of the grid.

e The data container system needs elaboration. Either a new container set will be used, or the existing
ones will be redefined so that they inherit the already written methods of the RasterLayers.

e Besides the facelayer, the “pointlayer” and “edgelayer” classes are considered for addition

e Rasterization and resampling protocols will be added in future versions.

o Help files will be better organized.

e The plotting system will be improved.

References

(1) Moritz, H. 2000. Geodetic Reference System 1980. Journal of Geodesy, 74, 128-162.
(2) http://openstreetmapdata.com/
(3) http://www.worldclim.org/

53

http://openstreetmapdata.com/
http://www.worldclim.org/

	Introduction
	The grids
	Basic procedures
	Grid creation
	Grid structure
	Plotting
	Layers

	Application
	Lookup
	The locate() function - point query
	The occupied() function
	Raster type data

	Graph representation
	Neighbours
	Using igraph in geographic calculations

	Utility functions
	Acknowledgements
	Expected updates, notes and known bugs
	References

