
R package mcll for

Monte Carlo local likelihood estimation

Minjeong Jeon
University of California, Berkeley

Cari Kaufman
University of California, Berkeley

Sophia Rabe-Hesketh
University of California, Berkeley

February 4, 2013

Abstract

mcll is an R package for Monte Carlo local likelihood (MCLL) estimation of generalized linear
mixed models with crossed random effects. mcll implements the nested maximizations in the
MCLL algorithm (Step 2), given posterior samples of model parameters for a particular set of
priors (Step 1). mcll also provides standard error estimates for the MCLL parameter estimates.
This paper describes how the MCLL algorithm works with the package mcll. The widely-used
salamander mating data are used for illustration.

1 Monte Carlo Local Likelihood Method

Monte Carlo local likelihood (MCLL) is an approximate maximum likelihood method for estimating
generalized linear mixed models (GLMM) with crossed random effects. MCLL initially treats
model parameters as random variables and samples them from the posterior for a particular prior.
The likelihood function is approximated up to a constant by fitting a density to the posterior
samples and dividing it by the prior. The posterior density is approximated using local likelihood
density estimation (Loader, 1996), where the log-likelihood is locally approximated by a polynomial
function. For details on MCLL, see Jeon et al. (2012).

Here we describe the procedure of MCLL for parameter estimation. Specifically, assuming a
d-dimensional parameter space θ with observed data vector y, the MCLL algorithm involves the
following two steps:

Step 1 Choose a prior p(θ) and use a MCMC method to obtain samples from the posterior p(θ|y)

p(θ|y) =
L(y|θ)p(θ)

Cs
,

where the normalizing constant is Cs =
∫
L(y|θ)p(θ)dθ. is the likelihood and

Step 2 Maximize an approximation to the likelihood defined up to constant Cs by

L̂(y|θ) =
1

p(θ)
Psp(θ), (θ),

1

where Psp(θ) is the local likelihood estimate of the posterior density. Specifically, for a given
value of θ, this is obtained by assuming that the log-posterior density can be approximated by
a polynomial function Pa(u−θ) p with parameters a. For example, in the three dimensional
case (d=3), the log-posterior can be locally approximated by a quadratic function

Pa(u− θ) = a0 + a1(u1 − θ1) + a2(u2 − θ2) + a3(u3 − θ3)

+
1

2
a4(u1 − θ1)2 +

1

2
a5(u2 − θ2)2 +

1

2
a6(u3 − θ3)2

+ a7(u1 − θ1)(u2 − θ2) + a8(u1 − θ1)(u3 − θ3)
+ a9(u2 − θ2)(u3 − θ3),

where a = (a0, a1, ..., a9)
′.

The a parameters are estimated for a particular θ by maximizing a localized version of the
log-likelihood, which in this case is

l̂(θ,a) =
m∑
j=1

K

(
θ(j) − θ

h

)
Pa(θ(j) − θ)−m

∫
K

(
u− θ
h

)
exp (Pa(u− θ))du, (1)

where {θ(j)}mj=1 are the posterior sample points.

The MCLL method also provides a relatively simple way to compute standard errors. Specif-
ically, we derive an alternative way of computing the Hessian matrix for MCLL by using the
quadratic approximation of the log-posterior obtained using local likelihood density estimation, as-
suming the log-posterior can be well approximated by a quadratic polynomial in the neighborhood
of the mode. For more details, see Section 3 in Jeon et al. (2012).

The package mcll consists of two main functions, mcll_est and mcll_se. mcll_est implements
Step 2 in the MCLL procedure above, given the posterior samples obtained for a particular prior
(in Step 1). It requires the values and posterior samples of model parameters on the real line. For
example, log transformation of variance parameters is needed. mcll_se computes standard errors
for the MCLL parameter estimates. In the next section, we illustrate how to implement the MCLL
method (including Step 1) using a real data example.

2 Illustration

We use an example of a crossed random effects model using the salamander mating data (McCullagh,
1989, Section 14.5). This dataset is a benchmark that has been used to compare many different
estimation methods for GLMMs with crossed random effects.

The salamander mating data consist of three separate experiments, each involving matings
among salamanders of two different populations, called Rough Butt (RB) and White Side (WS).
Sixty females and sixty males of two populations of salamander were paired by a crossed, blocked,
and incomplete design in an experiment studying whether the two populations have developed
generic mechanisms which would prevent inter-breeding. The response is a binary variable indi-
cating whether mating was successful between female i and male j. We adopted model A used by
Karim and Zeger (1992).

logit(p(yij = 1|zfi , z
m
j)) = β1 + β2x1i + β3x2j + β4x1ix2j + zfi + zmj , (2)

2

where the covariates are dummy variables for White Side female (xi), White Side male (xj), and

the interaction (x1ix2j). The two crossed random effects are random intercepts zfi ∼ N(0, σ2f) for

females and zmj ∼ N(0, σ2m) for males. Each salamander participates in six matings, resulting in
360 matings in total.

Note that the two variance components in model (2) are reparameterized as τf = logσf and
τm = logσm.

2.1 Step 1: Obtain Posterior Samples

To obtain posterior samples for parameters, priors should be specified for model parameters. For
model (2), we choose diffuse normal priors for the fixed effect parameters (with mean 0, standard
deviation 100) and for the log-parameterized standard deviation parameters (with mean -0.98 and
standard deviation 0.76). For details on this choice of priors, see Section 5.1 in Jeon et al. (2012).

Given the specified priors, the posterior samples can be obtained by any Markov chain Monte
Carlo (MCMC) method. For example, the Bayesian software WinBUGS (Lunn et al., 2000) can be
used together with the R package R2WinBUGS (Sturtz et al., 2005). In this example, we use three
chains with relatively diffuse starting values. Each chain was run for 1,000 iterations after a 2,000
iteration burn-in period. For convergence assessment, the Gelman-Rubin statistic (Gelman and
Rubin, 1992) is used in addition to graphical checks such as trace plots and autocorrelation plots.
Here is an example code of using R2WinBUGS to run WinBUGS.

library(R2WinBUGS)

dataset

data <- data(salamander)

set up

n <- nrow(data) # all salamander

m <- length(unique(data$male)) # number of male

f <- length(unique(data$female)) # number of female

r <- data$y # response (mating)

male <- data$male # male id

female <- data$female # female id

wsm <- data$wsm # WSM

wsf <- data$wsf # WSF

ww <- data$ww # WW

mean and sd for the log variable

lmu <- -0.9870405 # mean

lsig <- 1/0.766672 # 1/sd (precision =1/sd^2)

data set

sala.data <- list("n","m","f","r","male","female","wsm","wsf","ww","lmu","lsig")

initial value set

sala.inits <- function() {

3

list(rm= rnorm(m), rf=rnorm(f), b0 = rnorm(1), b1 = rnorm(1),

b2 = rnorm(1), b3 = rnorm(1),

tau0 =rnorm(1,lmu,sqrt(1/lsig)), tau1 =rnorm(1,lmu,sqrt(1/lsig)))

parameter set

sala.parameters <- c("b0", "b1", "b2", "b3", "tau0", "tau1","sigma0","sigma1")

run WinBUGS (sala.bug) with 3 chains

post <- bugs(sala.data, sala.inits, sala.parameters, "sala.bug",

n.chains=3, n.iter=3000, n.burnin=2000, # 1000 iterations after 2000 burn-in

n.thin=1, debug=F, bugs.directory="C:/Program Files/WinBUGS14/")

posterior samples

samp <- post$sims.matrix # size 3000 x 6

Note that in WinBUGS, lsig is the inverse of the standard deviation of the log variable. The
WinBUGS code “sala.bug” is is available in Appendix. The results of the running code above are
stored in the package as object samp. One who do not want to run the code can use samp. Note
that any other methods or software can be used to obtain the posterior samples.

2.2 Step 2: Obtain Parameter and Standard Error Estimates

Once the posterior samples for model parameters are obtained, mcll_est can be used to obtain
parameter estimates. mcll_est uses a quadratic function (polynomial degree 2) and a tricube
function for the weight function. A bandwidth is chosen at each data point so that the local
neighborhood contains a specified number of points. Specifically, mcll_est requires a smoothing
parameter α between 0 and 1, which is the nearest neighbor bandwidth with the kth smallest
distance d where k = bnαc and d(x, xi) = |x−xi| with the sample size n. Finally, a product kernel
is used in (1) given the posterior samples (obtained in Step 1).

mcll_est requires a prior function which returns the log prior densities for parameter values.
Specifically, the prior function should have as an argument a vector of parameter values (vec.t)
and return value of the log prior density for those parameter values vec.t. For example, for the
normal priors of the six parameters (β1 to β4 and τf and τm) in model (2), the prior function can
be specified as

prior.func <- function(vec.t) {

sum(dnorm(vec.t, m= c(0,0,0,0, -0.9870405, -0.9870405) ,

sd=c(100,100,100,100, 1/0.766672, 1/0.766672) , log=T))

}

Here is an example of using mcll_est to estimate parameters for model (2).

library(mcll)

posterior samples

data(samp)

prior function

4

prior.func <- function(vec.t) {

sum(dnorm(vec.t, m= c(0,0,0,0, -0.9870405, -0.9870405) ,

sd=c(100,100,100,100, 1/0.766672, 1/0.766672) , log=T))

}

parameter estimation

run1 <- system.time(

result1 <- mcll_est(data=samp, prior.func= prior.func, alp=0.7,

method = "BFGS", control= list(maxit=10000), use.locfit=TRUE)

)

If use.locfit=TRUE, the package locfit (Loader, 2012) is used to compute a local likelihood
density estimate. locfit tends to be faster but can fail for high-dimensional problems. In these
cases, a version of the local likelihood code is implemented in the package (use use.locfit=FALSE)
and optimization methods can be chosen for finding the polynomial coefficients.

mcll_est returns the parameter estimates in the original scale as well as the usual output from
optim.

result1

$par

b0 b1 b2 b3 tau0 tau1

[1,] 0.9275766 -2.871686 -0.6488625 3.589313 0.08118962 0.148478

$convergence

[1] 0

$value

[1] -26.38284

$counts

function gradient

112 15

$message

NULL

value is the unnormalized log-likelihood returned from the MCLL algorithm. It can be used
to compute the Bayes factor. For more information on this, see Section 4 in Jeon et al. (2012).
This parameter estimation took about 9 seconds on a Intel Pentium Dual-Core 2.5-GHz processor
computer with 3.2 GB of memory.

For standard error estimation, the function mcll_se is used. mcll_se requires the Hessian
matrix of the log prior H.prior evaluated at the MCLL parameter estimates. One can solve it
analytically if a closed-form solution is available. For example, for the multivariate normal priors
for the six parameters with zero mean and variance p.var, the Hessian matrix can be obtained as

p.var = c(100,100,100,100, 1/0.766672, 1/0.766672)^2

H.prior <- -diag(1/p.var)

5

Alternatively, one can use a numerical solution for the Hessian matrix using e.g., the hessian

function in the numDeriv R package.

library(numDeriv)

log.prior.h <- hessian(prior.func, par)

Here is an example of using mcll_se to compute standard errors for the parameter estimates
for model (2).

run2 <- system.time(

result2 <- mcll_se(data=samp, par=par, H.prior = H.prior, alp=0.7,

method= "Nelder-Mead" , control=list(maxit=20000))

)

result2

b0 b1 b2 b3 tau0 tau1

0.4057844 0.5640063 0.4907643 0.6663096 0.3022842 0.2999727

mcll_se returns a vector of standard errors for the estimates for the model parameters (β1 to
β4, τf and τm). Standard error estimation took about 122 seconds on a Intel Pentium Dual-Core
2.5-GHz processor computer with 3.2 GB of memory.

3 Discussion

There are several things to be discussed regarding implementation of MCLL. First, we uses an
orthogonal transformation of the posterior samples. This orthogonal transformation, also called
data presphering (Wand and Jones, 1993) is useful in implementing MCLL because it simplifies
the integral term in (1). Specifically, for multidimensional parameter θ, if the components are
approximately independent in the posterior, then interactions terms in Pa(u− θ) can be dropped.
In addition, a product kernel can be used, with

K

(
u− θ
h

)
=

d∏
i=1

K0

(
ui − θi
hi

)
, (3)

where K0 is a one-dimensional kernel. With these two simplifications, the multidimensional integral
can be factorized as a product of one-dimensional integrals due to the orthogonality of the parameter
space. In addition, the orthogonal transformation standardizes a bandwidth choice by transforming
the parameter space to be on the same scale. That is, the default choice for α = 0.7 works in most
applications.

Second, we use a log-transformation of variance parameters. This has several advantages: 1)
it avoids need for a modified kernel in Step 2 to handle truncation of the density at zero, 2) the
posterior distributions are closer to normal so that data presphering operation works better for a
symmetric distribution, and 3)the log-posterior is better approximated by a quadratic function.

Third, for model (2), we used diffuse priors for the fixed and log standard deviation parameters.
In this case, we have shown that the posterior mean estimates as well as MCLL estimates are also
close to ML estimates (Jeon et al., 2012, Section 5). Note that even if priors are poorly specified,

6

the MCLL algorithm provides results close to the ML estimates while the posterior mean estimates
are not. For details, see Section 6.2 in Jeon et al. (2012).

Finally, it is important to note that MCLL allows likelihood inference for any complex models for
which ML estimation may be infeasible but MCMC methods are possible. For example, in addition
to GLMMs with crossed random effects considered here, the MCLL algorithm could be used to
fit models with higher dimensional latent variables such as spatial models for disease mapping.
Therefore, when ML inference is desirable for highly complex models, the MCLL method is an
effective and practical choice.

Appendix

Here is the WinBUGS code for model (2) for the salamander mating data. To use this for bugs,
save this as “sala.bug” as shown in Section 2.1.

crossed random effects model for salamander data

n: number of salamanders

m: number of female

f: number of male

rm: random effects for male

rf: random effects for female

mu0: mean for male

mu1: mean for female

zeta0: inverse variance for male

zeta1: inverse variance for female

model

{

for (i in 1:n) {

logit(p[i]) <- b0 + b1*wsf[i] + b2*wsm[i] + b3*ww[i]

+ rm[male[i]] + rf[female[i]]

r[i] ~ dbern(p[i])

}

b0 ~ dnorm(0, .0001)

b1 ~ dnorm(0, .0001)

b2 ~ dnorm(0, .0001)

b3 ~ dnorm(0, .0001)

for (j in 1:m) {

rm[j] ~ dnorm(0,zeta0)

}

zeta0 <- pow(exp(tau0),-2)

7

tau0 ~ dnorm(lmu,lsig) # normal

sigma0 <- exp(tau0)

for (k in 1:f) {

rf[k] ~ dnorm(0,zeta1)

}

zeta1 <- pow(exp(tau1),-2)

tau1 ~ dnorm(lmu,lsig)

sigma1 <- exp(tau1)

}

References

[1] Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences.
Statistical Science 7, 457-472.

[2] Jeon, M., Kaufman, C., and Rabe-Hesketh, S. (2012). Monte Carlo local likelihood for esti-
mating generalized linear mixed models. Submitted for publication.

[3] Karim, M. and Zeger, S. (1992). Generalized linear models with random effects: Salamander
mating revisited. Biometrics 48, 631-644.

[4] Loader, C. (1996). Local likelihood density estimation. The Annals of Statistics 24, 1602-1618.

[5] Loader, C. (2012). locfit: local regression, likelihood, and density estimation. Downloadable
from http://cran.r-project.org/web/packages/locfit/index.html.

[6] unn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS - a Bayesian modelling
framework: concepts, structure, and extensibility. Statistics and Computing 10, 325-337.

[7] McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall, New
York.

[8] Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS
from R. Journal of Statistical Software 12, 1-16.

[9] Wand, M. P. and Jones, M. C. (1993). Comparison of smoothing parameterizations in bivariate
kernel density estimation. Journal of the American Statistical Association 88, 520-528.

8

