Identification and estimable functions
Simen Gaure

ABSTRACT. A walkthrough of the identification problems which may arise in
models with many dummies, and how Ife handles them.
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The Ilfe package is used for ordinary least squares estimation, i.e. models which
conceptually may be estimated by 1m as

>Im(y “ x1 +x2 + ... + f1 + f2 + ... + fn)

where f1,f2,...,fn are factors. The standard method is to introduce a
dummy variable for each level of each factor. This is too much as it introduces
multicollinearities in the system. Conceptually, the system may still be solved,
but there are many different solutions. In all of them, the difference between the
coefficients for each factor will be the same.

The ambiguity is typically solved by removing a single dummy variable for each
factor, this is termed a reference. This is like forcing the coefficient for this dummy
variable to zero, and the other levels are then seen as relative to this zero. Other
ways to solve the problem is to force the sum of the coefficients to be zero, or one
may enforce some other constraint, typically via the contrasts argument to 1lm.
The default in 1m is to have a reference level in each factor, and a common intercept
term.

In Ife the same estimation can be performed by

> felm(y ~ x1 + x2 + ... + G(f1) + G(£f2) + ... + G(fn))

Since felm conceptually does exactly the same as 1m, the contrasts approach
may work there too. Or rather, it is actually not necessary that felm handles it
at all, it is only necessary if one needs to fetch the coeflicients for the factor levels
with getfe.

Ife is intended for very large datasets, with factors with many levels. Then the
approach with a single constraint for each factor may sometimes not be sufficient.
The standard example in the econometrics literature is the case with two factors,
one for individuals, and one for firms these individuals work for, changing jobs now
and then. What happens in practice is that the labour market may be disconnected,
so that one set of individuals move between one set of firms, and another (disjoint)
set of individuals move between some other firms. This happens for no obvious
reason, and is data dependent, not intrinsic to the model. There may be several
such components. I.e. there are more multicollinearities in the system than the
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obvious ones. In such a case, there is no way to compare coefficients from different
connected components, it is not sufficient with a single individual reference. The
problem may be phrased in graph theoretic terms, and it can be shown that it is
sufficient with one reference level in each of the connected components. This is
what lfe does, in the case with two factors it identifies these components, and force
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one level to zero in one of the factors.

In the case with two factors, i.e. two G() terms in the model, identification
is well-known. getfe will partition the dataset into connected components, and

2. Identification with two factors

introduce a reference level in each component:

library(1fe)
set.seed(42)

V VVVVV\VYV

x1 <-
f1 <-
f2 <-
el <-

y <=

summary (est <- felm(y ~ x1 + G(f1) + G(£2)))

Call:
felm(formula = y

rnorm(20)

sample(8,length(x1),replace=TRUE)/10
sample(8,length(x1),replace=TRUE)/10
sin(f1) + 0.02*f2°2 + rnorm(length(x1))

2.5%x1 + (el-mean(el))

Residuals:

Min
-1.3993 -0.2794

1Q Median

Coefficients:

x1

Estimate Std.
2.

5305 0.3771

Signif. codes: O

Residual standard error: 1.126 on 5 degrees of freedom

Cxoxk?

Multiple R-squared: 0.9735

F-statistic:

> ef <- efactory(est, 'ref')
> is.estimable(ef,est$fe)

[1] TRUE
> getfe(est)

f1.
f1.
f1.
f1.
f1.
f1.

1
2
3
.4
5
6

O O O O O O

effect obs comp

0.37627519
-0.08109998
-0.68688030

0.57317750

0.47914188

1.41301954

2

W NP W

s

3Q

71

0.001 “*x?

Adjusted R-squared: 0.8938
13.1 on 14 and 5 DF, p-value: 0.005105

We examine the estimable function produced by efactory.

fe
f1
f1
f1
f1
f1
f1

“ x1 + G(f1) + G(£2))

Max

0.0000 0.4362 0.9813

Error t value Pr(>|t|)
6.

0.00111 =*x*

0.01 ‘%’

idx

O O O O O O
DO WN -
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£1.0.7 0.84495593 1 2 £f1 0.7
£1.0.8 0.92643381 4 1 £f1 0.8
£2.0.1 -0.00401133 3 1 £2 0.1
£2.0.2 0.00000000 5 1 £2 0.2
£2.0.3 -1.51866658 1 1 £2 0.3
£2.0.4 0.00000000 2 2 £2 0.4
£2.0.5 -1.89452369 2 1 £2 0.5
£2.0.6 -0.88431922 3 1 £2 0.6
£2.0.7 -0.60911027 3 1 £2 0.7
£2.0.8 -0.96865247 1 1 £2 0.8

As we can see from the comp entry, there are two components, with £1=0.2,
£1=0.7 and £2=0.4. A reference is introduced in each of the components, i.e.
£2.0.2=0 and £f2.0.4=0. If we look at the dataset, the component structure be-
comes clearer:

> data.frame(f1,f2,comp=est$cfactor)

f1 £2 comp
1 0.40.6 1
2 0.40.8 1
3 0.10.7 1
4 0.8 0.5 1
5 0.40.7 1
6 0.8 0.2 1
7 0.80.3 1
8 0.6 0.7 1
9 0.8 0.6 1
10 0.5 0.2 1
11 0.3 0.1 1
12 0.3 0.2 1
13 0.4 0.2 1
14 0.7 0.4 2
15 0.1 0.2 1
16 0.6 0.6 1
17 0.6 0.1 1
18 0.2 0.4 2
19 0.3 0.5 1
20 0.5 0.1 1

Observation 14 and 18 belong to component 2; no other observation has £1=0.7,
£1=0.2 or £2=0.4, thus it is clear that coefficients for these can not be compared
to other coefficients.

3. Identification with three or more factors

In the case with three or more factors, there is no general intuitive theory (yet)
for handling identification problems. Ife resorts to the simple-minded approach that
non-obvious multicollinearities arise among the first two factors, and assumes it is
sufficient with a single reference level for each of the remaining factors. In other
words, the order of the factors in the model specification is important. A typical
example would be 3 factors; individuals, firms and education:
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> est <- felm(logwage ~ x1 + x2 + G(id) + G(firm) + G(edu))
> getfe(est)

This will result in exactly the same references as if using the model
> logwage ~ x1 + x2 + G(id) + G(firm) + edu

though it may run faster (or slower).
Alternatively, one could specify the model as

> logwage ~ x1 + x2 + G(firm) + G(edu) + G(id)

This would not account for a partioning of the labour market along individ-
ual/firm, but along firm/education, using a single reference level for the individuals.
In this example, there is some reason to suspect that it is not sufficient, depending
on how edu is specified. There exists no general scheme that sets up suitable refer-
ence groups when there are more than two factors. It may happen that the default
is sufficient. The function getfe will check whether this is so, and it will yield a
warning about 'non-estimable function’ if not. With some luck it may be possible
to rearrange the order of the factors to avoid this situation.

There is nothing special with Ife in this respect. You will meet the same problem
with 1m, it will remove a reference level (or dummy-variable) in each factor, but
the system will still contain multicollinearities. You may remove reference levels
until all the multicollinearities are gone, but there is no obvious way to interpret
the resulting coefficients.

To illustrate, the classical example is when you include a factor for age (in
years), a factor for observation year, and a factor for year of birth. You pick
a reference individual, e.g. age=50, year=2013 and birth=1963, but this is not
sufficient to remove all the multicollinearities. If you analyze this problem you will
find that the coefficients are only identified up to linear trends. You may force
the linear trend between birth=1963 and birth=1990 to zero, by removing the
reference level birth=1990, and the system will be free of multicollinearities. In
this case the birth coefficients have the interpretation as being deviations from
a linear trend, though you do not know which linear trend. The age and year
coefficients are also relative to this unknown trend in the birth-coefficients.

In the above case, the multicollinearity is obviously built into the model, and
it is possible to remove it and find some intuitive interpretation of the coefficients.
In the general case, when either 1m or getfe reports a handful of non-obvious
spurious multicollinearites between factors with many levels, you probably will not
be able to find any reasonable way to interpret coefficients. Of course, certain linear
combinations of coefficients will be unique, i.e. estimable, and for small datasets
these may be found by e.g. the algorithm in [1], but the general picture is muddy.

Ife does not provide a solution to this problem, however, getfe will still provide
a vector of coeflicients which results from finding a non-unique solution to a certain
set of equations. To get any sense from this, an estimable function must be applied.
The simplest one is to pick a reference for each factor and subtract this coefficient
from each of the other coefficients in the same factor, and add it to a common
intercept, however in the case this does not result in an estimable function, you
are out of luck. If you for some reason believe that you know of an estimable
function, you may provide this to getfe via the ef-argument. There is an example
in the getfe documentation. You may also test it for estimability with the function
is.estimable, this is a probabilistic test which almost never fails.
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4. Specifying an estimable function

A model of the type
>y T x1 +x2+ f1 + £f2+ £3

may be written in matrix notation as
y=XB+ Da+ce,

where X is a matrix with columns x1 and x2 and D is matix of dummies constructed
from the levels of the factors £1,f2,£3. Formally, an estimable function in our
context is a matrix operator whose row space is contained in the row space of D.
That is, an estimable function may be written as a matrix. Like the contrasts
argument to 1lm. However, the Ife package uses an R-function instead. That is,
felm is called first:

> est <- felm(y ~ x1 + x2 + G(£f1)+G(£2)+G(£3))

This yields the parameters for x1 and x2, i.e. B To find the parameters for
the levels of £1,£2,£3, a certain linear system is solved:

(1) Dy=R

where R can be computed when we have B . This does not identify v uniquely, we
have to apply an estimable function to 7. The estimable function F' is characterized
by the property that F'y; = Fr, whenever v, and s are solutions to equation (1).
Rather than coding F' as a matrix, lfe codes it as a function. It is of course possible
to let the function apply a matrix, so this is not a material distinction. So, let’s
look at an example of how an estimable function may be made:

> library(1fe)

x1 <- rnorm(100)

f1 <- sample(7,100,replace=TRUE)

f2 <- sample(8,100,replace=TRUE)/8

f3 <- sample(10,100,replace=TRUE)/10

el <- sin(f1) + 0.02%f2°2 + 0.17%f3°3 + rnorm(100)
y <= 2.5%x1 + (el-mean(el))

summary (est <- felm(y ~ x1 + G(£f1) + G(f2) + G(£3)))

Call:
felm(formula = y ~ x1 + G(f1) + G(£f2) + G(£3))

V V.V VV\VvyVv

Residuals:
Min 1Q Median 3Q Max
-1.88686 -0.72519 -0.07878 0.75584 2.30499

Coefficients:
Estimate Std. Error t value Pr(>|tl)
x1 2.354 0.112 21.03 <2e-16 ***
Signif. codes: O ‘x**’ 0.001 ‘*xx’> 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1

Residual standard error: 1.076 on 76 degrees of freedom
Multiple R-squared: 0.9005 Adjusted R-squared: 0.8691
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F-statistic: 29.91 on 23 and 76 DF, p-value: < 2.2e-16
*%* Standard errors may be too high due to more than 2 groups and exactDOF=FALSE

In this case, with 3 factors we can not be certain that it is sufficient with a
single reference in two of the factors, but we try it as an exercise. (lfe does not
include an intercept, it is subsumed in one of the factors, so it should tentatively
be sufficient with a reference for the two others).

The input to our estimable function is a solution v of equation (1). The ar-
gument addnames is a logical, set to TRUE when the function should add names to
the resulting vector. The coefficients is ordered the same was as the levels in the
factors. We should pick a single reference in factors £2,£3, subtract these, and add
the sum to the first factor:

> ef <- function(gamma,addnames) {
+ ref2 <- gamma[[8]]

+ ref3 <- gamma[[16]]

+ gamma[1:7] <- gammal[1:7]+ref2+ref3

+ gamma[8:15] <- gammal[8:15]-ref2

+ gamma[16:25] <- gamma[16:25]-ref3

+ if(addnames) {

+ names (gamma) <- c(paste('f1',1:7,sep="'."),

+ paste('f2',1:8,sep="."),
+ paste('f3',1:10,sep="."))
+ 7}

+  gamma

+ }

> is.estimable(ef,fe=est$fe)

[1] TRUE

> getfe(est,ef=ef)

effect
f1.1 0.855295903
1.2 0.323043918
1.3 -0.146408669
£f1.4 -1.304526974
f1.5 -1.210151022
£f1.6 -0.852878427
1.7 -0.646232814
f2.1 0.000000000
£2.2 0.002497552
£2.3 -0.602876984
£2.4 1.133586021
£2.5 0.346222168
£f2.6 -0.043523600
£2.7 0.425860665
£2.8 0.445270478
£3.1 0.000000000
£3.2 0.068917820
£3.3 0.587689884
£3.4 0.295036588



IDENTIFICATION AND ESTIMABLE FUNCTIONS 7

£3.5 -0.052249655
£3.6 0.618678760
£3.7 -0.212497631
£3.8 -0.017318264
£3.9 -0.571389617

£3.10 0.782763895

We may compare this to the default estimable function, which picks a reference
in each connected component as defined by the two first factors.

> getfe(est)

effect obs comp fe idx

f1.1 0.53225199 16 1 f1 1
f1.2 0.00000000 17 1 f1 2
1.3 -0.46945259 15 1 f1 3
f1.4 -1.62757089 12 1 f1 4
f1.5 -1.53319494 12 1 f1 5
f1.6 -1.17592234 15 1 f1 6
f1.7 -0.96927673 13 1 f1 7
£2.0.125 0.61808051 10 1 £2 0.125
£2.0.256 0.62057806 16 1 £f2 0.25
£2.0.375 0.01520352 15 1 £2 0.375
£2.0.5 1.75166653 13 1 £f2 0.5
£2.0.625 0.96430267 12 1 £2 0.625
£2.0.75 0.57455691 14 1 £2 0.75
£2.0.875 1.04394117 10 1 £2 0.875
£f2.1 1.06335098 10 1 f2 1
£3.0.1 -0.29503659 5 2 £f3 0.1
£3.0.2 -0.22611877 9 2 £f3 0.2
£3.0.3 0.29265330 10 2 £f3 0.3
£3.0.4 0.00000000 13 2 f3 0.4
£3.0.5 -0.34728624 11 2 £f3 0.5
£3.0.6 0.32364217 8 2 £f3 0.6
£3.0.7 -0.50753422 8 2 £f3 0.7
£3.0.8 -0.31235485 13 2 £f3 0.8
£3.0.9 -0.86642621 12 2 £f3 0.9
£3.1 0.48772730 11 2 £3 1

We see that the default has some more information. It uses the level names, and
some more information, added like this:

> efactory(est, 'ref')

function (v, addnames)
{
esum <- sum(v[extrarefs])
df <- v[refsubs]
sub <- ifelse(is.na(df), 0, df)
df <- v[refsubal
add <- ifelse(is.na(df), 0, df + esum)
v <- v - sub + add
if (addnames) {
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names (v) <- nm
attr(v, "extra") <- list(obs = obs, comp = comp, fe = fef,
idx = idx)
}
v
}
<bytecode: 0x5bc9120>
<environment: 0x629ec60>

ILe. when asked to provide level names, it is also possible to add additional
information as a list (or data.frame) as an attribute ’extra’. The vectors
extrarefs,refsubs,refsuba etc. are precomputed by efactory for speed effi-
ciency.

5. Non-estimability

We consider another example. To ensure spurious relations there are almost
as many factor levels as there are observations, and it will be hard to find enough
estimable function to interpret all the coefficients. The coefficient for x1 is still
estimated, but with a large standard error.

set.seed(42)

x1 <- rnorm(100)

f1 <- sample(34,100,replace=TRUE)

f2 <- sample(34,100,replace=TRUE)/8

f3 <- sample(34,100,replace=TRUE)/10

el <- sin(f1) + 0.02%f2°2 + 0.17%f3°3 + rnorm(100)
y <- 2.5%x1 + (el-mean(el))

summary (est <- felm(y ~ x1 + G(£f1) + G(f2) + G(£3)))

Call:
felm(formula = y ~ x1 + G(£f1) + G(£2) + G(£3))

V VVVVVVYyV

Residuals:
Min 1Q Median 3Q Max
-8.690e-01 -9.853e-02 -9.920e-12 1.135e-01 8.690e-01

Coefficients:
Estimate Std. Error t value Pr(>|tl)
x1 1.6543 0.8971 1.844 0.206

Residual standard error: 1.615 on 2 degrees of freedom

Multiple R-squared: 0.9958 Adjusted R-squared: 0.7906

F-statistic: 4.903 on 97 and 2 DF, p-value: 0.1841

*x*% Standard errors may be too high due to more than 2 groups and exactDOF=FALSE

The default estimable function fails, and the coefficients from getfe are not
useable. getfe yields a warning in this case.

> ef <- efactory(est, 'ref')
> is.estimable(ef,est$fe)

[1] FALSE
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Indeed, the rank-deficiency is quite large. There are more spurious relations
between the factors than what can be accounted for by looking at components in
the two first factors. In this low-dimensional example we may find the matrix D of
equation (1), and its rank which is lower than the number of columns:
> f1 <- factor(f1); f2 <- factor(f2); £3 <- factor(£3)
> D <- t(do.call('rBind',

+ lapply(list(f1,f2,f3),as,Class="'sparseMatrix')))
> dim (D)

[1] 100 99

> as.integer(rankMatrix (D))

[1] 92

> # alternatively we can use an internal function

> # in 1fe for finding the rank deficiency directly

> 1fe:::rankDefic(list(f1,f2,f3))

(11 7

This rank-deficiency also has an impact on the standard errors computed by
felm. If the rank-deficiency is small relative to the degrees of freedom the standard
errors are scaled slightly upwards if we ignore the rank deficiency, but if it is large,
as in this example, the effect on the standard errors may be substantial. The rank-
computation procedure can be activated by specifying exactDOF=TRUE in the call
to felm, but it may be time-consuming if the factors have many levels. Computing
the rank does not in itself help us find estimable functions for getfe.

> summary(est <- felm(y ~ x1 + G(f1) + G(£f2) + G(f3), exactDOF=TRUE))

Call:
felm(formula = y ~ x1 + G(f1) + G(£f2) + G(£f3), exactDOF = TRUE)

Residuals:
Min 1Q Median 3Q Max
-8.690e-01 -9.853e-02 -9.920e-12 1.135e-01 8.690e-01

Coefficients:
Estimate Std. Error t value Pr(>|tl)
x1 1.6543 0.4795 3.45 0.0107 =*

Signif. codes: 0 ‘x**x’ 0.001 ‘*x*x’> 0.01 ‘*’> 0.05 “.” 0.1 ¢ > 1

Residual standard error: 0.8633 on 7 degrees of freedom
Multiple R-squared: 0.9958 Adjusted R-squared: 0.9402
F-statistic: 18.09 on 92 and 7 DF, p-value: 0.0002557

We can get an idea what happens if we keep the dummies for £1. In this case,
with 2 factors, Ife will partition the dataset into connected components and account
for all the multicollinearities among the factors £2 and £3, but this is not sufficient.
The interpretation of the resulting coefficients is not straightforward.
> summary(est <- felm(y ~ x1 + G(f2) + G(£3) + £f1))

Call:
felm(formula = y ~ x1 + G(£f2) + G(£3) + f1)
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Residuals:
Min 1Q Median 3Q Max
-0.86895 -0.09853 0.00000 0.11346 0.86895

Coefficients:
Estimate Std. Error t value Pr(>|tl)

x1 1.65426 0.47951 3.450 0.0107 *
£12 -1.90505 4.89449 -0.389 0.7087
f13 -0.50215 1.82413 -0.275 0.7910
f14 -6.22264 3.01472 -2.064 0.0779 .
£f15 -3.25066 1.30713 -2.487 0.0418 *
£f16 -0.90207 1.43495 -0.629  0.5495
£17 -1.94779 2.31183 -0.843 0.4273
£18 1.06828 2.19941 0.486  0.6420
£f19 -3.71630 1.74689 -2.127 0.0709 .

£110 NA NA NA NA

£111 -2.79296 2.03317 -1.374 0.2119
£112 -2.39955 1.22205 -1.964 0.0903 .
£113 NA NA NA NA
f114 2.26528 1.84794 1.226  0.2599
£115 0.50911 2.17930 0.234 0.8220
£116 0.77581 1.84701 0.420 0.6871
£117 -1.73116 1.45181 -1.192 0.2719
£118 NA NA NA NA
£119 -0.10752 1.42174 -0.076 0.9418
£120 -1.78120 1.96692 -0.906 0.3953
£121 2.40789 1.95402 1.232 0.2576
£122 2.96339 2.66996 1.110  0.3037
£123 -4.51110 5.50755 -0.819  0.4397
£125 -3.10254 2.41876 -1.283 0.2404

£126 NA NA NA NA

£127 -0.98631 2.89668 -0.340 0.7435

£128 -0.54472 1.98226 -0.275 0.7914

£129 1.10020 2.85622 0.385 0.7115

£130 -4.42386 2.01494 -2.196 0.0642 .

£131 -0.31554 1.40158 -0.225 0.8283

£132 1.67510 1.87694 0.892 0.4018

£133 -0.04469 1.58114 -0.028 0.9782

£134 0.23692 2.21817 0.107 0.9179

Signif. codes: O ‘x**’ 0.001 ‘*xx’> 0.01 ‘x’> 0.05 “.” 0.1 ¢ > 1

Residual standard error: 0.8633 on 7 degrees of freedom
Multiple R-squared: 0.9958  Adjusted R-squared: 0.9402
F-statistic: 18.09 on 92 and 7 DF, p-value: 0.0002557

> getfe(est)
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effect obs comp
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.0000000
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£3.1.6 0.7950336 5 1 £3 1.6
£3.1.7 -0.5123151 5 1 £3 1.7
£3.1.8 2.4253869 3 1 £3 1.8
£3.1.9 -0.4532778 2 1 £3 1.9
£3.2 6.5804358 2 1 £3 2
£3.2.1 3.6123451 1 2 £f3 2.1
£3.2.2 0.1686157 2 1 £3 2.2
£3.2.3 1.8276048 4 1 £3 2.3
£3.2.4 4.1913861 2 1 £3 2.4
£3.2.5 -2.3235774 1 1 £f3 2.5
£3.2.6 2.5043263 1 1 £3 2.6
£3.2.7 -0.2265028 2 1 £3 2.7
£3.2.8 4.4396033 2 1 £3 2.8
£3.2.9 3.9948149 4 1 £3 2.9
£3.3 4.1069684 3 1 £3 3
£3.3.1 0.9933567 b5 1 £3 3.1
£3.3.2 4.7385688 2 1 £3 3.2
£3.3.3 4.0585892 1 1 £3 3.3
£3.3.4 8.0138794 3 1 £3 3.4

Below is the same estimation in 1m. We see that the coefficient for x1 is identical
to the one from felm, but there is no obvious relation between e.g. the coefficients
for £1; the difference £12-£13 is not the same for 1m and felm. But of course, if
we take a combination which actually occurs in the dataset, it is estimable:

> data.frame(f1,f2,f3)[1,]

f1 f2 £3
1 31 2.125 0.1

Le. if we add the coefficients £1.31 + £2.2.125 + £3.0.1 and include the inter-
cept for 1m, we will get the same number for both 1m and felm.
> summary(est <- Im(y ~ x1 + f1 + f2 + £3))

Call:
Im(formula =y ~ x1 + f1 + £2 + £3)

Residuals:
Min 1Q Median 3Q Max
-0.86895 -0.09853 0.00000 0.11346 0.86895

Coefficients: (5 not defined because of singularities)
Estimate Std. Error t value Pr(>|tl)

(Intercept) -3.66103 3.20506 -1.142 0.29091
x1 1.65426 0.47951  3.450 0.01069 *
£12 5.55766 2.26821  2.450 0.04409 *
£13 -0.50215 1.82413 -0.275 0.79105
f14 -6.22264 3.01472 -2.064 0.07789 .
£15 -3.25066 1.30713 -2.487 0.04179 *
£16 -0.90207 1.43495 -0.629 0.54954
£17 -1.94779 2.31183 -0.843 0.42734
£18 1.06828 2.19941  0.486 0.64200
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£110
f111
f112
£113
f114
£115
f116
£117
£118
£119
£120
f121
£122
£123
£125
£126
£127
£128
£129
£130
£131
£132
£133
£134
£20.
£20.
£20.
£20.
£20.
£20.
f21

£21.
£21.
£21.
£21.
f£21.
£21.
£22

£22.
£22.
£22.
£22.
£22.
£22.
£22.
£23
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375
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75
875

25
375

625
75
875

125
25
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125
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.71630
.46271
. 79296
.39955
.04482
.26528
.50911
.77581
.73116
.38905
.10752
.78120
.40789
.57434
.34066
.10254
. 77565
.98631
.54472
.10020
.42386
.31554
.67510
.04469
.23692
.21878
.18662
.36500
.23073
.72413
.27337
.48939
.64844
.18909
.72470
.87861
.60505
.61218
.32018
.02921
.51098
.43161
.56781
.50405
.61179
.71555
.58317
.76329
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. 74689
.20570
.03317
.22205
.64864
.84794
.17930
.84701
.45181
.70538
.42174
.96692
.95402
.66231
.63774
.41876
.87303
.89668
.98226
.85622
.01494
.40158
.87694
.58114
.21817
.33463
.85525
.09068
. 71307
.40222
.08912
.85158
.86718
.63493
.57333
.48292
.54223
.83350
.41091
.68218
.11126
.17004
.20129
.17600
.49292
.67108
.97162
.16922

.127
.434
.374
.964
.150
.226

0.234

.420
.192
.883
.076
.906
.232

0.216

.025
.283
.084
.340
.275
.385
.196
.225
.892
.028
.107
.066
.567
.765
.601
.301
.3565
172

0.226

[y

.590

0.282

Or ORrRrREPLrRELRFL,O

.354
.238
.275
.387
.T57
.128
.083
.621
.418
.026
.268
.909
.556
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.07094 .
.19481
.21191
.09035 .
.28807
.25989
.82197
.68705
.27195
.40650
.94183
.39526
.25763
.83535
.08255 .
.24043
.01773
. 74347
.79140
.71153
.06415 .
.82831
.40178
.97824
.91794
.94952
.58831
.46916
.56692
.77184
.05075 .
.86859
.82754
.15590
. 78638
.73386
.81870
.24306
.71022
.47401
.29631
.31490
.14910
.19909
.33883
.79651
.09785 .
.59528
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£23.25 2.28357 2.30731  0.990 0.35528
£23.5 -0.31742 2.54077 -0.125 0.90409
£23.625 1.91023 2.61134 0.732 0.48823
£23.75 2.10793 2.76506 0.762 0.47076
£23.875 -3.12685 3.27222 -0.956 0.37112
£24 0.89211 2.42757 0.367 0.72411
£24.125 0.61089 2.64833 0.231 0.82417
£24.25 0.53340 2.54879 0.209 0.84019
£30.2 0.67485 5.04441 0.134 0.89734
£30.3 3.27133 1.61575 2.025 0.08256 .
£30.4 -0.74433 2.25029 -0.331 0.75050
£30.5 1.71125 1.48109 1.155 0.28584
£30.6 1.39896 1.64910 0.848 0.42432
£30.7 5.22827 2.67470 1.955 0.09163 .
£30.8 -0.18433 2.13262 -0.086 0.93354
£30.9 1.33904 1.40802 0.951 0.37328
£31 2.28896 2.44370 0.937 0.38011
£31.1 1.26117 1.22790 1.027 0.33855
£31.2 0.78355 1.91729  0.409 0.69499
£31.3 3.50358 2.53627 1.381 0.20964
£31.4 1.70787 2.09532 0.815 0.44187
£31.5 1.65115 1.62800 1.014 0.34424
£31.6 4.06636 1.53549 2.648 0.03303 *
£31.7 2.75901 1.88728 1.462 0.18716
£31.8 5.69671 2.45122 2.324 0.05308 .
£31.9 2.81805 2.36233 1.193 0.27176
£32 NA NA NA NA
£32.1 NA NA NA NA
£32.2 3.43994 3.20692 1.073 0.31900
£32.3 5.09893 1.84553 2.763 0.02798 *
£32.4 NA NA NA NA
£32.5 0.94775 2.34827 0.404 0.69855
£32.6 NA NA NA NA
£32.7 NA NA NA NA
£32.8 7.71093 2.09613 3.679 0.00787 *x*
£32.9 7.26614 1.92647 3.774 0.00695 *x
£33 7.37830 1.81427  4.067 0.00477 *x
£33.1 4.26468 1.563926  2.771 0.02767 *
£33.2 8.00990 1.96640 4.073 0.00473 *x
£33.3 7.32992 2.01924 3.630 0.00840 x*x*
£33.4 11.28521 2.35848 4.785 0.00200 *x*
Signif. codes: 0 “*¥x’ 0.001 ‘*x’ 0.01 ‘x’> 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 0.8633 on 7 degrees of freedom
Multiple R-squared: 0.9958, Adjusted R-squared: 0.9408
F-statistic: 18.09 on 92 and 7 DF, p-value: 0.0002557
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